
International Journal of Software Engineering & Applications (IJSEA), Vol.8, No.4, July 2017

DOI: 10.5121/ijsea.2017.8403 21

CONTEXT-AWARE CLUSTERING USING GLOVE AND

K-MEANS

Pulkit Juneja, Hemant Jain, Tanay Deshmukh, Siddhant Somani, B.K. Tripathy,

Senior Member, IEEE

School of Computer Science and Engineering, VIT University, Vellore, Tamil Nadu,

India

ABSTRACT

In this paper we propose a novel method to cluster categorical data while retaining their context. Typically,

clustering is performed on numerical data. However it is often useful to cluster categorical data as well,

especially when dealing with data in real-world contexts. Several methods exist which can cluster

categorical data, but our approach is unique in that we use recent text-processing and machine learning

advancements like GloVe and t- SNE to develop a a context-aware clustering approach (using pre-trained

word embeddings). We encode words or categorical data into numerical, context-aware, vectors that we

use to cluster the data points using common clustering algorithms like K-means.

KEYWORDS

Natural language processing, context-aware clustering, k-means, word embeddings, GloVe, t-SNE

1. INTRODUCTION

In recent years, due to the exponential growth of data and rising demand for data analytics, cluster

analysis has emerged as an important field of study. It is often useful to categorize unclassified

data, with applications in areas ranging from Biology and Medicine to Computer Science. Several

techniques exist which can cluster data points based on their attributes [1]. One of the most

popular clustering algorithms is the k-means algorithm [2] which partitions n observations into k

≤ n clusters by minimizing the cost function C which is defined as the sum of the intra-cluster

distance of each point to its cluster center.

Despite the utility and efficiency of the k -means algorithm, it’s limitation of working with only

numerical data has been a barrier to its application on real-world datasets, where categorical data

is more frequently encountered. Several solutions to this have been proposed. Huang [3] proposed

two methods 1) the use of a simple matching dissimilarity measure such as Hamming distance

and 2) The use of the most frequently occurring values of a feature i.e. the mode to computer the

cluster centers. This extension to the k-means algorithm is called the k-modes algorithm. Guha et.

al. [4] presented a concept of hierarchical clustering.

In contrast to the above approaches, we opted to use geometrical encoding of words derived from

global contextual data. These embeddings of words do not have local context and are instead

obtained from a model trained on a global corpus. We believe that this will impart a sense of

generality to the clustering and higher quality results can be achieved as a result.

International Journal of Software Engineering & Applications (IJSEA), Vol.8, No.4, July 2017

22

2. RELATED WORK

Most of the data available to the masses is unsupervised data with no predefined classes and

labels, as a result Unsupervised data is much easier to obtain than supervised data but

unfortunately unsupervised clustering algorithms are much less accurate and require more

iterations/epochs and data to converge to an accuracy commensurate to their super- vised

counterparts. Yuan et al. were the first one to propose the concept of context aware clustering in

their 2008 paper [5]. They proposed the idea of obtaining supervision rules from unsupervised

data by using the contextual dependencies of the data and using those supervision rules to

improve the clustering performance. In the paper [5] they try to substantiate the concept using 2

case studies. Firstly they demonstrated the concept by clustering primitive visual features for

finding local spatial patterns in images and (2) by clustering 09 handwritten digits with help of

contextual patterns among different types of features. They then used this contextual information

as supervision to characterize the co-occurrence statistics which were then used to resolve

ambiguous data samples.

In another paper [6] A Mary Posonoa and V.L. Jyothi proposed an approach for con- textually

clustering XML documents based on the similarity of the documents without any knowledge of

their structural representation. Their approach used feature extraction to ex- tract prevalent

features from the documents (e.g. the number of times a term appears in a document) and

clustering the documents based on these features. One interesting aspect of the proposed approach

is that the class labels and the context of clustering is automatically chosen based on the most

dominant pattern in the documents. For example a given set of data may be clustered into market

segments if that is the most prevalent pattern found by the algorithm.

The decision of the similarity measure is paramount in a clustering task. The decision greatly

affects the quality of the clustering and chosen based on the application at hand. For numerical

data the choice is trivial and simple distance metrics such as the Euclidean distance work really

well. For categorical data, however, such distance based metrics such as Euclidean distance or

Jaccard distance don’t work very well because they only measure the equality between pair of

values. This is a strong limitation for a clustering algorithm, since it prevents to capture

contextual similarities and intricate patterns that might be hidden in the data. Dino Ienco et al.

acknowledge and try to address this in their paper [7] and introduce the DILAC algorithm which

uses the correlation between the categorical attributes to compute distance between the values of

an attribute. The algorithm proceeds by first finding the context for a target attribute which is the

set of attributes other than the target attribute that correlate most with it. Then the distance

between two values of the target attribute is then calculated by applying Euclidean distance or

other similar distance metric to the conditional probabilities of those values given particular

values of the chosen context attributes.

3. LITERATURE REVIEW

3.1. COMPARISON OF DIFFERENT WORD EMBEDDING MODELS

The term Word Embeddings was coined By Bengio et al. (2003) and has since catapulted to

become one of the most widely used language models in natural language processing and

distributional semantics.

Word embeddings are method of capturing semantic analogies between the words of a corpus,

which are impossible to discriminate just based on a simple number, by training a model to

represent the words as a dense vector of real numbers with a lower dimension compared to the

size of the vocabulary of the corpus.

International Journal of Software Engineering & Applications (IJSEA), Vol.8, No.4, July 2017

Two of the most popular and efficient models that we will elaborate upon and compare in this

section are word2vec [8] and GloVe [9] (which we would be using in our application).

3.1.1. Word2Vec

One of the most popular word embedding generation models that brought word embed

the masses can be attributed to Mikolov et

In the original paper published by Mikolov et

learning word embeddings, both of these models were computationally less ex

offered two main benefits over previously proposed models:

• No expensive hidden layer

• Both of these models allow taking additional context into account which allows for

learning

At the heart of Word2Vec is a 3

representations for the words of the input corpus as the weight vectors of the network

Both the input and output layers have the same number

the number of nodes in the hidden layer(N) are less than V and is also the dimension of the word

vectors learned.

Two vector representations are learned for each word in the corpus. One which comes from the

rows of the input-hidden layer matrix

the columns of the hidden-output layer matrix known as the output vector.

Figure 1. Basic Architecture of the word2vec Neural Model

Continuous bag of words: - The continuous bag of word

learning model that works with the objective of calculating a multinomial probability distribution

predicting which word would best fit given a context. The cont

of N words both before and after the target word.

Since there are multiple input words instead of just one, modifications to the neural network are

made. The input connections to the hidden layer are duplicated

size of the context.

International Journal of Software Engineering & Applications (IJSEA), Vol.8, No.4, July 2017

Two of the most popular and efficient models that we will elaborate upon and compare in this

section are word2vec [8] and GloVe [9] (which we would be using in our application).

ne of the most popular word embedding generation models that brought word embed

the masses can be attributed to Mikolov et. al. (2013).

In the original paper published by Mikolov et. al. [8], they proposed two architectural models for

ord embeddings, both of these models were computationally less ex-

offered two main benefits over previously proposed models:

No expensive hidden layer 

Both of these models allow taking additional context into account which allows for

At the heart of Word2Vec is a 3 layer shallow neural network that learns the distributed vectors

representations for the words of the input corpus as the weight vectors of the network

Both the input and output layers have the same number of nodes as the size of the vocabulary(V),

the number of nodes in the hidden layer(N) are less than V and is also the dimension of the word

Two vector representations are learned for each word in the corpus. One which comes from the

hidden layer matrix known as the input vector and other one that comes from

output layer matrix known as the output vector.

. Basic Architecture of the word2vec Neural Model [10]

The continuous bag of words learning model is an unsuper

learning model that works with the objective of calculating a multinomial probability distribution

predicting which word would best fit given a context. The context is represented by a collection

words both before and after the target word.

Since there are multiple input words instead of just one, modifications to the neural network are

made. The input connections to the hidden layer are duplicated C times, where C

International Journal of Software Engineering & Applications (IJSEA), Vol.8, No.4, July 2017

23

Two of the most popular and efficient models that we will elaborate upon and compare in this

section are word2vec [8] and GloVe [9] (which we would be using in our application).

ne of the most popular word embedding generation models that brought word embed- ding to

al. [8], they proposed two architectural models for

- pensive and

Both of these models allow taking additional context into account which allows for better

layer shallow neural network that learns the distributed vectors

representations for the words of the input corpus as the weight vectors of the network

of nodes as the size of the vocabulary(V),

the number of nodes in the hidden layer(N) are less than V and is also the dimension of the word

Two vector representations are learned for each word in the corpus. One which comes from the

as the input vector and other one that comes from

s learning model is an unsupervised

learning model that works with the objective of calculating a multinomial probability distribution

ext is represented by a collection

Since there are multiple input words instead of just one, modifications to the neural network are

 is the chosen

International Journal of Software Engineering & Applications (IJSEA), Vol.8, No.4, July 2017

Figure

The output of the hidden layer is also modified.

layer it adds the inputs from all the connections, multiplies it with the input

weight matrix and averages the sum over

Where �� 	is the input vector for word

The training of the net (weight updation) is done by using back propagation to maximize the

conditional probability of the actual output

To accomplish this a loss function is calculated which is defined as the logarithm of this

Conditional probability. 

So the main aim of the learning algorithm is to minimize this loss function.

Skip Gram model: - The Skip Gram learning model’s objective function is the exact opposite of

the CBOW model. The model learns by predicting the context words for a given target word.

Hence the target word is fed at the input layer and the output layer is replicated

International Journal of Software Engineering & Applications (IJSEA), Vol.8, No.4, July 2017

Figure 2: Continuous bag of words Model [10]

The output of the hidden layer is also modified. Instead of directly passing the input to the output

layer it adds the inputs from all the connections, multiplies it with the input– >hidden layer

weight matrix and averages the sum over C. This vector is the final output of the hidden layer.

� � �
� �	
�� � �� � ⋯� �� 	�

is the input vector for word �. 
(weight updation) is done by using back propagation to maximize the

conditional probability of the actual output word ��, represented by �
��|�� …���
To accomplish this a loss function is calculated which is defined as the logarithm of this

� � 	� log �
�� |�� …���

So the main aim of the learning algorithm is to minimize this loss function.

The Skip Gram learning model’s objective function is the exact opposite of

the CBOW model. The model learns by predicting the context words for a given target word.

Hence the target word is fed at the input layer and the output layer is replicated C time

Figure 3. Skip gram Model [10]

International Journal of Software Engineering & Applications (IJSEA), Vol.8, No.4, July 2017

24

Instead of directly passing the input to the output

>hidden layer

. This vector is the final output of the hidden layer.

 (1)

(weight updation) is done by using back propagation to maximize the

�.

To accomplish this a loss function is calculated which is defined as the logarithm of this

 (2)

The Skip Gram learning model’s objective function is the exact opposite of

the CBOW model. The model learns by predicting the context words for a given target word.

times.

International Journal of Software Engineering & Applications (IJSEA), Vol.8, No.4, July 2017

25

Since there is only a single input layer in case of skip gram the output of the hidden layer remains

the same that is it has a linear activation function and just copies its input as the output.

The output layer is more complicated in this model. Instead of outputting a single multinomial

probability distribution, the output layer now outputs C multinomial probability distributions. The

output is computed as follows

��,� � �
��,� � ��,�|��� (3)

Where ��,� is the � �
word on the ! �

panel of the output layer, ��,� is the actual output word of

the ! � panel, ��,� is the output of the � � unit on the ! � panel of the output layer [10], the loss

function is calculated similarly as

� � 	� log �"��,�,�#,�, … ,��,�$�%& (4)

Where �"��,�, ��,�, … , ��,�$�%� represents the conditional probability of getting the actual

output context given the only target word WI. The training objective of the algorithm is to

minimize this loss function.

3.1.2. GloVe

The Global Vectors for Word Representation (GloVe) model [9] is a word-vector representation

model that utilizes global statistical information regarding word co-occurrences to obtain

geometrical encoding of words. Pennington et al. argue that shallow window-based methods such

as Word2Vec do not fully exploit the co-occurrence information present in the corpus. They

claim that their method “produces a vector space with meaningful sub- structure, as evidenced by

its performance of 75% on a recent word analogy task. It also outperforms related models on

similarity tasks and named entity recognition.”

Background:- Matrix factorization methods, such as LSA [11], create a term-document matrix

which is a sparse matrix mapping terms to their occurrences in documents. Since frequent terms

such as the, a will have a disproportionately large count without contributing much to the

semantic analysis, a normalization technique e.g. tf-idf needs to be used to weigh the occurrences

in proportion to the number of times the terms appear in each document. The term-document

matrix is then decomposed to find a low-rank approximation. By contrast, the Hyperspace

Analogue to Language (HAL) [12] method creates a term-term matrix in which words are

mapped to the number of times they occur within the context of another word.

Shallow window-based methods, such as the Word2Vec model described previously, learn word

representations by moving a context window across the corpus. A disadvantage of these methods

over Matrix factorization methods is that they only consider the local context and do not take into

account the large amount of repetition in the data.

The GloVe Model: - The GloVe model considers the statistics of word occurrences as the

primary source of information. The authors illustrate how GloVe utilizes with a simple example.

Consider a word-word co-occurrence matrix denoted by '. Let '�� denote the number of times

word � occurs in the context of word i. Let '�	 � 	()'�) denote the number of times any word

appears in the context of �. Finally, let ��� � �
�|�� �	 '��/'�. Now consider the words �	 � 	�!+

and �	 � 	, +-.. The relationship between these words can be determined by observing their co-

occurrence probabilities with respect to various other “probe” words k. For a word closely related

to ice but not to steam, such as solid, the ratio of �
,/0�1|�!+�/�
,/0�1|, +-.� will be large.

International Journal of Software Engineering & Applications (IJSEA), Vol.8, No.4, July 2017

Similarly, a word like gas will have a smaller ratio of

like water or fashion will have a ratio close to one. Indeed, we can see this relationship in the

following figure.

Figure 4. Co-occurrence probabilities for target words ice and steam [9]

Pennington et al. propose that on the basis of the above argument, the starting point for the word

vector learning model should be the ratios of the co

probabilities themselves. They propose a general model of the form,

Where w ∈ Rd are word vectors and w

hand side comes from the corpus, and F is function which can encode information present in the

ratio
��2 ��23 	in the vector space. This is done by taking the vector difference

the arguments are vectors while the right hand side is scalar, the dot

�42 is taken. Eventually, after solving for

symmetry, a simplified version of Eq. 5 is obtained.

This model has a major disadvantage in that it weighs all occurrences equally, even the rare ones.

These are noisy and not significant, yet account for “75

vocabulary size and corpus.” To resolve this Pennington et al

squares regression model, introducing a weighing function

5 �

Where V is the size of the vocabulary

well.

The performance of the model depends weakly on the cutoff x

was found that taking α = 3/4 gave a small improvement over

similar fractional power scaling was found to give the best performance in Word2Vec.

Performance comparison between GloVe and Word2Vec

Pennington et al. performed their evaluation of the GloVe model in relation on other models

based on the following criteria. The type of natural language processing tasks per

Word analogies 2) Word similarity and 3) Named entity recognition. Five

were used: a 2010 Wikipedia dump with 1 billion tokens, a 2014 Wikipedia dump with 1

tokens, the Gigaword5 which

International Journal of Software Engineering & Applications (IJSEA), Vol.8, No.4, July 2017

Similarly, a word like gas will have a smaller ratio of �
6-,|�!+�/�
6-,|, +-.�. Neutral words

like water or fashion will have a ratio close to one. Indeed, we can see this relationship in the

occurrence probabilities for target words ice and steam [9]

propose that on the basis of the above argument, the starting point for the word

vector learning model should be the ratios of the co-occurrence probabilities rather than the

probabilities themselves. They propose a general model of the form,

7"��, �� , �42& � 89:
8:;

are word vectors and w ∈ Rd are context word vectors. In this equation,

hand side comes from the corpus, and F is function which can encode information present in the

space. This is done by taking the vector difference of �� and

the arguments are vectors while the right hand side is scalar, the dot product of "�
is taken. Eventually, after solving for 7	 � 	+�� and adding a bias term <

symmetry, a simplified version of Eq. 5 is obtained.

��	�42 � <� � <=2 � log
'�2�

This model has a major disadvantage in that it weighs all occurrences equally, even the rare ones.

These are noisy and not significant, yet account for “75–95% of the data in X, depending on the

vocabulary size and corpus.” To resolve this Pennington et al. proposed a new weighted least

squares regression model, introducing a weighing function >
'��� into Eq. 6.

�	∑ >
'���
��	�4� � <� � <=� � log
'���	�@�,�A�

vocabulary. The authors found the following class of functions to work

The performance of the model depends weakly on the cutoff xmax which is taken to be 100. It

α = 3/4 gave a small improvement over α = 1. The authors note that a

r fractional power scaling was found to give the best performance in Word2Vec.

Performance comparison between GloVe and Word2Vec

Pennington et al. performed their evaluation of the GloVe model in relation on other models

. The type of natural language processing tasks per- formed were 1)

Word analogies 2) Word similarity and 3) Named entity recognition. Five corpora of various sizes

were used: a 2010 Wikipedia dump with 1 billion tokens, a 2014 Wikipedia dump with 1

5 which has 4.3 billion tokens, a combination of Gigaword5 +

International Journal of Software Engineering & Applications (IJSEA), Vol.8, No.4, July 2017

26

Neutral words

like water or fashion will have a ratio close to one. Indeed, we can see this relationship in the

propose that on the basis of the above argument, the starting point for the word

rather than the

 (5)

are context word vectors. In this equation, the right

hand side comes from the corpus, and F is function which can encode information present in the

and ��. Since

"�� � ��&	with

<2 to restore

 (6)

This model has a major disadvantage in that it weighs all occurrences equally, even the rare ones.

95% of the data in X, depending on the

. proposed a new weighted least

 (7)

The authors found the following class of functions to work

which is taken to be 100. It

thors note that a

r fractional power scaling was found to give the best performance in Word2Vec.

Pennington et al. performed their evaluation of the GloVe model in relation on other models

formed were 1)

corpora of various sizes

were used: a 2010 Wikipedia dump with 1 billion tokens, a 2014 Wikipedia dump with 1.6 billion

bination of Gigaword5 +

International Journal of Software Engineering & Applications (IJSEA), Vol.8, No.4, July 2017

27

Wikipedia2014 which has 6 billion tokens, and on 42 billion tokens of web data, from Common

Crawl. For all experiments �BCD was set to 100 and E	 � 	3/4. The model was trained using

AdaGrad [13], an adaptive gradient descent algorithm with a faster convergence than SGD, with

an initial learning rate of 0.05 for 50–100 iterations. The size of the context window was taken to

be ten words from the left and right. Using the word2vec tool, the skip-gram (SG) and the

continuous bag-of-words (CBOW) models were trained on the same corpus. Negative sampling

was used instead of the hierarchical softmax function for training the models since it was found to

have better results.

Figure 5. GloVe comparision with Word2Vec [9]

In most tasks, the GloVe model performed significantly better than other models, even with

smaller vector sizes and corpora. Although a thorough quantitative comparison of GloVe with

word2vec is difficult due to the existence of many parameters, the authors control for the major

sources of variation viz. setting the context window size, vector length, corpus and vocabulary

size to a specific configuration. Another important variable to control for is the training time. For

GloVe the training time is a function of the number of training iterations. However, word2vec is

currently designed for only one training epoch and modifying the number of iterations is a non-

trivial task. Therefore the authors instead decided to increase the number of negative samples as

that has similar results to increasing the number of epochs.

As we can see in Fig.6 GloVe consistently outperforms the word2vec model. Whereas the

word2vec model starts showing a loss in accuracy after 10 additional negative samples, no such

performance loss is detected in the GloVe model. Regardless of speed, it achieves dramatically

better results. On the basis of these results, we have opted to use the GloVe model in our method.

3.2 DIMENSIONALITY REDUCTION

Dimensionality reduction is a big problem because many types of data have a large number of

attributes (>30) and it is required to visualize high-dimensional data like word embeddings. This

International Journal of Software Engineering & Applications (IJSEA), Vol.8, No.4, July 2017

28

problem was recognized and while many algorithms have been built to tackle it, most had the

drawback of large data loss while reducing to 2 dimensions. Algorithms like Chernoff faces [14]

represented data in 3 or more dimensions and made it difficult for the researcher to understand the

quality of the embedding. More importantly, the aim of dimensionality reduction was to minimize

data loss while converting to lower dimensions. A significant algorithm - Principal Component

Analysis (PCA) [15] that proved useful in many areas for dimensionality reduction, failed to

apply well on word embeddings. It was accompanied with high data loss because the approach

could not keep the lower dimension points of two similar n-dimensional data points close to each

other. Hinton attributed this to a limitation of using linear mapping (PCA used linear mapping).

3.2.1. T-SNE 
  

 

Laurens van der Maaten and Geoffrey Hinton (2008) proposed a solution to the problem of

efficient dimensionality reduction called t-SNE (t-Distributed Stochastic Neighbor Em- bedding)

which was a variation of another algorithm by Hinton and Roweis (2002) called Stochastic

Neighbor Embedding. The newer approach was significantly easier to optimize and was claimed

to produce better dimensionality reduction for e.g. to visualize word embeddings in 2D space.

Traditional SNE converts higher dimensional distances between two data points to conditional

probabilities which express similarities between the pair of words. For two data points �� and ��,
the conditional probability ��|� that �� would select �� as its neighbor based on their Gaussian

probability distribution fixing �� at the center is given by:

��|� =
exp	(−|$�� − ��$|�

2L��
)

∑ exp	(−$|�� − �2|$�
2L��

)2M�

 (6)

Where σi represents the variance of the Gaussian centered at the data point ��. For the lower

dimensional counterparts �� and �� of the higher dimensional data-points �� and �� respectively,

we must similarly compute a conditional probability expressing the similarity between them. This

conditional probability N�|�		 is calculated as:

N�|� = exp	(−|$�� − ��$|�)
∑ exp	(−||�� − �2||�)2M�

 (10)

It is important to note that set ��|� and N�|� = 0 since we are only interested in modeling pairwise

similarities. For all other conditional probabilities, the aim is to find the low- dimensional

representation that minimizes the difference between ��|�	and 	N�|�. The overall performance of

the dimensionality reduction is expressed in terms of the Kullback-Leibler divergence. This is the

cost of reducing dimensionality that signifies the loss of information while reducing from a higher

to lower dimension model. This cost function C is calculated as:

O = 	∑ PQ(��||R�) = 	∑ ∑ ��|� log S:|9
T:|9��� (11)

The cost is minimized by minimizing the Kullback-Leibler divergences of all data points using a

gradient descent method. In Eqn. 11, �� denotes the conditional probability distribution over all

International Journal of Software Engineering & Applications (IJSEA), Vol.8, No.4, July 2017

29

other high-dimension data points given the data point �� and similarly R� denotes the conditional

probability distribution over all other low-dimension data points given ��. It is important to note

that the Kullback-Leibler divergence is not symmetric in nature. Thus, the SNE function retains

the local structure while reducing the dimensionality of data. The value of L� too must change as

it navigates through the data points since in dense regions, a smaller value of L� is more

appropriate than in sparse regions. The importance of L� is that it induces a probability

distribution	��. There exists a parameter called perplexity which influences the value of L� and ��
selected by the SNE (using binary search) for each data point ��. The perplexity is calculated as:

�+U�(��) = 2V(89) (12)

Where H(Pi) is the Shannon entropy of Pi measured as:

W(��) = −∑ ��|� log� ��|�� (13)

The minimization of the cost function is done by means of simple gradient descent computed as:

 XO
X��

= 2Y(��|� − N�|� + ��|� − N�|�)(�� − ��)
�

 (14)

Which may be interpreted as an imaginary resultant force created by the collection of springs

between yi and all other low dimension points.

A very significant problem faced during reduction of dimensionality is the crowding problem.

This happens because the pairwise distance in a 2D plane cannot effectively represent the

distances in an n-dimensional hyperplane. A situation can arise where there exists n+1 data points

in an n dimensional plane such that each point is mutually equidistant. In this situation we cannot

express the data in a lower dimension without loss of data. The crowding problem states that the

area of the 2D map available to plot distant data points will not be large enough compared to the

area available to plot nearby data points. This explains that is we wish to model small distances

effectively on the 2D plane, the moderate distances would require to be plotted too far away in

the 2D plane. This means that for SNE, the ‘spring’ connecting an arbitrary data point � to the

distant points in an n-dimension hyperplane, will exert an extremely small attractive force. t-SNE

is an approach that intends to solve this problem. For this, t-SNE replaces the Gaussian function

with a Student-t distribution to measure the similarity between two data points in the lower-

dimensional space. Heavy-tailed distribution in a low-dimensional space removes both the

crowding problem and optimization problems of traditional SNE. A comparison between the

gradients of SNE, UNI-SNE and t-SNE is shown in Fig. 6. As we can see, t-SNE clearly

outperforms its predecessors.

Figure6. Gradients of SNE, UNI-SNE and t-SNE as a function of the Euclidean distances between two

points in the high-dimensional and low-dimensional representations

International Journal of Software Engineering & Applications (IJSEA), Vol.8, No.4, July 2017

30

In the high dimensional space, distances can be converted into probabilities using Gaussian

distribution. In the Low dimensional space, heavier tails can be used than Gaussian tails to

represent the distances as probabilities. A Student-t distribution is used in t-SNE as the heavy

tailed distribution (instead of Gaussian) and the new joint probability are:

N�|� = 	(�Z|$[9\[:$|])^_
∑ 	(�Z||[9\[;||]);`9 ^_ (15)

Where N�� is the low-dimension embedding similarity between �� and �� , two far apart data

points, with N��	 = 	0 for all �. The high-dimension embedding similarity ���, of an N data point

model is calculated symmetrically by averaging over the condition probabilities as:

��� = S:|9ZS9|:
�b (16)

The Kullback-Leibler divergence form for t-SNE is calculated using embedding similarities of an

n-dimensional embedding ε as:

O(c) = PQ(�||R) = 	∑ ��� log S9:
T9:�M� (17)

Thus, due to asymmetry of the Kullback-Leibler divergence, the objective function for an

embedding ε is non-convex and minimized by a gradient descent approach as:

d�
d[9

= 4∑ (��� − N��)N��e(�� − ��)�M� (18)

Where the normalization term

e = ∑ (1 + ‖�2 − �h‖�)\�2M� (19)

As we can see from the above equations for t-SNE, the model scales quadratically and has time

complexity of O(N2) since the normalization term sums over N(N −1) pairs. After a few thousand

input objects, the learning becomes very slow and impractical on traditional systems. Laurens van

der Maaten (2014) made contributions to t-SNE by accelerating learning to a time complexity of

i(j	0/6j) by using the Barnes-Hut and the dual-tree algorithm, these algorithms limit the low

dimensional embeddings to only two or three dimensions. This is because generalization to higher

dimension causes exponential growth of the size of the tree is thus counterproductive for

acceleration of t-SNE. Since two or three dimensional representations may suffer a high degree of

information loss as compared to higher dimensional representations, we do not wish to restrict

ourselves to merely the two and three dimensional representations. Therefore, for this work, we

have limited ourselves to traditional t-SNE and only the 2000 most frequent words in the English

language (due to CPU memory restraints).

International Journal of Software Engineering & Applications (IJSEA), Vol.8, No.4, July 2017

31

Figure 8: Glove visualization in 2D (zoomed in)

This work discusses and compares the performance of t-SNE’s dimensionality reduction on 50,

100, 200 and 300 dimensional word vectors that were taken from Stanford’s GloVe (Global

Vectors for Word Representation) project. Below are the zoomed in two-dimensional

visualizations of a few words using the 50 (Fig. 8a), 100 (Fig. 8b), 200 100 (Fig. 8c) and 300

(Fig. 8d) dimension models for the 6B token corpus collected from Wikipedia 2014 and

Gigaword5. For this model, the word vocabulary size was 400,000 and a symmetric context

window of size 10 was used. As we can see, it is difficult to tell the quality of the word

embeddings manually by observing the distance between a collection of pairs of words. To

replace this subjective measure we get from the manual human observation of the word

embeddings, we use commonly used measures for vector-vector distance calculation and

similarity.

Next, the data loss is compared with the reduction ratio and find an optimal balance between the

two.

3.3. MEASURE OF TEXT SIMILARITY

Text Similarity measures play a deciding role in text relevant research and applications in tasks

such as classification and clustering of texts and documents, information retrieval, topic detection

and tracking, questions generation, essay scoring, question answering, text summarizing, machine

translation and others. The primary stage for sentence, paragraph and document similarities is set

by finding text similarity whose fundamental part is realising similarity between words.

Words can be similar in two ways -- lexically and semantically Words are similar lexically if

their character sequences are similar. Words are semantically similar if they have the same thing,

are opposite of each other, used in the same context, used in the same way and one is a type of

another. Lexical similarity is introduced through various String-Based algorithms, Semantic

similarity is established through Knowledge-Based and Corpus-Based algorithms. String-Based

measures operate on string sequences and character composition. A string metric is a metric that

measures similarity or dissimilarity (distance) between two text strings for approximate string

comparison or matching. Corpus-Based similarity measures the semantic similarity between

International Journal of Software Engineering & Applications (IJSEA), Vol.8, No.4, July 2017

32

words according to information extracted from large corpora. Knowledge-Based similarity is a

semantic similarity measure that determines the degree of similarity between words using

information derived from semantic networks.

Some of the measures that are widely used in determining the word similarities are:

• Cosine Similarity: Cosine similarity is a measure of similarity between two vectors, t1

and t2, of an inner product space that measures the cosine of the angle between them.

 �. � = $| �|$	$| �|$	cos n (20)

Given two vectors of attributes, T1 and T2, the cosine similarity S, cos n, is represented

using a dot product and magnitude as:

 o = 	cos n = 	 	_.]
$|	_|$||]|| =	 ∑ 	_9]9p9q_

r∑ 	_9]p9q_ 	r∑]9]p9q_
 (21)

Where T1 and T2 are the components of vectors T1 and T2 respectively

• Euclidian Distance: Euclidian distance is a standard metric for geometrical problems. It

is the ordinary distance between two points and can be easily measured with a ruler in

two- or three-dimensional space. Euclidean distance is widely used in clustering

problems, including clustering text. It satisfies all the above four conditions and therefore

is a true metric. It is also the default distance measure used with the K-means algorithm.

Euclidean distance or L2 distance is the square root of the sum of squared differences

between corresponding elements of the two vectors. If -	 = 	 (-1, -2,… . , -s) and

<	 = 	 (<1, <2,… , <s) are two points in Euclidean n-space, then the distance d from a to b,

or from b to a is given by:

 1(-, <) = 1(<, -) = 	t(<� − -�)� + (<� − -�)� + 	….		(<u − -u)� (22)

• Jaccard Similarity: Jaccard similarity is computed as the number of shared terms over

the number of all unique terms in both strings.[16]

o�.�0-U� ��C��Cvw(x,yyyz �yyz) = 	 ∑ {|}	(~9,�9)p9q_
∑ {��		(~9,�9)�9q_

 (23)

The numerator of the Jaccard function uses the .�s function, essentially computing the

(weighted) number of overlapping features (since if either vector has a zero association

value for an attribute, the result will be zero). The denominator can be viewed as a

normalizing factor.

4. METHODOLOGY

In this section we will elaborate on the methodology used to cluster our sample datasets. We will

attempt to explain here how the word embeddings from GloVe were extracted and how we

employed T-SNE to reduce the dimensionality of the word embeddings.

International Journal of Software Engineering & Applications (IJSEA), Vol.8, No.4, July 2017

33

4.1 EXTRACTION OF RELEVANT WORD EMBEDDINGS FROM THE GloVe DATASET

To improve the efficiency of the program at run time we found it optimal to segregate the word

embeddings for the words present in the data set into a separate file. Doing so would significantly

reduce the time taken during run time to search for the word embeddings. For those words for

which there were no word embeddings available, we ignored the corresponding tuples. The

algorithm proceeds by first parsing and loading the GloVe data set into the memory as separate

arrays of labels and embeddings. It then loads the Zoo dataset pickle file and extracts the animal

name, the only categorical attribute in the dataset, into a separate array .The algorithm then

compares the animal names from the data set with every label in the GloVe label array and the

corresponding embeddings are separated out into another array. If the animal name is not found in

the GloVe dataset then is not added to the array and the tuple is discarded.

4.2. REDUCING THE DIMENSIONALITY OF THE WORD EMBEDDINGS

Following the extraction of the word embeddings for the words present in our dataset, we reduced

the dimensionality using T-SNE. The particular implementation used was scikit-learn's T-SNE

python implementation. The number of components preserved was varied between 2 to 11

dimensions. The pairwise distance was compared in each iteration and the mean sigma calculated

as explained in section 3.2.1. Reducing the dimensionality was an important step since it allowed

us to more easily process and visualize the data. It also helps us avoid the so-called "curse of

dimensionality" [17] where the higher dimensional data would not have been relevant to our

clustering task and would have instead interfered with it.

4.3. CLUSTERING WORDS BASED ON THE OBTAINED EMBEDDINGS

The final step involves building a k-means model based on the word embeddings obtained from

the above step. The process was fairly straightforward as it involved applying the standard k-

means algorithm on the data set. We used the scikit-learn's k-means implementation. An

important point to determine, however, was the number of clusters to be selected. In our first

sample data set, the choice was obvious. For our second sample dataset, on the other hand, certain

techniques had to be used to determine the number of clusters. This will be explained further in

the next section.

5. RESULTS AND DISCUSSION

For testing our algorithm, we used two datasets -- the Zoo dataset and the Flag dataset. The

datasets were chosen based on the number of categorical attributes they had since our method was

designed for primarily categorical datasets.

5.1 ZOO DATASET

The Zoo dataset, created by Richard S. Forsyth, was obtained from the UCI machine learning

repository. The dataset contains one categorical attribute (the name of the animal), two numerical

attributes, and fifteen Boolean-valued attributes. It contains 101 such instances, and the animals

are classified into 7 sets. This gives us an easy way to determine the number of clusters and made

it easy to compare the results of the clustering.

As we can see in Fig. 9, the data points are farther away at 12 dimensions, since the data loss is

less than at 2 dimensions.

International Journal of Software Engineering & Applications (IJSEA), Vol.8, No.4, July 2017

34

Table 1: Error while reducing dimensions of word vectors of Zoo dataset using t-SNE

Figure 9: Zoo Dataset Clustering

5.2. Flag Dataset

The Flag dataset, also obtained from the UCI repository, contained details of various nations and

their flags. It had twenty categorical attributes and ten numerical ones. Of particular interest to us

were the country's name, religion, language, the main hue of the flag, the top-left and the bottom-

right hue of the flag.

To help us determine the number of clusters, we used the elbow method [18] to obtain a rough

estimate. This involved plotting the inertia (the within-cluster sum of squares distance) measure

to the number of clusters. At the point where the variance drops sharply with an increase in the

number of clusters, we used it to set the value of k.

International Journal of Software Engineering & Applications (IJSEA), Vol.8, No.4, July 2017

35

Figure 10: Elbow test in the Flag Dataset

The elbow tests suggested a k value of 4. To test this hypothesis further we used silhouette

analysis [19] to plot the silhouette scores against the number of clusters. Values near +1 indicate

that the sample is far away from the neighbouring clusters. Negative values indicate that the

samples may have been assigned to the wrong cluster. Ideally, the size and thickness of the plots

should be similar for each cluster and the number of samples with below average scores (denoted

by a red-dotted line) should be low.

Figure 11: Silhouette analysis for Flag dataset

In Fig.11 plots (a) and (b) have uneven sizes and few samples that have an above-average

silhouette score. Plots (d) through (h) have samples with negative silhouette scores. Only plot (c)

does not suffer from these problems. This suggests the setting of k to 4 for the flag dataset. We

continued the clustering using this number and the results are shown below in the following plot.

Fig. 12 shows the plot of the clustering results of the flag dataset when reduced to 2 to 9

dimensions.

International Journal of Software Engineering & Applications (IJSEA), Vol.8, No.4, July 2017

36

Figure 12: Flag Dataset Clustering

The dataset was again reduced to two dimensions in order to show this plot. Samples belonging to

different clusters were assigned different colors.

6. CONCLUSIONS

Context aware computing helps in creating devices, systems and applications that are easy to use

by understanding the context of use. It enables the means of considering the situation of use not

only in the design process, but in real time while the device is in use. In Human-Computer

Interaction (HCI), we traditionally aim to understand the user and the context of use and create

designs that support the major anticipated use cases and situations of use. In Context-aware

computing on the other hand, making use of context causes a fundamental change: We can

support more than one context of use that are equally optimal. At run time – when the user

interacts with the application — the system can decide what the current context of use is and

provide a user interface specifically optimized for this context. With context-awareness, the job of

designing typically becomes more complex as the number of situations and contexts which the

system will be used in usually increases. In contrast to traditional systems, we do not design for a

single - or a limited set - of contexts of use; instead, design for several contexts. The advantage of

the approach described in this work is that it can provide optimized and automated designs for a

range of contexts.

The quality of context-aware systems, as perceived by the user, is directly related to the

awareness mismatch, and a good design aims at designing systems with minimal awareness

mismatch. A prerequisite for creating a minimal awareness mismatch is that the user understands

what factors have an influence on the system.

In this work, we have proposed the idea of a self-supervised clustering called context aware

clustering where the contextual information is used as feedback to improve clustering results. We

have used the data from the GloVe corpus to cluster the Flag and Zoo datasets. As compared to

traditional k-means clustering, our proposed context-aware clustering method considers

dependencies in data at a higher contextual level. Thus clustering results are not just better but

also give us an estimate of the context of the categorical attributes that contain words. This is

important because it can be used to reveal the hidden patterns in all kinds of data sets.

The approach explained in this work is unique in the way it introduces context to clustering. Due

to the lack of a method for measuring the context of a word, our approach cannot be compared or

stated to be clearly superior to previous approaches. Any superiority, if present, shall be made

clear only through empirical evidence in the future. The advantage lies in setting a standard for

International Journal of Software Engineering & Applications (IJSEA), Vol.8, No.4, July 2017

37

clustering categorical data (while retaining the context of their non-numerical attributes) by the

use of a global representation of words made available by GloVe.

7. ACKNOWLEDGMENTS

We extend our heartfelt gratitude to Dr. B. K. Tripathy, Senior Professor, VIT for his guidance

and insight. His suggestions and feedback were invaluable and greatly assisted us in the writing

of this paper.

We are also indebted to Jeffrey Pennington, Richard Socher and Christopher D. Manning of

Stanford University for their work on Global Vectors (GloVe) for Word Representations. Without

their research our work would not have been possible.

REFERENCES

[1] P. Berkhin, A survey of clustering data mining techniques, in: Grouping multidimensional

data, Springer, 2006, pp. 25–71.

[2] J. A. Hartigan, M. A. Wong, Algorithm as 136: A k-means clustering algorithm, Journal of the Royal

Statistical Society. Series C (Applied Statistics) 28 (1) (1979) 100–108.

[3] Z. Huang, Extensions to the k-means algorithm for clustering large data sets with categorical values,

Data mining and knowledge discovery 2 (3) (1998) 283–304.

[4] S. Guha, R. Rastogi, K. Shim, and Rock: A robust clustering algorithm for categorical attributes, in:

Data Engineering, 1999. Proceedings. 15th International Conference on, IEEE, 1999, pp. 512–521.

[5] J. Yuan, Y. Wu, Context-aware clustering, in: Computer Vision and Pattern Recognition, 2008.

CVPR2008. IEEE Conference on, IEEE, 2008, pp. 1–8.

[6] A. M. Posonia, V. Jyothi, Context-based classification of xml documents in feature clustering, Indian

Journal of Science and Technology 7 (9) (2014) 1355–1358.

[7] D. Ienco, R. G. Pensa, R. Meo, Context-based distance learning for categorical data clustering, in:

International Symposium on Intelligent Data Analysis, Springer, 2009, pp. 83–94.

[8] T. Mikolov, K. Chen, G. Corrado, J. Dean, Efficient estimation of word representations in vector

space, arXiv preprint arXiv: 1301.3781.

[9] J. Pennington, R. Socher, C. D. Manning, Glove: Global vectors for word representation, in:

Empirical Methods in Natural Language Processing (EMNLP), 2014, pp. 1532–

1543.URLhttp://www.aclweb.org/anthology/D14-1162

[10] X. Rong, word2vec parameter learning explained, arXiv preprint arXiv: 1411.2738.

[11] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, R. Harshman, Indexing by latent

semantic analysis, Journal of the American society for information science 41 (6) (1990) 391.

[12] K. Lund, C. Burgess, Producing high-dimensional semantic spaces from lexical co-occurrence,

Behaviour Research Methods, Instruments, & Computers 28 (2) (1996) 203–208.

[13] J. Duchi, E. Hazan, Y. Singer, Adaptive subgradient methods for online learning and stochastic

optimization, Journal of Machine Learning Research 12 (Jul) (2011) 2121–2159.

International Journal of Software Engineering & Applications (IJSEA), Vol.8, No.4, July 2017

38

[14] H. Chernoff, The use of faces to represent points in k-dimensional space graphically, Journal

of the American Statistical Association 68 (342) (1973) 361–368.

[15] H. Hotelling, Analysis of a complex of statistical variables into principal components. Journal of

educational psychology 24 (6) (1933) 417.

[16] P. Jaccard, Etude comparative de la distribution florale dans une portion des Alpes et du Jura,

Impr.Corbaz, 1901.

[17] R. Bellman, R. Corporation, Dynamic Programming, Rand Corporation research study, Princeton

University Press, 1957.URLhttps://books.google.it/books?id=wdtoPwAACAAJ

[18] D. J. Ketchen, C. L. Shook, The application of cluster analysis in strategic management research: an

analysis and critique, Strategic management journal 17 (6) (1996) 441–458.

[19] P. J. Rousseeuw, Silhouettes: a graphical aid to the interpretation and validation of cluster analysis,

Journal of computational and applied mathematics 20 (1987) 53–65.

AUTHORS

Pulkit Juneja – B.Tech. Computer Science and Engineering, Vellore Institute of

Technology, Vellore, India (2017 Batch) Currently working at McKinsey and Co.

Hemant Jain – B.Tech. Computer Science and Engineering, Vellore Institute of

Technology, Vellore, India (2017 Batch)Joining University of Washington, MS in Data

Science (2017-19)

Tanay Deshmukh – B.Tech. Computer Science and Engineering, Vellore Institute of

Technology, Vellore, India (2017 Batch)Joining University of Southern California, MS in

Computer Science conc. in Data Science (2017-19)

Siddhant Somani – B.Tech. Computer Science and Engineering, Vellore Institute of

Technology, Vellore, India (2017 Batch) Joining Columbia University, MS in Computer

Science (2017-19)

B. K. Tripathy – Senior Professor, School of Computer Science and Engineering, Vellore

Institute of Technology, Vellore, India Areas of practice – Machine Learning, Data

Mining, Artificial Intelligence, Clustering, Fuzzy Sets

