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ABSTRACT 
 

Most bug assignment approaches utilize text classification and information retrieval techniques. These 

approaches use the textual contents of bug reports to build recommendation models. The textual contents of 

bug reports are usually of high dimension and noisy source of information. These approaches suffer from 

low accuracy and high computational needs. In this paper, we investigate whether using categorical fields 

of bug reports, such as component to which the bug belongs, are appropriate to represent bug reports 

instead of textual description. We build a classification model by utilizing the categorical features, as a 

representation, for the bug report. The experimental evaluation is conducted using three projects namely 

NetBeans, Freedesktop, and Firefox. We compared this approach with two machine learning based bug 

assignment approaches. The evaluation shows that using the textual contents of bug reports is important. In 

addition, it shows that the categorical features can improve the classification accuracy. 
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1. INTRODUCTION 
 

Software maintenance is crucial in software evolution which aims to modify a software product 

after delivery to fix defects or to improve other attributes. It represents one of the most expensive 

and time-consuming phases in the whole development process. Previous studies showed that 

around 90% of software development cost is utilized on maintenance and evolution activities [1]. 

Improving the competence of the bug fixing process would lower the costs of software 

development as indicated by several studies [2]. The bug fixing process would benefit greatly 

from improving the bug assignment accuracy by assigning bugs to appropriate developers. 

 

Several software repositories such as source code control, archived communications, and bug 

repositories are available for many software projects. A software project usually sustains a bug 

repository (a.k.a bug tracking system (BTS)) that manages and tracks bug reports and their status. 

BTS allows both developers and users to submit defects, suggest enhancements, and comment on 

bug reports. These bug reports are then utilized to guide software maintenance activities in order 

to produce more robust systems. The usage of a bug repository can improve the development 

process in different aspects: allowing developers who are not co-located to share their knowledge 

about project development [3]. Tracing the project evolution [20], and improving the quality of 

the project [4]. 

 

Bug assignment is an essential step in bug fixing where a relevant developer is assigned to a new 

submitted bug. A person who performs this task is called triager.  
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A triager usually spends effort and time to make several triaging decisions such as finding a 

relevant developer to fix a newly submitted bug report and determining if a new bug report is 

valid or duplicate. Every decision needs heavy human involvement to collect relevant information 

and search through the repository. Relying on the triager knowledge and judgment, after sieving 

through huge repositories, makes bug assignment error-prone and time-consuming. On the same 

hand, the number of daily submitted bugs is vastly huge which makes the manual triaging an 

unproductive process. To solve these problems, some machine learning algorithms are employed 

to conduct automatic bug assignment [5]–[9]. Most of the bug assignment approaches are based 

on text categorization [5],[10]. However, these approaches suffer from low-quality bug reports 

which may mislead the assignment approach to assign bugs to wrong developers [7], [11]. These 

approaches also suffer from low recall values [5]. 

 

In this paper, we investigate whether using categorical fields is appropriate to represent bug 

reports instead of textual description. The main contributions of this paper are: 

 

a. We build a recommendation model to predict a developer to a newly submitted bug 

report using bug reports categorical data. We investigate the effect of using several meta-

features of bug reports such as the component that each bug belongs to on the 

classification accuracy. 

b. We perform an experimental evaluation on three open source projects to investigate the 

effect of both the textual content and the categorical features, as bug reports 

representations, on the recommendation accuracy.  

 

The paper is organized as: Section 2 introduces some background material related to this work. 

Section 3 discusses related work. Section 4 describes the proposed approach. The experimental 

evaluation and discussions are presented in section 5. Section 6 presents some threats to validity 

and Section 7 concludes the paper. 

 

2. BACKGROUND 
 

We create a recommendation model based on categorical data found in bug reports to assist 

triagers in making decisions. When a developer or a user encountered a bug while using the 

software or wants to request an enhancement, he/she usually open a bug report in the open bug 

repository. Many open bug repositories (e.g., Bugzilla, Jira, Gnats, and Trac) have been adopted 

in open source projects. We only explore projects that use Bugzilla as their bug tracking system. 

  

2.1. BUG REPORTS 
 

In Bugzilla, bugs are kept in the form of bug reports which consist of predefined fields, text 

description, and attachments. Predefined fields represent several categorical attributes of a bug 

report. Some attributes such as creation date are unchangeable. Other attributes may be changed 

over time such as product, priority, and severity. Some attributes such as the final resolution may 

be frequently modified by authorized persons [5]. The assignee field represents the person in 

charge of resolving the bug. It contains the ID of the user who was made responsible for 

providing a solution for a particular bug report. Figure 1 shows an example of a bug report. 
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Figure 1: An Example of Bug Report 

2.2. BUG LIFE-CYCLE 
 

Bug reports experience several states in their life-cycles. Figure 2 depicts the life-cycle of bugs in 

Bugzilla. When a new bug report is submitted, its state is set to NEW. Once it has been triaged 

and assigned to a developer, its state is then changed to ASSIGNED. If this bug has been closed, 

its state is set to RESOLVED, VERIFIED or CLOSED depending on its situation. A report can 

be resolved in several ways; the resolution status in the report is used to record how the report 

was resolved. If the resolution results in changing the code base, then it is marked as FIXED. 

When a bug is determined as duplicated to other bugs, it is set to DUPLICATE. If a bug will not 

be fixed, or it is not an actual bug, it will be set to WONTFIX or INVALID respectively. If a bug 

was once resolved but has been reopened, it is marked as REOPENED [5]. 

 

2.3. Classifications  
 

Classification is one of the most commonly used machine learning techniques. It is also known as 

supervised statistical learning. In supervised learning, the model needs to be first trained using 

data with predetermined classes. This data is used to train the learning algorithm, which creates a 

model that can then be used to label/classify the testing instances, where the values of the class 

labels are unknown. Classification techniques have been successfully used in many fields such as 

computer vision, speech recognition, natural language processing, and document classification. 

One of the popular classification techniques is the Naive Bayes classifier [12]. It is a probabilistic 

classifier based on applying Bayes' theorem. It assumes that the presence or absence of a 

particular feature is unrelated to the presence or absence of any other features, given the class 

variable.  

 

A classification problem can be written as the problem of finding the class with maximum 

probability given a set of observed features values. The posterior probability of the class is 

computed using the Bayes theorem, as: 

P C X =  
P X C P C 

𝑃 𝑋 
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where X is features, X = {x1; x2, . . ., xm} and C is a Class, P(C) is the prior probability of the class 

and P(X|C) is the conditional probability of the features given the class. P(X|C) is computed as 

follows: 

 

Figure 2: Bug Life Cycle 

𝑃 𝑋 𝐶 = 𝑃 𝑥1, 𝑥2, … , 𝑥𝑚 𝐶 =   𝑃(𝑥𝑗|𝐶)

𝑚

𝑗=1

 

where m is the number of features and the highest P(C|X) is predicted as the class label of X. 

Naive Bayes is one of the popular classifiers in terms of accuracy and computational efficiency 

[13]. 

 

3. RELATED WORK 
 

Machine learning techniques have been applied on bug tracking systems to detect duplicate bug 

reports [1], estimate the required effort to fix bug reports [14], predict the priority of the reported 

bug [15], and predict the files that have most post-release defects [16]. Machine learning based 

recommender is one of the five categories proposed in [17] to the bug assignment problem. 

 

Most bug assignment approaches utilize text classification and information retrieval techniques. 

In this work, we categorize bug assignment approaches into two categories. The first category 

assigns only one developer to a newly submitted bug report [5], [18]–[20]. The second category 

assigns a set of candidate developers to a newly submitted bug report [6], [21]–[23]. 

 

Approaches in the first category formulate the bug assignment problem as a classification task. A 

model is built on the training dataset and then used to predict a developer for each new testing 

instance. For training, information retrieval techniques were used to represent bug reports. A class 

label is assigned to each bug report in the training data using the assignee field of that bug report. 

Using Bayesian algorithm is proposed in [18] to train a classifier with the textual content of 

resolved bug reports. Then this classifier is used to classify newly incoming bug reports. They 

predicted 30% of the report assignments correctly, considering Eclipse as a case study. Anvik et 

al. [5] improved the approach proposed in [18] by removing inactive developers (i.e, developers 
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with a too low bug fixing frequency or developers whom not working on the project anymore) 

and using project-specific heuristics to label bug reports. They employed SVM, Naive Bayes and 

Decision Trees classification techniques, and reported prediction accuracy of up to 64%. Zou et 

al. [19] proposed the training set reduction with both feature selection and instance selection 

techniques for bug assignment. They evaluated their approach on Eclipse where their approach 

removed 70% words and 50% bug reports. Alenezi et al. [20] employed five state-of-the-art term 

selection methods namely Log Odds Ratio, Chi-Square, Term Frequency Relevance Frequency, 

Mutual Information, and Distinguishing Feature Selector on the textual description of bug reports 

to produce discriminating terms. After that, they built a classification model on the discriminating 

terms using Naive Bayes classifier. Their experimental results on four real datasets showed that 

by selecting a small number of discriminating terms, the classification accuracy can be 

significantly improved. Banitaan and Alenezi [24] enhanced the classification accuracy by 

utilizing the most discriminating terms of bug reports based on Chai-square, the components in 

which the bugs belong to, and the reporter who filed the bug. They compared their approach with 

Anvik et al. [5] and Alenezi et al. [20] then reported an improvement in the classification 

accuracy.  

 

Bug assignment in the second category considered the bug fixing process as a collaborative effort. 

Even though a bug report is assigned to only one developer, many developers contribute their 

expertise which helped in solving it. Matter et al. [6] modeled a developer’s expertise using the 

vocabulary found in the developer's source code. They recommended experienced developers by 

extracting information from new bug reports and looking it up in the vocabulary. Their approach 

was tested on 130,769 Eclipse bug reports and achieved 33:6% top-one precision and 71% top-ten 

recall using eight years of Eclipse project. Wu et al. presented a bug assignment approach called 

DREX [21]. For each newly submitted bug report, DREX used K-Nearest-Neighbour to search 

for similar bug reports and then built a social network of their developers and commenters. Based 

on several social network metrics, they ranked these developers to recommend them to the new 

bug report. Their experimental evaluation on Firefox showed that the two metrics (Out-degree 

and Frequency) gave the best performance. Xie et al. [25] proposed an approach that models 

developers’ expertise based on topic modeling. Their approach recommends a ranked list of 

developers who are candidates for resolving the new bug. Their experimental results on Eclipse 

JDT and Mozilla Firefox projects showed that their approach achieves high recall values. Zhang 

and Lee [23] proposed a developer recommendation technique to recommend candidate 

developers to fix new bugs. They used both social network and experts' feedback to recommend 

potential developers. They considered both the experience of these potential developers and the 

fixing efficiency to rank them. Their approach achieved F-score of 40% when recommending 3 

developers. Similarly, Kempe et. al. [25] used social networks for the same purposes. Tamrawi et 

al.[26], on the other hand,  employed fuzzy sets to model bug-fixing expertise of developers such 

that developers who recently fixed bugs are more likely to fix similar bugs in the near future. 

They used some recent reports to build the fuzzy-sets representing the membership of developers 

to technical terms in the reports. For newly reported bugs, developers are recommended by 

comparing their membership to the terms included in the new report. Banitaan and Alenezi [27] 

built developers social networks based on developers’ comments on bug reports. They used the 

detected developers’ communities to assign a relevant community to each newly committed bug 

report. 

 

Our approach belongs to the first category in which they assign only one developer for each 

newly submitted bug. Different from previous work which use the unstructured textual content of 

bug reports to represent them, our approach utilizes structural data bug reports to represent them. 
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4. THE APPROACH 
 

We present an approach for the automatic recommendation of one experienced developer for each 

new bug report. Our approach uses a machine learning algorithm to recommend a developer who 

may be appropriate for resolving the bug. Adopted from previous work, we formulate the bug 

triaging process as a classification task where instances represent bug reports, features represent 

different meta-data fields of the report, and the class label represents the developer who fixed this 

report. 

 

Previous bug assignment approaches utilized the textual form of bug reports to build their models. 

Building recommendation models based on the textual description of bug reports suffer from 

several limitations. The textual content of bug reports leads to a very large corpus with so many 

sparse terms to describe bug reports. It is also a very noisy source of data and needs to go through 

different pre-processing steps. In addition, users and developers change over time which leads to 

different vocabulary usage to describe similar issues [28]. The aforementioned limitations lead to 

computational expensive and poor accuracy results. 

In classification, features do not contribute equally to identify class labels. In addition, many 

features may be irrelevant (i.e., they do not contribute to classification). Including irrelevant 

features leads to the high dimensionality of data and poor accuracy results. Therefore, we should 

select only the important features that can distinguish between different class labels (developers). 

This selection may result in enhanced performance. 

In our work, we use gain ratio [12] to identify the important features that have a high contribution 

to classification. The gain ratio provides a normalized measure of the contribution of each feature 

to classification. After applying the gain ratio to all meta-data fields, we find that Component, 

Operating System, and Priority have a high gain ratio value while other fields such as Severity are 

irrelevant (i.e., they have low gain ratio values). Some other fields such as Keywords cannot be 

used as features in classification since they are optional (i.e., most bug reports have empty values 

for these fields). 

 

In our approach, we use the following features: 

 

a. Component: It represents the component to which the bug belongs. For example, in the 

Netbeans dataset, some of the components are Java, Compiler, UI, and Ant. 

 

b. Operating System: It represents the operating system against which the bug was reported. 

For example, Windows 7, Mac OS X, and Linux. 

 

c. Priority: It represents the importance and order in which a bug should be fixed compared 

to other bugs. There are five priority levels P1, P2, …, P5 where P1 is considered the 

highest and P5 is the lowest. 

 

5. EXPERIMENT EVALUATION 
 

In the Section, we present our experimental evaluation. Section 5.1 presents the datasets used in 

this work, Section 5.2 presents the results of comparing the new approach with two other 

approaches. 
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5.1 DATASETS 

 
Three datasets namely NetBeans

1
, Freedesktop

2
, and Firefox

3
 are used to evaluate the approaches. 

NetBeans is an integrated development environment (IDE) for developing primarily with Java, 

but also with other languages, in particular, PHP, C/C++, and HTML5. Free desktop consists of 

different open source software projects working on interoperability and shared technology for X 

Window System desktops. Firefox is a widely used free and open source web browser. It is 

developed for Windows, OS X, Linux, and Android by Mozilla Foundation. All bug reports and 

their data are available and downloaded from the bug tracking systems of the corresponding 

projects.  

 

We collected bug records that have the status of [Closed, Verified, and Resolved] and the 

resolution of [Fixed]. For NetBeans, we choose 9760 bug reports from December 1st, 2011 until 

December 31st, 2012. For Free desktop, we choose 5817 bug reports from December 1st, 2011 

until December 31st, 2012. For Firefox, we choose 3132 bug reports from December 1st, 2011 

until December 31st, 2012. We want to refine the training set further to remove reports that are 

assigned to inactive developers (i.e., developers who no longer work on the project or developers 

who have only fixed a small number of bugs). We only consider developers who have fixed at 

least 15 bug reports in the dataset. Table 1 shows a summary of the refined datasets. 

 

Table 1.  Statistics of all Bug Reports Data 

 

Name # of Bug Reports # of Developers 

NetBeans 9500 58 

Freedesktop 5129 61 

Firefox 2488 40 

 

5.2 RESULTS 
 

We use the Naive Bayes classifier in the proposed approach and we recommend one developer 

for each new bug report. For evaluation, the dataset is divided into training and testing sets. To 

obtain unbiased evaluation results, we perform a 10-fold cross-validation. Precision, Recall, F-

score, and AUC are used for evaluation.  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
# 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛𝑠

# 𝑜𝑓 𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛𝑠 𝑚𝑎𝑑𝑒
 

 

Recall =
# of correct recommendations

# of possible relevant developers
 

 

  F − Score =  2 x 
Precision  x Recall

Precision  + Recall
 

 

The area under the receiver operating characteristic curve statistic (AUC) is a robust measure to 

assess and compare the performance of classifiers since it is independent of prior probabilities. In 

order to investigate the effect of using meta-data features other than the textual content of bug 

report on the classification accuracy, we compare the approach that utilizes the categorical 

features only with two different approaches. We will refer to proposed approach by CF. The first 

                                                 
1
 http://netbeans.org/bugzilla/ 

2
 https://bugs.freedesktop.org/ 

3
 https://bugzilla.mozilla.org/ 
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approach represents bug reports using the textual contents only [20]. We will refer to this 

approach by CHI-2. The CHI-2 approach works as follows: 

 

1. The summary of bug reports is used as a description of bugs. 

2. The traditional text processing is applied to remove white-spaces, punctuation, numbers, 

and stopwords. 

3. A bug-term matrix is constructed and weighted by term frequency. 

4. The X
2 
term selection method is used to select the best 10% distinctive terms. 

 

The second approach, TRAM represents bug reports by using both the textual contents and some 

categorical features [24]. The following features are used in the TRAM approach: 

 

1. The 1% most discriminating terms of the textual description of bug reports selected by X
2 

method. 

2. Component to which the bug belongs to. 

3. The reporter who filed the bug report. 

 

Table 2 presents the classification results of the three approaches for the selected projects. It is 

clear that TRAM outperforms both CF and CHI2 in all datasets in terms of Precision, Recall, F-

Score, and AUC. It improves the F-Score over the CF by 1:5%, 8:6%, and 15:5% for NetBeans, 

Freedesktop, and Firefox respectively. TRAM also improves the F-Score over the CHI2 by 

35:8%, 27:9%, and 17:5% for NetBeans, Freedesktop, and Firefox respectively. We can also 

notice that CF outperforms CHI2 by 34:3%, 19:3%, and 2:2% for NetBeans, Freedesktop, and 

Firefox respectively. Blending textual and categorical features gave the best classification results. 

In addition, using the categorical features only gave good results and can be used to reduce the 

dimensionality of features. The best F-Score achieved by TRAM in the Freedesktop project is 

(67%). Since none of the approaches achieved high accuracy, we believe that classification is not 

the best approach to solve bug assignment problem. Other approaches could be investigated such 

as Recommender Systems and Swarm Intelligence. 

 

Table 2.  Classification Results 

 

Project Method Precision Recall F-Score AUC 

NetBeans CHI2 0.38 0.234 0.290 0.737 

TRAM 0.663 0.634 0.648 0.957 

CF 0.652 0.615 0.633 0.947 

Freedesktop CHI2 0.423 0.363 0.391 0.80 

TRAM 0.685 0.656 0.670 0.950 

CF 0.6 0.569 0.584 0.943 

Firefox CHI2 0.361 0.355 0.358 0.780 

TRAM 0.537 0.533 0.535 0.898 

CF 0.373 0.388 0.380 0.859 

 

6.  THREATS AND VALIDITY 
 

In this Section, we enumerate some threats to validity in our work. Although we considered the 

developer in the assignee field as the developer who fixed that bug, bug fixing can be seen as a 

collaborative effort where several developers collaborate to fix a bug. Therefore, using 

developer's collaborative effort can lead to recommending several developers who have a 

potential experience in solving a bug. In our study, we used three large open source projects, 

NetBeans, Freedesktop, and Firefox. 
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These projects have multiple components and operating systems; hence we could use this 

information as features for our recommendation models. For comparatively smaller projects 

which do not have components or operating systems, the lack of component- operating System 

labels would reduce accuracy. Threats to external validity concern the generalization of our 

findings. Every result obtained through empirical studies is threatened by the bias of their 

datasets. We have validated our approaches using open source bug repositories only; closed 

source projects may have different properties that may require some modifications. Moreover, we 

only use projects that use Bugzilla bug tracking system. Other bug tracking systems are available 

such as JIRA and TRAC that model bug reports differently. Therefore, our approaches should be 

applied to the more open source and commercial projects in order to generalize their results. 

 

7. CONCLUSIONS 
 

In this paper, we have investigated whether using categorical fields of bug reports is better than 

using the textual contents to represent bug reports in the recommendation model. The categorical 

fields of bug reports were used to represent bug reports. A recommendation model was built 

based on a training data of bug reports history and then it is used to predict a developer with a 

newly coming bug report. We performed a 10-fold cross validation to get unbiased results. Our 

experimental evaluation on three projects showed that using textual and categorical features 

together gave better classification results. Since none of the approaches achieved high accuracy, 

we believe that classification is not the best approach to solve bug assignment problem. Other 

approaches could be investigated such as Recommender Systems and Swarm Intelligence. In the 

future, we are planning to deploy the recommendation model in an industrial setting to evaluate 

its practical usage. 
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