
International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.2, March 2018

DOI: 10.5121/ijsea.2018.9205 51

MINIMIZING THE COMPLEXITY EFFECTS TO MAS

ARCHITECTURES DESIGN BASED ON

FG4COMPLEXITY APPROACH

Howayda Abdallah Ali Elmarzaki and Tawfig M. Abdelaziz

Department of Software Engineering, Benghazi University, Benghazi, Libya

ABSTRACT

The efficiency of multi agent system design mainly depends on the quality of a theoretical

architecture of such systems. Therefore, quality issues should be considered at an early stage in

the software development. Large systems such as multi agents systems (MAS) require many

communications and interactions to accomplish their tasks, and this leads to complexity of

architecture design (AD) which have crucial influence on architecture design quality. This work

attempts to introduce approach works on increase the architecture design quality of MAS by

minimizing the effect of complexity.

KEYWORDS

Multi agent system (MAS), a general architectures, Quality attributes, Recommendations systems

(RS).

1. INTRODUCTION

MAS belong to Artificial Intelligence field, the study addressing the approaches of construction

of complex systems using a large number of agents, which alter their behavior in order to

accommodate with a particular problem [1], [2]. An intelligent agent can be reactive and

proactive, [3] due it responses to the actions and alteration which appears in the working

environment, can tack the initiative to establish the goals and interacts with other agents [4], [1],

[5]. Most literatures indicate that the complexity arises clearly in architecture design of multi

agent systems that assigned many and different tasks [6], [7], [8]. The research work introduces

an approach to increase the AD quality of MAS by reducing the effect of complexity. The

solution mainly presents a set of guidelines including the influential factors on the complexity of

AD. These factors are extracted from several sides of AD. Several factors and guidelines are

presented to decrease the complexity in architectures of multi agent systems. Each FG is

established based on developer's previous practice or experimental methods. The FG is extracted

from concepts which related to software architecture and they are presented as symbols used in

application phase. For example, depending on FGM1 the hierarchical decomposition approach

can be applied on books recommendations system to determine the main components in visual

manner to increase the understandability. The modularity has a major role in reducing the

complexity in software design since the interaction among agents to accomplish their tasks can

lead to system complexity. Thus, this approach increases the architecture design quality of MAS

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.2, March 2018

52

by minimizing the effect of complexity. The reduction of complexity from AD, eventually

reinforces the reusability concept.

2. PROPOSED SOLUTION APPROACH

- The proposed solution is to achieve the desired goals of this research work. It mainly

presents a set of guidelines including the influential factors on the complexity of

architecture design. These factors are extracted from several sides of AD which should be

taken into consideration at the early stages of developing the architecture.

- The sides represent concepts (Abstraction, Modularity and Modeling) which be able

applying in both analyses and design phases. Figure1 illustrating the approached concepts

in FG4Complexity approach.

Figure 2: The concepts of analyzing and design which were addressed in FG4 Complexity approach.

- To label the proposed solution approach we suggested that "FG4Complexity". Thereby,

"F" liter means Factors, "G" liter means Guidelines, and the "number 4" means for. The

next figure shows the proposed approach mechanism.

- The work will be applied via some models used in methodologies related to agents

systems such as HLIM[9], MASD [10].

2.1. FACTORS AND GUIDELINES (FG)

In this section several factors and guidelines are presented to decrease the complexity in

architectures of multi agent systems. Each FG is established based on developer's previous

practice or experimental methods. The FG is extracted from concepts which related to software

architecture and they are presented as symbols used in application phase. For example, the FG is

related to modeling concept and represented by FGMOD symbol. The FG is related to abstraction

concept and represented by FGA symbol and the FG is also related to modularity concept and

represented by FGM symbol. Also, each FG should be numbered for example, FGA4 means the

factor and guideline number4 in abstraction concept section, FGMOD2 means the factor and

guideline number2 in modeling concept section as illustrated in the table below.

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.2, March 2018

53

Instances Symbols Interpretation symbols Architecture Concept

FGA1….i where I

is Integer number

Factors and Guideline of

Abstraction

FGA Abstraction

FGM1….i where I

is Integer number

Factors and Guideline of

Modularity

FGM Modularity

FGMOD1….i

where I is Integer

number

Factors and Guideline of

Modeling

FGMOD Modeling

Table1: The symbols interpretation of architecture concepts

Factors and Guidelines for Abstraction (FGA)

FGA1. Developers should use Simplifying Abstraction type if they want to decrease the dynamic

complexity type. [11]

The Clarification:

There are two types of abstraction. The first type is called Simplifying Abstraction (the transition

from the middle level to the top level of abstraction), and the second one is generalizing

abstraction (the transition from the lowest level to middle level of abstraction). Simplifying

Abstraction is the type of abstraction that is used when we want to reduce dynamic complexity

and generalizing abstraction is used if we have several components that have many similarities

and only differ in some aspects. In fact, this type is very useful if we need to reuse the design.

The first type of abstraction is more abstract than the second one. Although, the developers

always make a generalizing abstraction before they use Simplifying Abstraction. By this, the

parameters and their types are identified before bringing them together to a more abstract design.

There is simple example of Class [12] or software module of library system to clarify the

alteration to Simplifying Abstraction as follows.

Suppose we have GUI modules of agent system describe many dialogs for example:

- A is the root dialog which includes a chosen item from the library.

- A1, A2 are both GUI dialogs windows.

- Ag is the window title (String) and linked to the root dialog.

- P is the (parameter) which consists of variable T (Title Name).

- t1, t2 are different titles, for example t1 is "Choose the Book" and t2 is "Choose the

Magazine".

By using simplifying abstraction we should abstract the modules of agent system from detailed

concept in figure 4.5 part (A) to make it more comprehensible. This means we should apply the

following steps.

- Transition from the middle level to the top level of abstraction.

- Low level will be ignored.

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.2, March 2018

54

- Removing each parameter in middle level (in fig. 3, Part B we should remove the

parameter (P) completely by abstracting from Ag to A. This makes the usage of A

simpler and less complex than the usage of Ag).

- Adding appropriate name of abstraction to describe what have been removed in fig (3,

Part B) we using (Choose item) as appropriate name.

Figure 3: The altering to simplifying abstraction

FGA2. Choosing the appropriate level of abstraction. [13]

The Clarification:

Taking the appropriate level of abstraction is a very important task for developers to increase

understanding; thus, decreasing the complexity by using the abstraction levels. In this work, the

architecture design will be described based on two levels of abstraction: high level (specification)

and detailed level (realization). The figure 4 explains the high level and the detailed level. The

first level specifies the main components and its relationships; while, the second level realizes

more details than the first one.

Figure 4: The high and detail levels of abstraction.

FGA3. Avoid to adopting the concept of (gold plating). [14]

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.2, March 2018

55

The Clarification:

Gold plating is the act of giving the customer more than what he originally asked for. This

addition of system functions is reflected on the abstraction task of software system that is

undesirable. It is usually performed to make the client happy and pleased; although, it makes the

architecture design more have complex components.

Factors and Guidelines for Modularity (FGM)

FGM1. Using Hierarchical Decomposition Approach (HDA) which considers a major method of

handling complexity in conventional software analysis and design.[6], [15], [16]

The Clarification:

HDA involves the top-down design which starts by defining the top level components. This

design contains the main components. After this, sub components are defined in the lower-level.

This decomposition in each level is effective for controlling complexity (if it enforces

information hiding) by demanding lower level components as explained in the next example [6].

Example: The example illustrates how using HDA to design particular software of

digital clock as the figure 5 shows.

Figure 5: Illustrating the Hierarchical Decomposition Approach

FGM2. It is useful to establish the software modularity based on roles or measurements such as

Cohesion Communication Measurment (CCM). [17]

The Clarification:

It is crucial to realize that the complexity of any system stems from a large number of system

components and interaction required between these components. This is brought out clearly in

large and complex system as MAS. If this is the case, then, the modularity rules needs to be taken

into consideration the crucial issue of a complex system designs. This complex design is

comprised of multiple agents and interactions. In this sense, the modularity concept could be

decomposed in components and again the components into sub-components and so on, till some

basic entities are obtained. The measurment of communication cohesion introduces approximate

ratio to internal interactions on external interactions for each agent. After applying CCM, the

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.2, March 2018

56

observed results if CCM ≥ 0.91 of the Agent, then it will be targeted for further decomposition.

Hence, FGM2 is based on measurement principle during AD phase. According to this

measurement decomposition produces independent results. Figure 6 illustrates CCM mechanism,

and table 2, demonstrates more decomposition.

Table 2: The abbreviations of CCM metric Approach (HDA)

Figure 6: The agent targeted to further decomposition (HDA)

Factors and Guidelines for Modeling (FGMOD)

FGMOD1. Using Use Case Maps (UCM) to clarify the most relevant, interesting, and critical

tasks of MAS system. [18]

The Clarification:

UCM act as a bridge between requirements analysis and design phases. It provide a behavior

structure for evaluating architecture decisions at a high level of design. In this context, these maps

can become applicable on AD at the same stage (After requirements analyses and before design).

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.2, March 2018

57

It can also be used to emphasize the tasks (Responsibilities) of MAS along paths among

components and clarify the interaction. There are many notations using in UCM. The following

example illustrates the usage of UCM method through focus on some notations such as: Task,

component, path of scenario, (start and end points of scenario), and the interactions among

components.

Example

The example describes a simple UCM where a user (Nancy) attempts to make a phone call with

another user (Jack) through a network of agents. Each user has an agent responsible for managing

subscribed telephony features. Nancy first sends a connection request (req) to the network

through her agent. This request causes the called agent to verify (vrfy) whether the called

outcome is idle or busy (conditions are italicized). If he is, then there will be some status update

(upd) and a ring signal will be activated on Jack’s side (ring). Else, a message stating that Jack is

not available will be prepared (mj) and sent back to Nancy (msg). A scenario starts with a pre-

condition (filled circle labeled req) and ends with one or more resulting events and/or post-

conditions (bars), in our situation ring or msg.

The responsibilities (vrfy, upd, mj) have been activated along the way. In this example, the

responsibilities are allocated to abstract components (boxes Nancy, AgentA, Jack and AgentB),

which could be realized as objects, processes, agents, databases, even roles, actors, or persons.

The structure of a UCM can be formed in different ways (views). For example, one may start by

identifying the responsibilities (Figure 7 (a)). They can then be allocated to scenarios (Figure 7

(b)) or to components (Figure 7 (c)). Eventually, the views are merged to form a finishing map

(Figure 7 (d)).

Figure 7: The Use Case Map construction (HDA)

FGMOD2. Using simple notations is very important to enhance understandability and decrease

complexities in AD such as arrows, components, domains…etc. [19]

The Clarification:

According to some available literatures, there are a lot of various notations used to describe the

AD of software systems. Some of these notations are simple and intuitive while others need to be

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.2, March 2018

58

understood. To model the software architecture, we need to capture some aspects such as

components, interactions, and context then model them. In the context of avoiding the

complexities that arise from misunderstanding we suggest some simple notations are proposed

and used to describe the architecture as shown in table 3.

Description Notations

Bold arrows to represent the messages among

agents through the interactions.

Normal arrow to represent the dataflow

Dotty arrows to represent the messages which

are exchanged from extra system such as the

black board system.

Doubly directions arrows represent the dataflow

if it is the same exchanged between two

components.

Dotty rectangles to represent the domains.

Distinguish component to represent Agent.

Distinguish component to represent list.

Distinguish component to represent many lists.

Distinguish component to represent data base

storage.

Distinguish component to represent data base

resources.

Table 3: The proposed notations

3. CASE STUDY APPLICATION STEPS AND DISPLAY THE RESULTS

The case study is a "books recommendations system" based on MAS to help users select books.

The system can switch to three recommendation approaches Content-based filtering approach

(CBF) [20], [21] Collaborative Filtering approach (CF) [22], [23] and knowledge based approach

(KBA). [24], [25] The agents within the system can exchange the messages among each other via

one of agent communication languages. In this case study, the messages exchanged will be via

Knowledge Query and Manipulation Language (KQML). The work will be applied via some

models used in methodologies related to agents systems such as HLIM[9], MASD [10]

Blackboard Message

Domain

Many Lists

Data base resources

List

Data Flow

Data base Storage

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.2, March 2018

59

3.1. AGENTS AND THEIR TASKS

A brief summary of agents and their tasks in the next table:

Agents Roles (Tasks)

Profiling

agent

• Gathering the user's preferences, gathering the relevance feedback, and

building and updating the active user profile

NDA Gathering the user current needs

Filtering

agent

• Producing the recommendations, removing the books that are not currently

offered from the recommendation list, and transferring the recommendation

to the GUI

Retrieval

agent

• Retrieving the books that are currently offered from the books database and

storing the available books in the recommender system database

Translation

agent
• Producing books translation service for users

Table 4: The agents and their tasks

3.2. CONCEPTUAL OVERVIEW OF BOOKS RECOMMENDATIONS SYSTEM

ARCHITECTURE DESIGN.

Figure8: Conceptual overview of books recommendations system

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.2, March 2018

60

3.3. THE FG4 COMPLEXITY APPROACH APPLICATION STRATEGY

As we have earlier pointed out that all the previous FG will be within 4 steps to correspond to the

current case study as the next figure shows:

Figure9: Illustrating of the applied steps on AD

Step1. Initially, this step is based on applying UCM represented in FGMOD1 of FG4Complexity

approach which used in between analysis and design phases. These maps give high view of

system specifically the responsibilities (Tasks) and interactions in a simple way, reinforce system

understanding and overcome some situations of complexity such as intercommunication among

agents. The following figure illustrate example to use the use case maps in analysing agents,

tasks, scenarios and the most significant interactions among agents in books recommendations

system. [26], [27]

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.2, March 2018

61

Figure 10: The UCM of translating book mechanism.

Step2. If the system requirement specifications (SRS) [28] of a system do not have a translation

function; then, this function is considered as Gold Plating concept; therefore, we should apply

the FGA3 which avoid the part of gold plating represented in translation agent (TA) and all

components connected from AD as illustrated in the figure below.

Figure 11: Omitting the part representing the gold plating

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.2, March 2018

62

Depending on FGM1 the hierarchical decomposition approach (HDA) could be applied on books

recommendation system to demonstrate the main components in visual manner to increase the

understandability. Next table shows the main components and their connected components in

books recommendations system.

Main Components
Connected

component(1)

Connected

component(2)

Connected

component(3)

Retrieval Agent Book Data Base Filtering Agent Book Resource

Filtering Agent Knowledge Base GUI Retrieval Agent

Profiling Agent GUI - -

Need determination

Agent
GUI - -

Book Data Base Retrieval Agent - -

Book Resource Retrieval Agent - -

Knowledge Base Filtering Agent - -

GUI Profiling Agent NDA Filtering Agent

Table 5: The main components and their connected components in books recommendations system

Next figure demonstrates the majeure components in case study by applying HDA.

Figure 12: Conceptual system after applying HDA

Step3. As we have pointed out, the modularity has a major role in decreasing the complexity in

software design since the interaction among agents to accomplish their tasks can lead to system

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.2, March 2018

63

complexity. This step totally relies on cohesion measurement principle which uses the

Communication Cohesion Measurement (CCM). This measurement works as a testing tool. This

enables us to discover which agent needs more decompositions. In this research work, we have

four agents described in the case study: filtering agent, profiling agent, need determination agent,

and retrieval agent in respect that the translation agent has been omitted in the last step. The

formulation of communication cohesive measurement is .The next illustration shows how.

Based on the architecture design of book recommendation system, the filtering agent has 4

internal relationships and 2 external relationships, profiling agent has just one internal

relationship and 4 external relationships, need determination agent has one internal relationship

and 2 external relationships and retrieval agent has 4 internal relationships and 3 external

relationships as shown in the following:

Table 6: The calculating by using CCM technique

So, the results are: CCM (FA) < 0.91, CCM (NDA) <0.91, CCM (RA) <0.91, and CCM (PA)

<0.91. It is worth noticing that all results less than 0.91 by this, they do not need more

decomposition.

Step4. Applying a group of FG on the architecture design. This group consist of FGA1, FGA2,

FGA3 and FGMOD2 which influence the architecture directly and the changes can clearly be

observed. Next figures show the architectural design after applied FG4Comlexity approach.

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.2, March 2018

64

Figure 13: the architectural design after applied FG4Comlexity approach

4. CONCLUSION

The Research work approached the complexity of architectures design (AD) in systems based on

multi agents (MAS) by a proposed solution method represented in a set of guidelines. These

guidelines were introduced by extracting the factors affecting the complexity from three major

sides of AD represented in abstraction, modularity and modeling thus, the approach labeled as

"FG4complexity". It discussed the decrease of coupling which usually occurs during the

interactions among agents and supporting the understandability of MAS architectures. The

FG4complexity approach is useful for large systems such as recommendation systems that are

based on MAS to avoid the complexity problems found in the most existing architectures. Thus, it

enhances the quality standards, the reduction of complexity from (AD), and eventually reinforces

the reusability concept.

FUTURE WORK

For future work, other aspects of architecture design will be addressed to attempt to make the

proposed approach more effective. Those aspects may be are represented in the style, design

patterns, documentation and so on. ALSO, we hope to apply the FG4complexity approach on

other larger and more complex systems.

ACKNOWLEDGEMENTS

First and foremost, I would like to thank ALLAH, without ALLAH this work would never have

been finished. I would like to express my sincere thanks to my supervisor Dr. Twfig Eltwel for

his invaluable guidance and advice. I would like to thank my beloved husband Fathi El faitouri

for his unlimited and faithful support as well as his patience and unconditional love. Also, The

last but not least, I am profoundly grateful to my kind friend Asya Sohaim for her fruitful

collaboration and advice. Finally, I thank everyone who encouraged me

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.2, March 2018

65

REFERENCES

[1] I. a. S. Markic, Maja and Maras, Josip, "Intelligent Multi Agent Systems for Decision Support in

Insurance Industry," in Information and Communication Technology, Electronics and

Microelectronics (MIPRO), ed: IEEE, 2014, pp. 1118--1123.

[2] M. Oprea, "Applications of multi-agent systems," in Information Technology, ed: Springer, 2004, pp.

239-270.

[3] Z. S. Ahmed Taki, "Formal Specification of Multi-Agent System Architecture," presented at the

International Conference on Advanced Aspects of Software Engineering, ICAASE,, 2014.

[4] K. O. Chin, K. S. Gan, R. Alfred, P. Anthony, and D. Lukose, "Agent Architecture: An Overviews,"

Transactions on science and technology, vol. 1, pp. 18-35, 2014.

[5] S. A. D. Mark F. Wood, "An Overview of the Multiagent Systems Engineering Methodology,"

Springer, vol. 1957, 2001.

[6] B. H. Far, "Software Agents: Quality, Complexity and Uncertainty Issues," IEEE, 2002.

[7] B. R. Sinha, P. P. Dey, M. Amin, and H. Badkoobehi, "Software complexity measurement using

multiple criteria," Journal of Computing Sciences in Colleges, vol. 28, pp. 155-162, 2013.

[8] D. N. M. Ghazal Keshavarz, Dr. Mirmohsen Pedram "Metric for Early Measurement of Software

Complexity," International Journal on Computer Science and Engineering (IJCSE) vol. 3, 2011.

[9] M. Elammari and W. Lalonde, "An agent-oriented methodology: High-level and intermediate

models," in Proc. of the 1st Int. Workshop. on Agent-Oriented Information Systems, 1999, pp. 1-16.

[10] M. E. T. Abdelaziz1, R. Unland3, C. Branki4, "MASD: Multi-Agent Systems Development

Methodology," Multiagent and Grid Systems Journal,, 2010.

[11] S. a. D. Wagner, Florian, "Abstractness, Specificity, and Complexity in Software Design," ACM, pp.

35--42, 2011.

[12] A. A. A. a. I. Bouchrika, "From UML 2.0 Interaction Fragments to PROMELA using a Graph

Transformation Approach," The International Arab Conference on Information Technology

(ACIT’2013), 2013.

[13] F. Tsui, A. Gharaat, S. Duggins, and E. Jung, "Measuring Levels of Abstraction in Software

Development," in SEKE, 2011, pp. 466-469.

[14] B. J. Kirandeep Kaur, Rekha Rani, "Analysis of Gold Plating: A Software Development Risk,"

International Journal of Computer Science and Communication Engineering, vol. 2, 2013.

[15] F. Medeiro, B. Pérez-Verdú, and A. Rodríguez-Vázquez, Top-down design of high-performance

sigma-delta modulators vol. 480: Springer Science & Business Media, 2013.

[16] H. a. v. V. De Bruin, Hans, "Quality-driven software architecture composition," Journal of Systems

and Software, Elsevier, vol. 66, pp. 269--284, 2003.

[17] S. Misra, "An approach for the empirical validation of software complexity measures," Acta

Polytechnica Hungarica, vol. 8, pp. 141-160, 2011.

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.2, March 2018

66

[18] A. Lawgali, "TRACEABILITY OF UNIFIED MODELING LANGUAGE DIAGRAMS FROM USE

CASE MAPS," International Journal of Software Engineering & Applications (IJSEA), 2017.

[19] A. Zalewski, "Modelling and evaluation of software architectures," Prace Naukowe Politechniki

Warszawskiej. Elektronika, 2013.

[20] B. L. M. Montaner, and J. De La, "A Taxonomy of Recommender Agents on the Internet," Artificial

Intelligence Review, vol. 19, 2003.

[21] H. Castillo, "Hybrid Content-Based Collaborative-Filtering Music Recommendations," Department of

Computer Science, Information System Engineering (ISE), Netherlands, 2007.

[22] J. Itmazi, "Flexible Learning Management System To Support Learning In The Traditional And Open

Universities," PhD Thesis , university of Granada, 2005.

[23] J. Obando, "Methodology to obtain the user's Human Values Scale from Smart User Models," PhD

Thesis, Department of Electronics, Computer Science and Automatic Control, University of Girona,

2008.

[24] R. Burke, "Hybrid Recommender Systems:Survey and Experiments," User Modeling and User-

Adapted Interaction, vol. 12, 2002.

[25] T. T. a. R. Cohen, "Hybrid Recommender Systems for Electronic Commerce," in the 17th National

Conference on Artificial Intelligence AAAI, 2000.

[26] R. N. A. A. E. frerjani, "Towards A General Architecture for Building Intelligent, Flexible, and

Adaptable Recommender System Based on MAS Technology," post graduation, compluter science,

benghazi IEEE journal, 2010.

[27] E. M. Saleh, "Architecture for Design Pattern Selection based on Multi-Agent System," post

graduation, benghazi university, 2014.

[28] P. Thitisathienkul and N. Prompoon, "Quality assessment method for software requirements

specifications based on document characteristics and its structure," in Trustworthy Systems and Their

Applications (TSA), 2015 Second International Conference on, 2015, pp. 51-60.

AUTHORS

M.SC. HOWAYDA ABDALLAH ALI ELMARZAKI Faculty of information

technology, Benghazi University, Libya. Software Engineering Department Born in 03,

October 1980 and Married with 1 child.

Dr. Tawfig Mohammed Abdelaziz Faculty of information technology, Benghazi

university, libya. Software Engineering Department Born in 03, October 1965 and

Married with 6 children.

