
International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.4, July 2018

DOI:10.5121/ijsea.2018.9402 21

TRACING REQUIREMENTS AS A PROBLEM OF

MACHINE LEARNING

Zeheng Li and LiGuo Huang

Southern Methodist University, Dallas, Texas, USA

ABSTRACT

Software requirement engineering and evolution essential to software development process, which defines

and elaborates what is to be built in a project. Requirements are mostly written in text and will later evolve

to fine-grained and actionable artifacts with details about system configurations, technology stacks, etc.

Tracing the evolution of requirements enables stakeholders to determine the origin of each requirement and

understand how well the software’s design reflects to its requirements. Reckoning requirements traceability

is not a trivial task, a machine learning approach is used to classify traceability between various associated

requirements. In particular, a 2-learner, ontology-based, pseudo-instances-enhanced approach, where two

classifiers are trained to separately exploit two types of features, lexical features and features derived from

a hand-built ontology, is investigated for such task. The hand-built ontology is also leveraged to generate

pseudo training instances to improve machine learning results. In comparison to a supervised baseline

system that uses only lexical features, our approach yields a relative error reduction of 56.0%. Most

interestingly, results do not deteriorate when the hand-built ontology is replaced with its automatically

constructed counterpart.

KEYWORDS

Requirements Traceability, Software Design, Machine Learning

1. INTRODUCTION

Evolution and refinement of requirements guides the software system development process by

defining and specifying what to be built for a software system. Requirement specifications, mostly

documented in natural language, are refined with additional design and implementation details as

a software project move forwards in its development life cycle. An important task in software

requirements engineering process is requirements traceability, which is concerned with linking

requirements in which one is a refinement of the other. Being able to establish traceability links

allows stakeholders to find the source of each requirement and track every change that has been

made to it, and ensures the continuous understanding of the problem that needs to be solved so

that the right system is delivered.

In practice, one is given a set of high-level (coarse-grained) requirements and a set of low-level

(fine-grained) requirements, and requirements traceability aims to find for each high-level

requirement all the low-level requirements that refine it. Note that the resulting mapping

between high- and low-level requirements is many-to-many, because a low-level requirement can

potentially refine more than one high-level requirement.

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.4, July 2018

22

As an example, consider the three high-level requirements and two low-level requirements shown

in Figure 1 about the well-known Pine email system. In this example, three traceability links

should be established between the high-level (HR) and low-level requirements (UC): (1) HR01 is

refined by UC01 (because UC01 specifies the shortcut key for saving an entry in the address

book);(2) HR02 is refined by UC01 (because UC01 specifies how to store contacts in the address

book); and (3) HR03 is refined by UC02 (because both of them are concerned with the help

system).

Figure 1. Samples of high- and low-level requirements.

From the perspective of the information retrieval and text mining, requirements traceability is a

very challenging task. First, there could be abundant information irrelevant to the establishment

of a link in one or both of the requirements. For instance, the information in the Description

section of UC01 appears to be irrelevant to the establishment of the link between UC01 and

HR02. Worse still, as the goal is to induce a many-to-many mapping, information irrelevant to the

establishment of one link could be relevant to the establishment of another link involving the

same requirement. For instance, while the Description section appears to be irrelevant to linking

UC01 and UR02, a traceability linking shall exist between UC01 and HR01. Above all, a link can

exist between a pair of requirements (HR01 and UC01) even if they do not possess any

overlapping or semantically similar content words.

Virtually all existing approaches to the requirements traceability task were developed in the soft-

ware engineering (SE) research community. Related work on this task can be classified into two

categories: manual and automated approaches. As for manual approaches, requirements

traceability links are manually recovered by developers. Automated approaches, on the other

hand, have relied on information retrieval (IR) techniques, which recover links based on

similarity computed between a given pair of requirements. Hence, such similarity-based

approaches are unable to recover links between those pairs that do not contain overlapping or

semantically similar words or phrases as mentioned above.

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.4, July 2018

23

In light of this weakness, requirements traceability is recasted as a supervised binary

classification task, where each pair of high- and low-level requirements is to be classified as

positive (having a link) or negative (not having a link). Each pair of requirements is represented

by two types of features. First, word pairs feature is employed, where each of which is composed

of a word taken from each of the two requirements involved. These features will enable the

learning algorithm to identify both semantically similar and dissimilar word pairs that are

strongly indicative of a refinement relation between the two requirements, thus overcoming the

aforementioned weakness associated with similarity-based approaches

Next, features are derived from an ontology hand-built by a domain expert. The sample ontology

built for the Pine dataset is shown in Table 1. The ontology contains only a verb clustering and a

noun clustering: the verbs are clustered by the function they perform, whereas a noun cluster

corresponds to a (domain-specific) semantic type.

There are at least two reasons why the ontology might be useful for identifying traceability

links. First, since only those verbs and nouns that (1) appear in the training data and (2) are

deemed relevant by the domain expert for link identification are included in the ontology, it

provides guidance to the learner as to which words/phrases in the requirements it should focus

on in the learning process.1 Second, the verb and noun clusters provide a robust generalization

of the words/phrases in the requirements. For instance, a word pair that is relevant for link

identification may still be ignored by the learner due to its infrequency of occurrence. The

features that are computed based on these clusters, on the other hand, will be more robust to the

infrequency problem and therefore potentially provide better generalizations.

Last, considering ontology a set of natural annotator rationales, pseudo training instances are used

to help learners by providing indication of the importances of different parts of document as well

as increasing the size of training instances.

Our main contribution in this paper lies in the proposal of a 2-learner, ontology-based, pseudo-

instances-enhanced approach to the task of traceability link prediction, where, for the sake of

robustness, two classifiers are trained to separately exploit the word-pair features, the ontology

based features, and ontology-enhanced pseudo instances. Results on a traceability dataset

involving the Pine domain reveal that our use of two learners and the ontology-based features are

both key to the success of our approach: it significantly outperforms not only a supervised

baseline system that uses only word pairs features, but also a system that trains a single classifier

over both the word pairs and the ontology-based features. Perhaps most interestingly, results do

not deteriorate when the hand-built ontology is replaced with an automatically constructed

ontology. And by feeding the learners with pseudo training instances generated from ontology,

the performance is improved further significantly.

The rest of the paper is organized as follows. Section 2 describes related work. Section 3

introduces the Pine dataset and our hand-built ontology is described in Section 4. Then Section 5

presents our 2-learner, ontology-based, pseudo-instances-enhanced approach to traceability link

prediction. Finally, Section 6 presents evaluation results and Section 7 draws conclusions.

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.4, July 2018

24

2. RELATED WORK

2.1. MANUAL APPROACHES

Traditional manual requirements tracing is usually accomplished by system analysts with the help

of requirement management tools, where analysts visually examine each pair of requirements

documented in the requirement management tools to build the Requirement Traceability Matrix

(RTM). Most existing requirement management tools (e.g., Rational DOORS, Rational Requisite-

Pro, CASE) support traceability analysis. Manual tracing is often based on observing the

potential relevance between a pair of requirements belonging to different categories or at different

levels of details. The manual process is human-intensive and error-prone given a large set of

requirements. Moreover, such domain knowledge could be lost due to requirements changes,

distributed teams, or system refactoring during the life cycle of system development and evolution

Table 1. Manual ontology for Pine.

(a) Noun clustering

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.4, July 2018

25

(b) Verb clustering

2.2. AUTOMATED APPROACHES

Automated or semi-automated requirements traceability has been exploited by many researchers.

Pierce [2] designed a tool that maintains a requirements database to aid automated requirements

tracing. Jackson [3] proposed a keyphrase-based approach for tracing a large number of

requirements of a large Surface Ship Command System. More advanced approaches relying on

information retrieval (IR) techniques, such as the tf-idf-based vector space model [4], Latent

Semantic Indexing [5–7], probabilistic networks [8], and Latent Dirichlet Allocation [9], have

been investigated, where traceability links were generated by calculating the textual similarity

between requirements using similarity measures such as Dice, Jaccard, and Cosine coefficients

[10]. All these methods were developed based on either matching keywords or identifying similar

words across a pair of requirements. In recent years, Li [11] studied the feasibility of employing

supervised learning to accomplish this task. Guo [12] applied word embedding and recurrent

neural network to generate trace links.

3. DATASET

The well known Pine system is used for evaluation. This dataset consists of a set of 49 (high-

level) requirements and a set of 51 (low-level) use case specifications about Pine, an email system

developed at the University of Washington. Statistics on the dataset are provided on Table 2. The

dataset has a skewed class distribution: out of the 2499 pairs of requirement and use case

specification, only 10% (250) are considered traceability links.

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.4, July 2018

26

Table 2. Statistics on the Pine dataset.

4. HAND-BUILDING THE ONTOLOGY

As mentioned before, our ontology is composed of a verb clustering and a noun clustering. A soft-

ware engineer who has expertise in both requirements traceability and the Pine software domain is

employed to hand-build the ontology. Using his domain expertise, the engineer first identified the

noun categories and verb categories that are relevant for traceability prediction. Then, by inspect-

ing the training data, he manually populated each noun/verb category with the words and phrases

collected from the training data.

As will be discussed in Section 6, our approach is evaluated by using 5-fold cross validation. Since

the nouns/verbs in the ontology were collected only from the training data, the software engineer

built five ontologies, one for each fold experiment. Hence, nouns/verbs that appear in only the test

data in each fold experiment will not be in the ontology. In other words, our test data are truly

held-out w.r.t. the construction of the ontology. Table 1 shows the ontology built for one of the

fold experiments. Note that the five ontologies employ the same set of noun and verb categories,

differing only w.r.t. the nouns and verbs that populate each category. As it can be seen from Table

1, eight groups of nouns and ten groups of verbs are defined. Each noun category represents a

domain-specific semantic class, and each verb category corresponds to a function performed by

the action underlying a verb.

5. APPROACH

This section describes our supervised approach alongside with its three extensions.

5.1 CLASSIFIER TRAINING

Each instance corresponds to a high-level requirement and a low-level requirement. Hence, in-

stances are created by pairing each high-level requirement with each low-level requirement. The

class value of an instance is positive if the two requirements involved should be linked; otherwise,

it is negative. To conduct 5-fold cross-validation experiments, instances are randomly partitioned

into five folds of roughly the same size. A classifier is trained on only four folds and evaluated

on the remaining fold in each fold experiment. Each instance is represented using seven types of

features, as follows

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.4, July 2018

27

Same words. One binary feature is created for each word w appearing in the training data. Its

value is 1 if w appears in both requirements in the pair under consideration. Hence, this feature

type contains the subset of the word pair features mentioned earlier where the two words in the

pair are the same.

Different words. One binary feature is created for each word pair (wi, wj) collected from the

training instances, where wi and wj are non-identical words appearing in a high-level requirement

and a low-level requirement respectively. Its value is 1 if wi and wj appear in the high-level and

Verb pairs. One binary feature is created for each verb pair (vi, vj) collected from the training

instances, where (1) vi and vj appear in a high-level requirement and a low-level requirement

respectively, and (2) both verbs appear in the ontology. Its value is 1 if vi and vj appear in the

high-level and low-level pair under consideration, respectively. Using these verb pairs as features

may allow the learner to focus on verbs that are relevant to traceability prediction.

Verb group pairs. For each verb pair feature described above, one binary feature is created by

replacing each verb in the pair with its cluster id in the ontology. Its value is 1 if the two verb

groups in the pair appear in the high-level and low-level pair under consideration, respectively.

These features may enable the resulting classifier to provide robust generalizations in cases where

the learner chooses to ignore certain useful verb pairs owing to their infrequency of occurrence.

Noun pairs. One binary feature is created for each noun pair (ni, nj) collected from the training

instances, where (1) ni and nj appear in a high-level requirement and a low-level requirement

respectively, and (2) both nouns appear in the ontology. Its value is computed in the same manner

as the verb pairs. These noun pairs may help the learner to focus on verbs that are relevant to

traceability prediction.

Noun group pairs. For each noun pair feature described above, one binary feature is created by

replacing each noun in the pair with its cluster id in the ontology. Its value is computed in the

same manner as the verb group pairs. These features may enable the classifier to provide robust

generalizations in cases where the learner chooses to ignore certain useful noun pairs owing to

their infrequency of occurrence.

Dependency pairs. In some cases, the noun/verb pairs may not provide sufficient information

for traceability prediction. For example, the verb pair feature (delete, delete) is suggestive of

a positive instance, but the instance may turn out to be negative if one requirement concerns

deleting messages and the other concerns deleting folders. As another example, the noun pair

feature (folder, folder) is suggestive of a positive instance, but the instance may turn out to be

negative if one requirement concerns creating folders and the other concerns deleting folders.

In other words, useful features are those that encode the verbs and nouns in isolation but the

relationship between them. To do so, each requirement is parsed by the Stanford dependency

parser [13], and each noun-verb pair (ni ,vj) is collected if it’s connected by a dependency

relation. Binary features are created by pairing each related noun-verb pair found in a high-level

training requirement with each related noun-verb pair found in a low-level training requirement.

The feature value is 1 if the two noun-verb pairs appear in the pair of requirements under

consideration. To enable the learner to focus on learning from relevant verbs and nouns, only

verbs and nouns that appear in the ontology are used to create these features.

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.4, July 2018

28

LIBSVM [14] is employed as the learning algorithm for training a binary SVM classifier on the

training set. In particular the linear kernel is chosen to tune the C value (the regularization

parameter) to maximize F-score on the development (dev) set. All other learning parameters are

set to their default values.

To improve performance, feature selection (FS) is employed by using the backward elimination

algorithm [15]. Starting with all seven feature types, the algorithm iteratively removes one feature

type at a time until only one feature type is left. Specifically, in each iteration, it removes the

feature type whose removal yields the largest F-score on the dev set. Feature subset that achieve

the largest F-score on the dev set over all iterations is picked to be applied in test set.

Note that tuning the C value (from LIBSVM) and selecting the feature subset both require the

use of a dev set. In each fold experiment, one fold is reserved for development and the remaining

three folds is used for training classifiers. C value is jointly tuned with the selection of feature

subset that maximizes F-score on the dev set.

5.1. THREE EXTENSIONS

The following presents three extensions to our supervised approach.

5.1.1. EMPLOYING TWO VIEWS

Our first extension involves splitting our feature sets into two views (i.e., disjoint subsets) and

training one classifier on each view. To motivate this extension, recall that the ontology is com-

posed of words and phrases that are deemed relevant to traceability prediction according to a SE

expert. In other words, the (word- and cluster-based) features derived from the ontology (i.e.,

features 3–7 in our feature set) are sufficient for traceability prediction, and the remaining

features (features 1 and 2) are not needed according to the expert. While some of the word pairs

that appear in features 1 and 2 also appear in features 3–7, most of them do not. If these expert-

determined irrelevant features are indeed irrelevant, then retaining them could be harmful for

classification because they significantly outnumber their relevant counterparts. However, if some

of these features are relevant (because some relevant words are missed by the expert, for

instance), then removing them would not be a good idea either.

Our solution to this dilemma is to divide the feature set into two views. Given the above discussion,

a natural feature split would involve putting the ontology-based features (features 3–7) into one

view and the remaining ones (features 1–2) into the other view. Then one SVM classifier is trained

on each view as before. During test time, both classifiers are applied to a test instance, classifying

it using the prediction associated with the higher confidence value.5 This setup would prevent the

expert-determined irrelevant features from affecting the relevant ones, and at the same time avoid

totally discarding them in case they do contain some relevant information.

A natural question is: why not simply use backward elimination to identify the irrelevant features?

While FS could help, it may not be as powerful as one would think because (1) backward

elimination is greedy; and (2) the features are selected using a fairly small set of instances (i.e.,

the dev set) and may therefore be biased towards the dev set.

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.4, July 2018

29

In fact, our 2-learner setup and FS are considered as complementary rather than competing

solutions to our dilemma. In particular, FS is to be used in the 2-learner setup: when training the

classifiers on the two views, backward elimination is employed in the same way as before by

removing the feature type (from one of the two classifiers) whose removal yields the highest F-

score on the dev set in each iteration.

5.1.2. LEARNING THE ONTOLOGY

An interesting question is: can the ontology be learned instead of hand-built? Not only is this

question interesting from a research perspective, it is of practical relevance: even if a domain

expert is available, hand-constructing the ontology is a time-consuming and error-prone process.

The following describes the steps for ontology learning, which involves producing a verb

clustering and a noun clustering.

Step 1: Verb/Noun selection. The nouns, noun phrases (NPs) and verbs in the training set will be

clustered. Specifically, a verb/noun/NP is selected if (1) it appears more once in the training data;

(2) it contains at least three characters (thus avoiding verbs such as be); and (3) it appears in the

high-level but not the low-level requirements and vice versa.

Step 2: Verb/Noun representation. Each noun/NP/verb is represented as a feature vector. Each

verb v is represented using the set of nouns/NPs collected in Step 1. The value of each feature is

binary: 1 if the corresponding noun/NP occurs as the direct or indirect object of v in the training

data (as determined by the Stanford dependency parser), and 0 otherwise. Similarly, each noun

n is represented using the set of verbs collected in Step 1. The value of each feature is binary:

1 if n serves as the direct or indirect object of the corresponding verb in the training data, and 0

otherwise.

Step 3: Clustering. Verbs and the nouns/NPs are clustered separately to produce a verb clustering

and a noun clustering. Two clustering algorithms are experimented. The first one, which is referred

to as Simple, is the classical single-link algorithm. Single-link is an agglomerative algorithm where

each object to be clustered is initially in its own cluster. In each iteration, it merges the two most

similar clusters and stops when the desired number of clusters is reached. The second clustering

algorithm is motivated by the following observation. A better verb clustering could be produced

if each verb were represented using noun categories rather than nouns/NPs, because there is no

need to distinguish between the nouns in the same category in order to produce the verb clusters.

Similarly, a better noun clustering could be produced if each noun were represented using verb

categories.

In practice, the noun and verb categories do not exist (because they are what the clustering

algorithm is trying to produce). However, the (partial) verb clusters produced during the verb

clustering process can be used to improve noun clustering and vice versa. This motivates our

Interactive clustering algorithm. Like Simple, Interactive is also a single-link clustering

algorithm. Unlike Simple, which produces the two clusterings separately, Interactive interleaves

the verb and noun clustering processes, as described below.

Initially, each verb and each noun is in its own cluster. In each iteration, (1) the two most similar

verb clusters is merged; (2) the noun’s feature representation are updated by merging the two

verb features that correspond to the newly formed verb cluster; (3) the two most similar noun

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.4, July 2018

30

clusters are merged using this updated feature representation for nouns; (4) the verb’s feature

representation are updated by merging the two noun features that correspond to the newly

formed noun cluster. As in Simple, Interactive terminates when the desired number of clusters is

reached.

For both clustering algorithms, the similarity between two objects are computed by taking the dot

product of their feature vectors. Since both clustering algorithms are single-link, the similarity

between two clusters is the similarity between the two most similar objects in the two clusters.

Considering the number of clusters to be produced is not known a priori, three noun clusterings

and three verb clusterings (with 10, 15, and 20 clusters each) are generated. Then the combination

of noun clustering, verb clustering, the C value, and the feature subset that maximizes F-score on

the dev set is selected, and the resulting combination is applied on the test set.

5.1.3. EXPLOITING RATIONALES

This section describes another extension to the baseline: exploiting rationales to generate

additional training instances for the SVM learner.

Background

The idea of using annotator rationales to improve text classification was proposed by Zaidan et al.

[1] A rationale is a human-annotated text fragment that motivates an annotator to assign a

particular label to a training document. In their work on classifying the sentiment expressed in

movie reviews as positive or negative, Zaidan et al. generate additional training instances by

removing rationales from documents. Since these pseudo-instances lack information that the

annotators thought as important, an SVM learner should be less confident about the label of

these weaker instances (by placing the hyperplane closer to the less confidently labeled training

instances). A learner that successfully learns this difference in confidence assigns a higher

importance to the pieces of text that are present only in the original instances. Thus the pseudo-

instances help the learner both by providing indication to which parts of the documents are

important and by increasing the number of training instances.

Application to Traceability Prediction

Unlike in sentiment analysis, where rationales can be identified for both positive and negative

training reviews, in traceability prediction, rationales can only be identified for the positive training

instances (i.e., pairs with links). As noted before, the reason is that in traceability prediction,

an instance is labeled as negative because of the absence of evidence that the two requirements

involved should be linked, rather than the presence of evidence that they should not be linked.

Hence, only positive pseudo-instances will be created for training a traceability predictor.

Zaidan et al.’s method cannot be applied as is to create positive pseudo-instances. According to

their method, (1) a pair of linked requirements is chosen, (2) the rationales from both of them are

removed, (3) a positive pseudo-instance from the remaining text fragments is created, and (4) a

constraint is added to the SVM learner, forcing the learner to classify that positive pseudo-instance

less confidently than the original positive instance. Creating positive pseudo-instances in this way

is problematic for our task. The reason is simple: a negative instance in our task stems from the

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.4, July 2018

31

absence of evidence that the two requirements should be linked. In other words, after removing

the rationales from a pair of linked requirements, the pseudo-instance created from the

remaining text fragments should be labeled as negative.

Given this observation, one option is to employ Zaidan et al.’s method to create negative pseudo

instances. Another option would be to create a positive pseudo-instance from each pair of linked

requirements by removing any text fragments from the pair that are not part of a rationale. In

other words, only the rationales are used to create positive pseudo-instances. Both options could

be viable, but positive rather than negative pseudo-instances are chosen to add to our training set,

as adding positive pseudo-instances will not aggravate the class imbalance problem.

Unlike Zaidan et al., who force the learner to classify pseudo-instances less confidently than the

original instances, our learner decide whether it wants to classify these additional training in-

stances more or less confidently based on the dev data. In other words, this confidence parameter

(denoted as µ in Zaidan et al.’s paper) is tuned jointly with the C value to maximize F-score on the

dev set. Note that pseudo-instances are created only for the training set, as rationales are annotated

only in the training documents.

To better understand our annotator rationale framework, let us define it more formally. Recall that

in a standard soft-margin SVM, the goal is to find w and ξ to minimize

subject to

where xi is a training example; ci ∈ {−1, 1} is the class label of xi; ξi is a slack variable that

allows xi to be misclassified if necessary; and C > 0 is the misclassification penalty (a.k.a. the

regularization parameter).

The following constraints are added to enable this standard soft-margin SVM to also learn from

the positive pseudo-instances:

where vi is the positive pseudo-instance created from positive example xi, ξi ≥ 0 is the slack

variable associated with vi, and µ is the margin size (which controls how confident the classifier

is in classifying the pseudo-instances).

Similarly, the following constraints are added to learn from the negative pseudo-instances:

where uij is the jth negative pseudo-instance created from positive example xi, ξij ≥ 0 is the slack

variable associated with uij, and µ is the margin size.

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.4, July 2018

32

Our learner decide how confidently it wants to classify these additional training instances based

on the dev data. Specifically, this confidence parameter µ is tuned jointly with the C value to

maximize F-score on the dev set.

6. EVALUATION

6.1. EXPERIMENTAL SETUP

F-score, which is the unweighted harmonic mean of recall and precision, is employed as the

evaluation measure. Recall is the percentage of links in the gold standard that are recovered by

our system. Precision is the percentage of links recovered by our system that are correct. Each

document is preprocessed by removing stopwords and stemming the remaining words. All

results are obtained via 5-fold cross validation.

6.2. RESULTS AND DISCUSSION

6.2.1. BASELINE SYSTEMS

There are two unsupervised and two supervised baselines.

Baseline 1: Tf.Idf. Motivated by previous work, tf.idf is employed as our first unsupervised

baseline. Each document is represented as a vector of unigrams. The value of each feature is its

tf.idf value. Cosine is used to compute the similarity between two documents. Any pair of

requirements whose similarity exceeds a given threshold is labeled as positive. Thresholds from

0.1 to 0.9 with an increment of 0.1 are tested and results are reported using the best threshold,

essentially giving an advantage to it in the performance comparison. From row 1 of Table 3, it

achieves an F-score of 54.5%.

Baseline 2: LDA. Also motivated by previous work, LDA is employed as our second unsuper-

vised baseline. An LDA is trained on our data to produce n topics (where n=10, 20, . . ., 60). Then

the n topics are used as features for representing each document, where the value of a feature is the

probability the document belongs to the corresponding topic. Cosine is used as the similarity

measure. Any pair of requirements whose similarity exceeds a given threshold is labeled as

positive. Thresholds from 0.1 to 0.9 with an increment of 0.1 are tested and results are reported

using the best threshold, essentially giving an advantage to it in the performance comparison.

From row 2 of Table 3, it achieves an F-score of 34.2%.

Baseline 3: Features 1 and 2. As the first supervised baseline, a SVM classifier is trained using

only features 1 and 2 (all the word pairs). From row 3 of Table 3, it achieves F-scores of 57.1%

(without FS) and 67.7% (with FS). These results suggest that FS is indeed useful.

Baseline 4: Features 1, 2, and LDA. As the second supervised baseline, feature set used in

Baseline 3 is augmented with the LDA features used in Baseline 2 and then a SVM classifier is

trained. The best n (number of topics) is selected using the dev set. Clearly from row 4 of Table 3,

this is the best of the four baselines: it significantly outperforms Baseline 3 regardless of whether

feature selection is performed, suggesting the usefulness of the LDA features.

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.4, July 2018

33

6.2.2. OUR APPROACH

Next, our 2-learner, ontology-based approach is evaluated, without using pseudo instances created

from rationales. In the single-learner experiments, a classifier is trained on the seven features

described in Section 4.1, whereas in the 2-learner experiments, these seven features are split as

described in Section 4.2.

Setting 1: Single learner, manual clusters. From row 5 of Table 3 under “No pseudo” column,

this classifier significantly outperforms the best baseline (Baseline 4): F-scores increase by 4.6%

(without FS) and 3.5% (with FS). Since the only difference between this and Baseline 4 lies in

whether the LDA features or the ontology-based features are used, these results seem to suggest

that features formed from the clusters in our hand-built ontology are more useful than the LDA

feature.

Setting 2: Single learner, induced clusters. From row 6 of Table 3 under “No pseudo” column,

this classifier performs statistically indistinguishably from the one in Setting 1. This is an

encouraging result: it shows that even when features are created from induced rather than

manual clusters, performance does not significantly drop regardless of whether FS is performed.

Setting 3: Two learners, manual clusters. From row 7 of Table 3 under “No pseudo” column,

this classifier performs significantly better than the one in Setting 1: F-scores increase by 9.2%

(without FS) and 3.0% (with FS). As the two settings differ only w.r.t. whether one or two

learners are used, the improvements suggest the effectiveness of our 2-learner framework.

Setting 4: Two learners, induced clusters. From row 8 of Table 3 under “No pseudo” column,

this classifier performs significantly better than the one in Setting 2: F-scores increase by 9.3%

(without FS) and 5.8% (with FS). It also performs indistinguishably from the one in Setting 3.

Taken together, these results suggest that (1) our 2-learner framework is effective in improving

performance, and (2) features derived from induced clusters are as effective as those from manual

clusters.
Table 3. Five-fold cross-validation results.

Notes: R, P, and F are denoted as Recall, Precision, and F-score respectively

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.4, July 2018

34

Overall, these results show that (1) our 2-learner, pseudo-instances-enhanced, ontology-based

approach is effective, and (2) feature selection consistently improves performance.

To gain insights into which features and which clustering algorithms output are being selected, the

best-performing system (row 8 in Table 3) has selected (as determined on the dev set) the feature

subsets of features 1 (same words), 3 (verb pairs), 4 (verb group pairs), and 5 (noun pairs), as well

as the Interactive (with 20 clusters) clustering output.

6.2.3. FURTHER INVESTIGATION

This section discusses usage of pseudo instances during model training to boost the learning

performance.

Using Positive Pseudo-instances

The “Pseudo pos only” column of Table 3 shows the results when each of the systems is trained

with additional positive pseudo-instances.

Comparing row-wise with “No pseudo” column, it shows that employing positive pseudo-instances

increases performance on Pine. F-scores rise by 1.1–3.9% without FS and 1.8–3.8% with FS. The

corresponding F-scores in all cases are statistically distinguishable. These results seem to suggest

that the addition of positive pseudo-instances is useful for traceability link prediction.

Using Positive and Negative Pseudo-instances

The “Pseudo pos+neg” column of Table 3 shows the results when each of the systems is trained

with additional positive and negative pseudo-instances.

Comparing these results with the corresponding “Pseudo pos only” results, it shows that

additionally employing negative pseudo-instances almost consistently improves performance: F-

scores rise by 0.8–2.0% without FS and up to 2.4% with FS, with one exception case (1 learner

with manual clusters and FS, which drops by 0.7%). Nevertheless, the corresponding F-scores in

two of four 1-learner cases (manual/with FS, induced/no FS) are statistically indistinguishable.

But interestingly, the improvements in F-score in all four 2-learner cases are statistically

significant. These results suggest that the additional negative pseudo-instances provide useful

supplementary information for traceability link prediction.

In addition, the use of features derived from manual/induced clusters to the supervised baseline

consistently improves its performance: F-scores rise significantly by 1.3–14.5%.

Finally, the best results in our experiments are achieved when both positive and negative pseudo

instances are used in combination with manual/induced clusters and feature selection: F-scores

reach 81.1–81.3%. These results translate to significant improvements in F-score over the

supervised baseline (with no pseduo instances) by 13.4–13.6%, or relative error reductions of

41.5– 42.1%.

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.4, July 2018

35

Pseudo-instances from Residuals

Recall that Zaidan et al. [1] created pseudo-instances from the text fragments that remain after

the rationales are removed. In Section 5.2.3, an argument has arisen that their method of creating

positive pseudo-instances for our requirements traceability task is problematic. In this subsection,

the correctness of this claim is verified empirically.

Specifically, the “Pseudo residual” column of Table 3 shows the results when each of the “No

pseudo” systems is additionally trained on the positive pseudo-instances created using Zaidan et

al.’s method. Comparing these results with the corresponding “Pseudo pos+neg” results, it shows

that replacing our method of creating positive pseudo-instances with Zaidan et al.’s method causes

the F-scores to drop significantly by 21.0–30.3% in all cases. In fact, comparing these results with

the corresponding “No pseudo” results, it shows that employing positive pseudo-instances created

from Zaidan et al.’s method yields significantly worse results than not employing pseudo-instances

at all. These results provide suggestive evidence for our claim.

7. CONCLUSIONS

A 2-learner, ontology-based, pseudo-instances-enhanced approach to supervised traceability pre-

diction has been investigated. Results showed that (1) our approach is effective: in comparison to

the best baseline, relative error reduces by 56.0%; (2) the pseudo instances extension is effective,

which is able to mitigate the situation when human labelled links are insufficient; and (3) also

interestingly, results obtained via induced clusters were as competitive as those obtained via

manual clusters, which indicates potential to automate building of ontology rationales for

traceability prediction and reduce human effort.

REFERENCES

[1] O .Zaidan, J. Eisner, and C. Piatko,“Using“ annotator rationales” to improve machine learning for text

categorization,” in Human Language Technologies 2007: The Conference of the North American

Chapter of the Association for Computational Linguistics; Proceedings of the Main Conference, 2007,

pp. 260–267.

[2] R.A. Pierce, “A requirements tracing tool,” ACM SIGSOFT Software Engineering Notes, vol. 3, no.

5, pp. 53–60, 1978.

[3] J. Jackson, “A keyphrase based traceability scheme,” in Tools and Techniques for Maintaining

Traceability During Design, IEE Colloquium on. IET, 1991, pp. 2–1.

[4] S. K. Sundaram, J. H. Hayes, and A. Dekhtyar, “Baselines in requirements tracing,” ACM SIGSOFT

Software Engineering Notes, vol. 30, no. 4, pp. 1–6, 2005.

[5] M. Lormans and A. Van Deursen, “Can LSI help reconstructing requirements traceability in

designandtest?” in Software Maintenanceand Reengineering, 2006. CSMR 2006.Proceedings of the

10th European Conference on. IEEE, 2006, pp. 10–pp.

[6] A. DeLucia, F .Fasano, R. Oliveto, and G. Tortora, “Recovering traceability links in software artifact

management systems using information retrieval methods,” ACM Transactions on Software

Engineering and Methodology (TOSEM), vol. 16, no. 4, p. 13, 2007.

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.4, July 2018

36

[7] De Lucia, R. Oliveto, and G. Tortora, “Assessing IR-based traceability recovery tools

through controlled experiments,” Empirical Software Engineering, vol. 14, no. 1, pp. 57– 92, 2009.

[8] J. Cleland-Huang, R. Settimi, C. Duan, and X. Zou, “Utilizing supporting evidence to improve

dynamic requirements traceability,” in Requirements Engineering, 2005. Proceedings. 13th IEEE

International Conference on. IEEE, 2005, pp. 135–144..

[9] D. Port, A. Nikora, J. H. Hayes, and L. Huang, “Text mining support for software requirements:

Traceability assurance,”in System Sciences (HICSS), 2011 44
th

 Hawaii International Conference on.

IEEE, 2011, pp. 1–11.

[10] J.N. Dag, B. Regnell, P. Carlshamre, M. Andersson, and J. Karlsson, “A feasibility study of

automated natural language requirements analysis in market-driven development,” Requirements

Engineering, vol. 7, no. 1, pp. 20–33, 2002.

[11] Z. Li, M. Chen, L. Huang, and V. Ng, “Recovering traceability links in requirements documents,” in

Proceedings of the Nineteenth Conference on Computational Natural Language Learning, 2015, pp.

237–246.

[12] J. Guo, J. Cheng, and J. Cleland-Huang, “Semantically enhanced software traceability using deep

learning techniques,” in 2017 IEEE/ACM 39th International Conference on Software Engineering

(ICSE), May 2017, pp. 3–14.

[13] M.-C. de Marneffe, B. MacCartney, and C. D. Manning, “Generating typed dependency parses from

phrase structure parses,” in Proceedings of the 5th International Conference on Language Resources

and Evaluation, 2006, pp. 449–454.

[14] C.-C. Chang and C.-J. Lin, “LIBSVM: a library for support vector machines,” ACM Transactions on

Intelligent Systems and Technology (TIST), vol. 2, no. 3, p. 27, 2011.

[15] A. Blum and P. Langley, “Selection of relevant features and examples in machine learning,” Artificial

Intelligence, vol. 97, no. 1–2, pp. 245–271, 1997.

