
International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.4, July 2018

DOI:10.5121/ijsea.2018.9407 101

VALIDATION AND VERIFICATION OF SYSML

ACTIVITY DIAGRAMS USING HOARE LOGIC

Yufei Yin1, Shaoying Liu1 and Yixiang Chen2

1Hosei University, Tokyo, Japan
 2East China Normal University, Shanghai, China

Abstract

SysML diagrams are significant medium using for supporting software lifecycle management. The existing

TBFV method is designed for error detection with full automation efficiency, only for code. For verifying

the correctness of SysML diagram, we applying TBFV method into SysML diagram. In this paper, we

propose a novel technique that makes use of Hoare Logic and testing to verify whether the SysML diagrams

meet the requirement, called TBFV-M. This research can improve the correctness of SysML diagram,

which is likely to significantly affect the reliability of the implementation. A case study is conducted to show

its feasibility and used to illustrate how the proposed method is applied; and discussion on potential

challenges to TBFV-M is also presented.

Keywords

SysML activity diagrams, TBFV, test path generation, formal verification of SysML diagram.

1. INTRODUCTION

With the increasing scale of the software system, people prefer to use the Model-Based Systems
Engineering (MBSE) instead of the traditional software engineering. MBSE [1] refers to an
introduction to applying the modelling method into the system engineering and using the model
to support activities. The systems modelling language SysML [2, 3] can support effective use of
MBSE. In MBSE, SysML models are often used as the design for code. Therefore, its correctness
in terms of meeting the users’ requirements becomes critical to ensure the high reliability of the
code. Unfortunately, to the best of our knowledge from the literature, there are few tools to
support the verification of SysML models [4, 5] in particular rigorous ways of verification.
Testing-Based Formal Verification (TBFV) proposed by Liu [6-8] shows an efficient method
unitizing Hoare Logic to strengthen testing for error detection for code. The superiority of TBFV
to both testing and formal verification is that it can verify the correctness of all traversed paths
and can be performed automatically because the derivation of invariants from iterations is no
longer needed. However, the current TBFV is mainly designed for sequential code. In this paper,
we discuss how the existing TBFV can be applied to SysML models for their verification and we
use TBFV-M (testing-based formal verification for models) to represent the newly developed
approach. Since SysML Activity Diagrams can model the systems dynamic behaviour and
describe complex control and parallel activities, our discussion in this paper focuses on the
activity diagrams.

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.4, July 2018

102

The essential idea of TBFV-M is as follows. All of the functional scenarios are first extracted
from a given formal specification defining the users’ requirements. Meanwhile, test paths
aregenerated from corresponding SysML Activity Diagrams waiting to be verified. Then, test
paths are matched with functional scenarios by a given algorithm. After this, the pre-condition of
the test path is automatically derived by applying the assignment axiom in Hoare logic based on
the functional scenario. Finally, the implication of the pre-condition of the specification with the
guard condition of the functional scenario to the derived pre-condition of the path is verified
which concerns the accuracy of the activity diagram.

The remainder of the article will detail the TBFV-M method. Section 2 displays related work.
Section 3 and section 4 introduce testing, Hoare Logic and TBFV approach separately. And
section 5 shows the main principle of TBFV-M method, which demonstrates the unique parts of
TBFV-M. Section 6 uses a dedicated example to express the process. Section 7 shows the
evaluation result and section 8 conclude the paper

2. Related Work

The process of putting forward TBFV-M method requires information of multiple angles. While
establishing the TBFV-M method, we inquired the existing work in extensive range, including
testing-based verification, requirements verification, verification using Hoare Logic and test case
generation. For better understanding of our research, we list them separately.

2.1. Testing-Based Verification

Considering the shortcoming of Formal verification based on Hoare logic hard to automate, Liu
[6] proposed the TBFV (Testing-Based Formal Verification) method by combining specification-
based testing with formal verification. This method not only has the advantages of the test which
can be automated, but also the efficiency of error detection with formal verification. Liu also
designed a group of algorithms [9] for test cases generation from formal specification written
with SOFL [10]. A supporting tool [8] is also developed.

Franco Raimondi [11] addressed the problem of verifying planning domains written in the
Planning Domain Definition Language (PDDL). First, he translated test cases into planning goals,
then verified planning domains using the planner. A tool PDVer is also generated, which can
produce planning goals from requirements automatically, according to coverage conditions.

2.2. Requirements Verification

Stefano Marrone [12, 13] designed a Model-Driven Engineering approach, in which formal
models are constructed and test cases are generated from UML model, utilizing UML profiles and
model transformation algorithms, automatically. As they claimed, formal models can be used for
quantitative analysis of non-functional properties, while test cases can be used for model
checking.

Feng Liang [14] proposed a vVDR (Virtual Verification of Designs against Requirements)
approach for verifying a system with its requirement. In his research, the system is modeled in
Modelica, and requirement verification scenarios are specified in ModelicaML, an UML profile

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.4, July 2018

103

and a language extension for Modelica. However, the deficiency appears when the number of
requirements and scenarios increase.

2.3. Verification Using Hoare Logic

Ralf Sasse [15] designed a tool called Java+ITP to verify a subset of the Java language. During
the verification process, Maude-based continuation passing style (CPS) is used to rewrite the
logical semantics of Java, and they also developed CPSbased Hoare Logic rules to justify the
correctness of the rewritten fragment.

Magnus O. Myreen [16] used Hoare Logic to deal with machine code. They designed a
mechanized Hoare-style programming logic framework to accommodate the restrictions and
features present in real machine-code, such as finite memory, data and code in the same memory
space. ARM machine-code now can be verified using the proposed logic.

2.4. Test Case Generation

Debasish Kundu [17] used a more abstract perspective to treat AD than ever before and they took
it as corresponding use case. They first transformed the activity diagram into an activity graph
and design an algorithm generating test cases from the activity graph automatically. In their
article, they claimed that the disadvantage of the current algorithm is that their method can only
handle one use case at a time.

Jonathan Lasalle [18] established VETESS, which is a tool chain that can generate test case for
embedded systems automatically. By leveraging existing test case generation and test path
extraction tools, VETESS can extract valid information from UML or SysML models and execute
functional test case automatedly.

Chen Mingsong [19] proposed an approach to instrument a JAVA program for the specific UML
activity diagram and run the instrumented JAVA program to generate test cases according to the
algorithm he designed. Finally, he used the program execution result to analyze the corresponding
UML activity diagram. Chen also developed a tool named UMLTGF to support the above
process.

For disposing of the problem of verifying SysML Activity Diagram, we consulted the TBFV
method and proposed TBFV-M as a solution. TBFV approach has an advantage over formal
correctness verification based on Hoare Logic in verifying the realistic program systems, because
Functional scenario-based testing can make the process of error detection be automatically
performed. However, it only deals with code. So, we apply the method into SysML Models, and
created TBFV-M. Model is more intuitive than a formal specification because it requires less
relevant background knowledge and is easier to communicate with customers.

3. INTRODUCTION OF TESTING AND HOARE LOGIC

Test Case generation technique utilize SysML modes for generating test cases for detecting
programs errors. It is easy to be performed automatically, but the error may still exist in the
programs. Formal verification, based Hoare Logic, provides a possibility to prove the correctness
for programs. However, due to the complexity in deriving invariant, it is rarely used in the

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.4, July 2018

industry world. We put forward a novel approach to verifying a SysML Activity Diagram by
combining test case generation with Hoare Logic based formal verification. In this section, we
briefly introduce the relevant parts of test case
discussion of the TBFV-M method.

3.1. TESTING

For make the definition of testing more clearly, this section will introduce some knowledge,
including the formal definition of activity diagram, test case and
hierarchically.

3.1.1. ACTIVITY DIAGRAM

Activity Diagram Formal Definition [2] can be represented as:

Node is a set of nodes of which definition as follow:

Node = {InitialNode; FlowFinalNode; ActivityFinalNode; ActionNode; ActivityNode;
ForkNode; JoinNode; DecisionNode; MergeNode; RecieveSignalNode; SendSignalNode}

 Edges defines the relationship between nodes such that:

3.1.2. TEST CASE

From a global view, test case based on the SysML activity diagram consists of test path and test
data. And the definition is as followed:

 TC(AD) = (Path; Data)

For activity diagram, test scenario consists of a series of actions and edges in the diagram. Based
on the formal definition of the activity diagram given above, the test path is defined as follow:

 In this formula, ai means node, ti means edge. In this case, a test path is a set of nodes, starting
from node a1 and ending with node an through the transition edges t2 … tn. For activity di
a1 and an represent the initial node and final node, respectively.

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.4, July 2018

industry world. We put forward a novel approach to verifying a SysML Activity Diagram by
combining test case generation with Hoare Logic based formal verification. In this section, we
briefly introduce the relevant parts of test case generation and Hoare Logic to pave the way for

M method.

For make the definition of testing more clearly, this section will introduce some knowledge,
including the formal definition of activity diagram, test case and test coverage criteria,

Activity Diagram Formal Definition [2] can be represented as:

 AD = (Node; Edge)

Node is a set of nodes of which definition as follow:

Node = {InitialNode; FlowFinalNode; ActivityFinalNode; ActionNode; ActivityNode;
ForkNode; JoinNode; DecisionNode; MergeNode; RecieveSignalNode; SendSignalNode}

Edges defines the relationship between nodes such that:

From a global view, test case based on the SysML activity diagram consists of test path and test
data. And the definition is as followed:

TC(AD) = (Path; Data)

For activity diagram, test scenario consists of a series of actions and edges in the diagram. Based
on the formal definition of the activity diagram given above, the test path is defined as follow:

In this formula, ai means node, ti means edge. In this case, a test path is a set of nodes, starting
from node a1 and ending with node an through the transition edges t2 … tn. For activity di
a1 and an represent the initial node and final node, respectively.

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.4, July 2018

104

industry world. We put forward a novel approach to verifying a SysML Activity Diagram by
combining test case generation with Hoare Logic based formal verification. In this section, we

generation and Hoare Logic to pave the way for

For make the definition of testing more clearly, this section will introduce some knowledge,
test coverage criteria,

 (1)

Node = {InitialNode; FlowFinalNode; ActivityFinalNode; ActionNode; ActivityNode;
ForkNode; JoinNode; DecisionNode; MergeNode; RecieveSignalNode; SendSignalNode} (2)

 (3)

From a global view, test case based on the SysML activity diagram consists of test path and test

 (4)

For activity diagram, test scenario consists of a series of actions and edges in the diagram. Based
on the formal definition of the activity diagram given above, the test path is defined as follow:

 (5)

 (6)

 (7)

In this formula, ai means node, ti means edge. In this case, a test path is a set of nodes, starting
from node a1 and ending with node an through the transition edges t2 … tn. For activity diagram,

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.4, July 2018

105

3.1.3. TEST COVERAGE CRITERIA

For software, the adequacy measurement of testing is reflected in the rate of coverage and
effectiveness of the test case. These coverage criteria ensure the sufficiency of testing and provide
implications for the test case generation algorithm. Here are four test coverage criteria used in our
design, for test case generation of SysML activity diagram [19,25,26]:

• Action coverage criteria: In software testing process, testers are often required to generate test
cases to execute every action in the program at least once.

• Edge coverage criteria: In software testing process, testers are often required to generate test
cases to pass every edge in the program at least once.

• Path coverage criteria: These coverage criteria require that all the execution paths from the
programs entry to its exit are executed during testing.

 • Branch coverage criteria: These coverage criteria generate test cases from each reachable
decision made true by some actions and false by others.

3.2. HOARE LOGIC

Hoare Logic is a formal system developed by C. A. R. Hoare [27, 28], and it is designed for the
proof of partial correctness of a program. In Hoare Logic, the Hoare Triple [29] is best known
and is also referenced in our method. The Hoare triple is of this form

 {P} C {Q} (8)

where P and Q are assertions and C is a command. P is named the pre-condition, which is a
predicate expression describing the initial states and Q the post-condition, which is also a
predicate expression describing the final states.

Hoare also established necessary axioms to define the semantics of each program construct,
including axiom of assignment, rules of consequence, axioms of composition, axioms of
alternation, iteration and block. Axiom of assignment is used in our work, so we will briefly
introduce it:

 {Q(E\x)} x:=E {Q} (9)

where x is a variable identifier, E is an expression of a programming language without side
effects, but possibly containing x, Q[E\x] is a predicate resulting from Q by substituting E for all
occurrences of x in Q.

4. TBFV

TBFV combined specification-based testing and Hoare Logic-based formal verification to detect
errors of programs. The essential idea is first to use specification-based testing to discover all
traversed program paths and then to use Hoare logic to prove their correctness. Testing is a
practical technique for detecting program errors. A strong point of testing superior to formal
correctness verification is that it is much easier to be performed automatically if formal

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.4, July 2018

specifications are adopted [20], but a weak point is that existing err
still not be uncovered even if it has been traversed using a test case. Formal verification has a
possibility to prove the correctness of a program. However, it not only need professional
knowledge to process iterations, but also
world.

TBFV takes advantage of testing, realized full automation for error detection efficiency. TBFV is
a specific specification-based testing approach that takes both the precondition and postconditi
into account in test case generation [21]. After acquiring all the test path of the program, Hoare
Logic will help to give a formal proof for each path, which guarantees the comprehensiveness of
verification.

TBFV first generates a test case from each
specification using pre- and post
specification can be automatically transformed into an equivalent disjunction of functional
scenarios and each scenario defines an independent function of the corresponding program.
To precisely describe this strategy, we first need to introduce functional scenario. Spre and Spost
denote the pre- and post-conditions of operation S. Let:

Gi and Di (i 1, …, n) are two predicates, called guard condition and defining condition,
respectively. The definition of functional scenarios and FSF (functional scenario form) are list
below:

FSF = (S

In the definition of functional scenario, Spre Gi Di is treated as a scenario, as it defines a specific
condition of a program. A systematic transformation procedure, algorithm, and software tool
support for deriving an FSF from a pre
developed in our previous work [22].

Let us make a small example to explain this definition more impressively. Evaluation is an
operation, taking the mark as input and trying to evaluating whether it is deserved to pass th
examination. And the qualifying line is 60, which means if the mark is over 60, you pass;
otherwise, you will be marked as false. The specification is written in SOFL specification
language and it shows below:

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.4, July 2018

specifications are adopted [20], but a weak point is that existing errors on a program path may
still not be uncovered even if it has been traversed using a test case. Formal verification has a
possibility to prove the correctness of a program. However, it not only need professional
knowledge to process iterations, but also consume time, which it has low usage in the industry

TBFV takes advantage of testing, realized full automation for error detection efficiency. TBFV is
based testing approach that takes both the precondition and postconditi

into account in test case generation [21]. After acquiring all the test path of the program, Hoare
Logic will help to give a formal proof for each path, which guarantees the comprehensiveness of

TBFV first generates a test case from each functional scenario, derived from the formal
and post-conditions, to run the program. A pre-post style formal

specification can be automatically transformed into an equivalent disjunction of functional
defines an independent function of the corresponding program.

To precisely describe this strategy, we first need to introduce functional scenario. Spre and Spost
conditions of operation S. Let:

SPOST = (G1 D1) (G2 D2) … (GN DN)

Gi and Di (i 1, …, n) are two predicates, called guard condition and defining condition,
respectively. The definition of functional scenarios and FSF (functional scenario form) are list

Functional Scenario = Spre Gi Di

FSF = (Spre G1 D1) (Spre G2 D2) … (Spre Gn Dn

In the definition of functional scenario, Spre Gi Di is treated as a scenario, as it defines a specific
condition of a program. A systematic transformation procedure, algorithm, and software tool
support for deriving an FSF from a pre-post style specification written in SOFL have been
developed in our previous work [22].

Let us make a small example to explain this definition more impressively. Evaluation is an
operation, taking the mark as input and trying to evaluating whether it is deserved to pass th
examination. And the qualifying line is 60, which means if the mark is over 60, you pass;
otherwise, you will be marked as false. The specification is written in SOFL specification

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.4, July 2018

106

ors on a program path may
still not be uncovered even if it has been traversed using a test case. Formal verification has a
possibility to prove the correctness of a program. However, it not only need professional

consume time, which it has low usage in the industry

TBFV takes advantage of testing, realized full automation for error detection efficiency. TBFV is
based testing approach that takes both the precondition and postcondition

into account in test case generation [21]. After acquiring all the test path of the program, Hoare
Logic will help to give a formal proof for each path, which guarantees the comprehensiveness of

functional scenario, derived from the formal
post style formal

specification can be automatically transformed into an equivalent disjunction of functional
defines an independent function of the corresponding program.

To precisely describe this strategy, we first need to introduce functional scenario. Spre and Spost

 (10)

Gi and Di (i 1, …, n) are two predicates, called guard condition and defining condition,
respectively. The definition of functional scenarios and FSF (functional scenario form) are list

(11)

n) (12)

In the definition of functional scenario, Spre Gi Di is treated as a scenario, as it defines a specific
condition of a program. A systematic transformation procedure, algorithm, and software tool

tion written in SOFL have been

Let us make a small example to explain this definition more impressively. Evaluation is an
operation, taking the mark as input and trying to evaluating whether it is deserved to pass the
examination. And the qualifying line is 60, which means if the mark is over 60, you pass;
otherwise, you will be marked as false. The specification is written in SOFL specification

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.4, July 2018

The specification states that the input mark must be in the range from 100 to 0 and the output pass
is a bool type. According to the definition proposed before, three functional scenarios can be
derived from this formal specification, as shown below.

The correctness of the path with respect to the pre
unlikely to be established by means of testing. This deficiency can be eliminated by repeatedly
applying the axiom for assignment in Hoare logic. So, we need to fo
definition are below:

P is called a program segment, which consists of decision (i.e., a predicate), an assignment, a
return statement, or a printing statement. It means that if the pre
condition Gi of the program are both true before path P is exec
P will be true on its termination. Finally, repeatedly apply the axiom for assignment to derive a
pre-assertion, denoted by Ppre. And the correctness of the specific path is transformed into the
implication Spre ∧ Gi → Ppre. If the implication can be proved, it means that no error exists on
the path; otherwise, it indicates the existence of some error on the path.

5. PRINCIPLE OF TBFV-

Model-Based Systems Engineering (MBSE) combines process and analysis with
the last decade, the model-driven approach for software development has gained a growing
interest of both industry and research communities as it promises easy automation and reduced
time to market [23]. Because of the graphical notation f
edge diagrams, SysML model addresses the ease of adoption amongst engineers [24].

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.4, July 2018

The specification states that the input mark must be in the range from 100 to 0 and the output pass
is a bool type. According to the definition proposed before, three functional scenarios can be
derived from this formal specification, as shown below.

The correctness of the path with respect to the pre-condition and the functional scenario is
unlikely to be established by means of testing. This deficiency can be eliminated by repeatedly
applying the axiom for assignment in Hoare logic. So, we need to form path triple and the

{SPRE GI}P { DI}

P is called a program segment, which consists of decision (i.e., a predicate), an assignment, a
return statement, or a printing statement. It means that if the pre-condition Spre and the guard
condition Gi of the program are both true before path P is executed, the post-condition Di of path
P will be true on its termination. Finally, repeatedly apply the axiom for assignment to derive a

assertion, denoted by Ppre. And the correctness of the specific path is transformed into the
pre. If the implication can be proved, it means that no error exists on

the path; otherwise, it indicates the existence of some error on the path.

-M

Based Systems Engineering (MBSE) combines process and analysis with architecture. In
driven approach for software development has gained a growing

interest of both industry and research communities as it promises easy automation and reduced
time to market [23]. Because of the graphical notation for defining system design as nodes and
edge diagrams, SysML model addresses the ease of adoption amongst engineers [24].

Figure 1. TBFV-M usage scenario

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.4, July 2018

107

The specification states that the input mark must be in the range from 100 to 0 and the output pass
is a bool type. According to the definition proposed before, three functional scenarios can be

condition and the functional scenario is
unlikely to be established by means of testing. This deficiency can be eliminated by repeatedly

rm path triple and the

 (13)

P is called a program segment, which consists of decision (i.e., a predicate), an assignment, a
condition Spre and the guard

condition Di of path
P will be true on its termination. Finally, repeatedly apply the axiom for assignment to derive a

assertion, denoted by Ppre. And the correctness of the specific path is transformed into the
pre. If the implication can be proved, it means that no error exists on

architecture. In
driven approach for software development has gained a growing

interest of both industry and research communities as it promises easy automation and reduced
or defining system design as nodes and

edge diagrams, SysML model addresses the ease of adoption amongst engineers [24].

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.4, July 2018

108

During the Model-Driven process, model is an important medium for the Model based system
engineering development. The TBFV-M method is mainly used to verify whether SysML
Activity Diagram model meets the user's requirements written in SOFL (Structured-
Objectoriented-Formal Language).

The TBFV-M method takes the specification describing the users’ requirements and the SysML
Activity Diagram model as input and verifies the correctness of the SysML model according to
the specification. The procedure of TBFV-M is illustrated in Figure2

Figure 2. TBFV-M processing procedure

From this figure, we find that functional scenarios are derived from the specification, while test
paths are generated from the Activity Diagram and the data constraints can be extracted from
each test path. Then, the extracted data constraints are used to match with functional scenarios. A
matching algorithm is proposed by us. We will verify the successful matched the test path
according to the requirements represented in specification. The verification part can be separated
into three parts: first, create a path triple, and then use the axiom of Hoare Logic to derive pre-
assertion for each test path. Finally, prove the implication of the pre-condition in the specification
and pre-assertion.

These critical steps in the TBFV-M method, including functional scenarios derivation, test path
generation, matching algorithm, pre-assertion derivation and implication. For the space problem,
we will discuss test path generation, matching algorithm and implication especially, for they are
special from TBFV.

5.1. TEST PATHS GENERATION

A test path auto-generation tool based on the SysML Activity Diagram model takes the model as
input and generates test cases as outputs automatically. And the process is shown in the figure
below.

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.4, July 2018

109

Figure 3. Test generation Process

First, we use transformation algorithm to compress the input Activity Diagram, which may
contain unstructured module. The transformation is a cyclic process, dealing with loop module,
concurrent module and the problem of multiple starting nodes separately. After compressing, we
transform this unstructured activity diagram into an intermediate representation form Intermediate
Black box Model (IBM). IBM consists of one basic module and a map from black box to the
corresponding original actions. The third phase is the test path generation based on IBM. In this
phase, two problems should be solved, which are basic module test path generation and black box
test path generation. Details of automated test paths generation algorithm and implementation of
unstructured SysML Activity Diagram has been developed in our previous work [30].

Figure 4. Motivating case

Figure5 shows how to compress an unstructured activity diagram and transform the unstructured
module into a black box node. Eventually the unstructured activity diagram converts into an
intermediate representation of IBM. The compressed black box node is shown in the following
Figure6(b).

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.4, July 2018

110

Figure 5. The process of transformation

For loop module, like the Figure6(a), since the infinite traversal loop is not possible, it is possible
to propose a different expansion algorithm for different types of loops when processing the loop
module. For simple loop, you can take the following test case sets (where n is the maximum
number of passes allowed):

• skip the entire loop

• go through the loop once

• go through the loop twice

• go through the loop m times

• go through the loop n-1, n, n + 1 times

For nested loop, if a simple loop test method is to be used for nested loops, the number of
possible tests increases as the number of nesting layers increases. It results in an unrealistic
number of tests. Here’s a way to reduce the number of tests:

• Step 1. Set the cycles to the minimum from the innermost cycle.

• Step 2. Use a simple cycle test for the innermost cycle, leaving the outer cycle of the
number of cycles to a minimum.

• Step 3. The test of the next loop is constructed from the inside to the outside, but the
other outer layer loops to the minimum value, and the other nested loops are the typical
values.

• Step 4. Continue until all the cycles have been tested.

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.4, July 2018

111

Figure 6. The map of black boxes

For concurrent module, if it is a simple one, this is the classic concurrency module, which can be
used fully arranged algorithm or other optimization algorithm for automatic test case generation.
The concurrent module in figure6(b) is a No_FJ, which represents that there is no join node at the
end of concurrent module. The following proposed an algorithm for generating the noJoin
concurrent module test case:

• Step 1. Build a test path using a full arranged algorithm or other optimization algorithm.

• Step 2. If the algorithm copies all nodes in a parallel stream completely, including the
active termination node, to the test path being produced, which means that the entire
activity has been completed, the active nodes in the other parallel streams are discarded.

• Step 3. If the algorithm will complete all nodes in a parallel stream, only the stream
termination node, which is copied to the test path being produced, then continue to apply
the algorithm until the situation described in Step2 appears.

• Step 4. Complete one test path generated from concurrency module.

5.2. MATCHING ALGORITHM

In order to verify the correctness of one path in Activity Diagram, we need to match it with
corresponding functional scenario. And the matching algorithm is given below.

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.4, July 2018

112

Matching algorithm takes the edge list and FS_list as input. Edge list is the collection of guard
conditions saved from test path and FS_list is extracted functional scenario form from
specification. First, the algorithm sets the label of the two lists unvisited. And for each in edge list
do data integration. Data integration is like data intersection. For example, if we contain two
guard conditions x < 6 and x < 60, the integration of it is x < 6.

After completing the initialization step, find a matching functional scenario for each element in
edge list. The specific operation is: the edge after the integration compares with Spre Gi in the
functional scenario, if exactly the same, then we find the edge with the matched functional
scenario. If there is no exact matched functional scenario, then there is an inaccurate modeling
problem and needs to be refined. After traversing all the edge_list, we also need to check whether
each in FS_list has been visited. If there is an unvisited functional scenario, then it means that
there is a requirement that the model fails to be represented in the specification

5.3. IMPLICATION

Prove the implication. Finally, the correctness of one path whether it meets the corresponding
requirement is changed into the proof of the implication “Spre ∧ Gi → Spre”. If the implication
can be proved, it means that the path can model one part of the requirement; otherwise, it
indicates the existence of some error on the path.

Formally proving the implication “Spre ∧ Gi → Spre” may not be done automatically, even with
the help of a theorem prover such as PVS, depending on the complexity of Spre and Ppre. Our
strategy is as follows: if the complexity of data structure is not high, we will transform the
problem into solver, which can achieve full automation. Otherwise, if achieving a full automation
is regarded as the highest priority, as taken in our approach, the formal proof of this implication
can be "replaced" by a test. That is, we first generate sample values for variables in Spre and
Ppre, and then evaluate both of them to see whether Ppre is false when Spre is true.
For example, if we need to judge the validity of the implication "(price > 0) (price < 100 AND
~price-5 =~ price2 - ~price", use the test case (price, 60) and we can easily prove the implication
is not correct.

6. CASE STUDY

Now we show a motivation example to detail the process of TBFV-M method. First, we will get a
requirement from the user, which consists of inform the description, may like this: “Cosmetics
shop now needs to develop a checkout system to calculate money the customer needs to pay. If
the costumer need to pay over 100 dollar, she will get a discount, 20% off. If her bill is less than
100, but more than 50, $5 will be subtracted directly. Otherwise, she will only get $2 discount”.
This specification is formal and structured, as shown:

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.4, July 2018

113

According to the specification, we can construct a set of SysML model and the Activity
Diagram is shown below. To show the ability of detecting errors, we deliberately make a mistake
in this diagram. According to the specification, when the input price is over 100, we will give
20%-discount. However, in the below figure, we miswrite the final price with subtracting $10.
And as the principle of TBFV-M, the proof based on Hoare Logic will help to discover the
mistake, which will be presented later.

Figure 7. Activity Diagram

First, we derive Functional Scenarios from specification and generate test paths from Activity
Diagram. The result is shown as below.

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.4, July 2018

114

At the same time, we can extract data constraints from each test scenario, which is used for
matching with functional scenario. Then, the matching process is shown below.

The blow figure chose the second path and matched the first functional scenario as an example
and shows the substitution process, from bottom to up. The second path is also the wrong path,
which exists inaccurate with requirement.

Finally, we turn this verification problem into proving whether the pre-condition of specification
can imply Ppre. If it can be proved, means that the path satisfies the requirement. From the above
segment, we can see the implication is false. As the strategy of implication mentioned before, this
implication uses simple data structure, so that we use testing to access the procedure of
verification. We can simply generate a test data (price,150), and because of existing the
counterexample, the implication can not be always true. And we can also be aware that this path
exists errors and need to be modified.

7. EVALUATION

We have developed a prototype software tool to support the TBFV-M method. The tool interface
is shown in Figure10. We can load specification and Activity Diagram in .xml format. We simply
use .txt file to store specification and notice that the specification file should guarantee the unified
formal expression, for the convenience of automation.

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.4, July 2018

115

Figure 8. Tool interface

After finishing the supporting tool, we established 20 example cases to test our system. These test
cases include 5 correct ones and the others include errors. All the incorrect Activity Diagrams fail
to express the needs fully and correctly, such as missing some logic branch or having mistaken on
some logic branch

Table 2. Evaluation Result

And the result is that the supporting tool has the ability to figure out these mistakes, as our
expectation.

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.4, July 2018

116

8. CONCLUSION

We presented an approach, known as TBFV-M (Testing-Based Formal Verification for Model),
for requirement error detection in SysML Activity Diagrams by integrating test cases generation
and Hoare Logic. The principle underlying TBFV-M is first to derive functional scenarios form
specification and generate test scenarios from Activity Diagrams. Then match them and verify
each test scenario according to the corresponding functional scenario. Hoare logic is used during
the verification process. TBFV-M method made up the limitation of TBFV, not concerning about
models and solved the problem of inconsistent, incomplete, and inaccurate models. It has
advantage in reducing the probability of system error and shortening the developing time.

ACKNOWLEDGEMENTS

This work was supported by JSPS KAKENHI Grant Number 26240008, and Defence Industrial
Technology Development Program JCKY 2016212B004-2.

REFERENCES

[1] A.W. Wymore, Model-based systems engineering: an introduction to the mathematical theory of
discrete systems and to the tricotyledon theory of system design. CRC Press, 1993.

[2] S. Friedenthal, A. Moore, and R. Steiner, “A practical guide to sysml,” San Francisco Jung Institute
Library Journal, vol. 17, no. 1, pp. 41-46, 2012.

[3] T. Weilkiens,”Systems engineering with sysml/uml,” Computer, no. 6, p. 83, 2006.
[4] M. Shah, L. Chrpa, F. Jimoh, D. Kitchin, T. Mccluskey, S. Parkinson, and M. Vallati, “Knowledge

engineering tools in planning: State-of-the-art and future challenges,” Computer, 01 2013.
[5] T. S. Vaquero, J. R. Silva, and C. J. Beck, \A brief review of tools and methods for knowledge

engineering for planning scheduling," Computer, pp. 7-14, 2011.
[6] S. Liu, “Utilizing hoare logic to strengthen testing for error detection in programs,” Computer, vol.

50, no. 6, pp. 1-5, 2014.
[7] S. Liu and S. Nakajima, Combining Specification-Based Testing, Correctness Proof, and Inspection

for Program Verification in Practice. Springer International Publishing, 2013.
[8] S. Liu, “A tool supported testing method for reducing cost and improving quality,” in IEEE

International Conference on Software Quality, Reliability and Security, 2016, pp. 448-455.
[9] S. Liu, Testing-Based Formal Verification for Theorems and Its Application in Software Specification

Verification. Springer International Publishing, 2016.
[10] S. Liu, A. J. Ofiutt, C. Hostuart, Y. Sun, and M. Ohba, “So: A formal engineering methodology for

industrial applications,” IEEE Transactions on Software Engineering, vol. 24, no. 1,pp. 24-45, 1998.
[11] F. Raimondi, C. Pecheur, and G. Brat, “Pdver, a tool to verify pddl planning domains,” Computer,

2009.
[12] S. Marrone, F. Flammini, N. Mazzocca, R. Nardone, and V. Vittorini, “Towards model-driven v&v

assessment of railway control systems,” International Journal on Software Tools for Technology
Transfer, vol. 16, no. 6, pp. 669-683, 2014.

[13] F. Flammini, S. Marrone, N. Mazzocca, R. Nardone, and V. Vittorini, “Model-driven v&v processes
for computer-based control systems: A unifying perspective," Computer, vol. 7610, pp. 190-204,
2012.

[14] F. Liang, W. Schamai, O. Rogovchenko, S. Sadeghi, M. Nyberg, and P. Fritzson, “Model-based
requirement veri_cation : A case study,” in International Modelica Conference, Munich,Germany,
2012.

[15] R. Sasse and J. Meseguer, “Java+itp: A veri_cation tool based on hoare logic and algebraic semantics
1,” Electronic Notes in Theoretical Computer Science, vol. 176,no. 4, pp. 29-46, 2007.

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.4, July 2018

117

[16] M. O. Myreen and M. J. C. Gordon, “Hoare logic for realistically modelled machine code.” In
TOOLS and Algorithms for the Construction and Analysis of Systems, International Conference,
Tacas 2007, Held As, 2007, pp. 568-582.

[17] D. Kundu and D. Samanta, “A Novel Approach to Generate Test Cases from UML Activity
Diagrams,” Journal of Object Technology, vol. 8, no. 3, pp. 65–83, 2009.

[18] J. Lasalle, F. Peureux, and F. Fondement, “Development of an Automated MBT Toolchain from
UML/Sysml Models,” Innovations in Systems Software Engineering, vol. 7, no. 4, pp. 247–256,
2011.

[19] M. Chen, X. Qiu, and X. Li, “Automatic Test Case Generation for UML Activity Diagrams,” in
International Workshop on Automation of Software Test, 2006, pp. 2–8.

[20] S. Khurshid and D. Marinov, “Testera: Speci_cation-based testing of java programs using sat,
”Automated Software Engineering, vol. 11, no. 4, pp. 403-434, 2004.

[21] S. Liu and S. Nakajima, “A decompositional approach to automatic test case generation based on
formal specifications,” in International Conference on Secure Software Integration Reliability
Improvement, 2010, pp. 147-155.

[22] S. Liu, T. Hayashi, K. Takahashi, K. Kimura, T. Nakayama, and S. Nakajima, “Automatic
transformation from formal specifications to functional scenario forms for automatic test case
generation," in New Trends in Software Methodologies, TOOLS and Techniques Proceedings of the
Somet 10, September 29 October 1, 2010, Yokohama City, Japan, 2010, pp. 383-397.

[23] Kent and Stuart, Model Driven Engineering. Springer Berlin Heidelberg, 2002.
[24] M. Broy, K. Havelund, R. Kumar, and B. Steffen, Towards a Unified View of Modelling and

Programming (Track Summary). Springer International Publishing, 2016.
[25] G. Gay, “Generating effective test suites by combining coverage criteria,” in International

Symposium on Search Based Software Engineering, 2017, pp. 65-82.
[26] A. K. Joseph, G. Radhamani, and V. Kallimani, \Improving test efficiency through multiple criteria

coverage-based test case prioritization using modified heuristic algorithm," in International
Conference on Computer and Information Sciences, 2016, pp. 430-435.

[27] C. A. R. Hoare, “An axiomatic basis for computer programming,” Communications of the Acm, vol.
12, no. 1, pp. 53-56, 1969.

[28] R. W. Floyd, Assigning Meanings to Programs. Springer Netherlands, 1993.
[29] V. R. Pratt, “Semantical consideration on oyo-hoare logic," in Symposium on Foundations of

Computer Science, 1976, pp. 109-121.
[30] Y. Yin, Y. Xu, W. Miao, and Y. Chen, \An automated test case generation approach based on activity

diagrams of sysml," International Journal of Performability Engineering, vol. 13, no. 6, pp. 922-936,
2017.

AUTHORS

Yufei Yin Master Student of East China Normal University Exchange student
 in Hosei University

Prof. Dr. Shaoying Liu High-Quality Software Engineering Lab Department
Faculty of Computer and Information Sciences Hosei University

Prof. Dr. Yixiang Chen Software and hardware co design technology
and application, director of Engineering Research Centre East China
 Normal University

