
International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.6, November 2018

DOI:10.5121/ijsea.2018.9606 73

EMPIRICALLY VALIDATED SIMPLICITY

EVALUATION MODEL FOR OBJECT ORIENTED

SOFTWARE

Dr. Abdullah
1

and Dr. Mahfuzul Huda
2

1
Assistant Professor, Adigrat University, Adigrat- Tigray, Ethiopia-Africa.
2
Assistant Professor, Saudi Electronic University, Riyadh -Saudi Arabia

ABSTRACT

Software program developers need to go from beginning to ending and understand source code of the

program and other software attributes. The software complexities and length of the program exceedingly

affects many design level quality attributes, specifically Simplicity, Testability and software

Maintainability. Incomplete design of any software generally leads to misunderstanding and ambiguities

and therefore to gives faulty design and development results. This is mainly seeming and appears owing to

the absence of it’s an appropriate observation, design and development control. However, high level design

and program simplicity are very necessary and one of the vital attributes of the system development cycle.

 This research paper highlights the impact and significance of design level software simplicity in common

and as a one of the most useful key factor or index of software quality assurance and testing. In this

research work principally there are three major efforts are made. As a first contribution, a valuable

relationship between software design quality factor simplicity and related object oriented design

properties, this has been set up. In the second contribution, using design level corresponding metrics a

simplicity evaluation model for object oriented software is developed. Subsequently, the developed

simplicity model has been rationally authenticated by means of experimental data try-out.

KEYWORDS

Simplicity, Reliability, Maintainability, Testability, Portability, Flexibility, Object Oriented Software.

1. INTRODUCTION

To timely fulfill the continuing changing demands and the requirements of users and the customer

or may be some additional reasons, developed software must want to be proper renovated or

altered on or after time to time. This procedure of maintenance or modification is generally

worked out by current/existing programmers and developers, which might be not have built that

previous application software [5]. They must require proper narrating and proper recognizing

source codes and additional associated credentials [21]. Yet for the program creators of the object

oriented design, next a break of not many years, it might not be always a simple or easy work for

them to understand original source programs and other associated design documents of the

program or the software [8, 22]. Incorrect interpretations and explanations can proceed to or

direct to misconceptions and finally to not acceptable delivered results [15]. Rundown of an

understanding and the capability to eloquent the procedures in use, it is not probable that it can be

enhanced [16, 23].

So, the ability to be understood and the design simplicity of software have many direct influences

on the criteria that indirectly or directly disturb quality of software. Complicated software design

assuredly direct to bad maintainability and testability results, which in go products to un

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.6, November 2018

74

successful maintenance and testing that may outcome to bad significances [9, 24]. It is unspoken

truth that defects of software design creation have a robust adverse effect on expected quality

attributes. Organizing a good quality complex design endures to be an inefficiently well-defined

procedure [10]. Hence, software implementation design and further development must be simple

as well as minimal complex, this minimizes the required development efforts for the unexpected

coming functional and operational extensions. Moreover, the design is alienated into functionally

separated and less interdependent modules of reasonable program size [25]. Finally, we can

achieve to build in this method so as to make them simply testable, maintainable, and possibly

stable [11, 14].

2. SOFTWARE QUALITY

In this segment, it discusses the contents of the following quality model for software: McCall

software quality model, Boehm software quality model, FURPS model, and finally Dromey

model. The McCall’s software quality method has focus on three (3) main value of software

application: Product Transition perspective (that is adaptableness to new platform setting) product

Revision perspective (The capability to go through proper changes) product Operations

perspective (Its operational characteristics).

McCall’s Quality Assurance Model contains 11 software quality factors and twenty-three quality

criteria [3]. Where the quality criteria define disparate kinds of software properties and software

quality criterions are valuable characteristics to single or supplementary of the software quality

factors. Boehm’s quality model works to qualitatively evaluation of the quality of software [1, 7].

The high level factors address three classifications; maintainability, portability and general utility

into as utility. In the intermediate level criteria, Boehm quality model has seven quality factors

like reliability, portability, Usability, efficiency, Human engineering, understandability,

flexibility. Dromey’s software quality model proposed a complete framework to evaluate the

phases of requirement, design and implementation [12]. The high level design properties for the

Dromey’s implementation software quality model that include: internal, correctness, descriptive

and contextual.

Furps quality model [13] formerly presented by quality expert Grady [9], then it is extended by

IBM Software (Rational) into FURPS+. Where the ‘+’ indicates such requirements as design

constraints, requirements, implementation, physical requirements and interface requirements.

There are mainly four characteristics in FURPS quality model. The quality factors and features of

the software in the FURPS quality mode clearly indicated under ISO 9000 and stated as “they

provide crystal clear implementation guidelines for product quality assurance [17]. ISO 9000 is a

process or procedure oriented approach for software quality management [19]. It processes

designing, implementing, documenting, monitoring, supporting, improving and controlling.

Recently, the ISO/IEC 9126-1: 2001 product quality model of software, which defined mainly six

quality factors, has replaced by software product quality model and ISO/IEC 205010:2011 system

[20]. The ISO 25010 is the widely used quality standard model now a day. ISO 25010 uses ten

main quality factors: operability, Functional, suitability, reliability, security, efficiency,

performance, compatibility, maintainability, and portability. The given 28 software quality

features are arranged and given under the basis of major six quality criteria [20].

3. SOFTWARE SIMPLICITY

When you genuinely discuss about software design simplicity, means you want to approve and

validate of it because it reduced complicated details [18]. Simplicity tends to promote ease of

testing and maintenance. Software simplicity is one of the most noteworthy quality factor for any

type of system design and development. Designing a simple system is time consuming. It will

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.6, November 2018

75

have significant impact with the architecture level. It is crucial and challenging task that a product

design shows reduced complexity and remains as simple design as possible while developer still

being able to meet the needs of the requirements and services. Product’s systems designs grow

and it becomes more challenging and giving complex looks over the time. Eventually starting

with a software system’s design that is already getting complex means starting with at

disadvantages. The more complex the system leads to the more difficult it is to have a

comprehensive and an accurate model. An excessively complex design of a system results in a

condition where no single user can understand it all at any one time.

The software or program quality factor describes dissimilar kinds of crucial system properties,

whether software quality criteria are mainly attributes to single or supplementary of the quality

factor. The quality model presented by Boehm try to attempts qualitatively assessment of the

excellence of software. The high level software characteristics explain three important

classifications; maintainability, portability and general explanation into as utility. Where at the

intermediate level properties, the Boehm’s design product quality model described seven

important features of the quality factors like as efficiency portability, Usability, flexibility,

Human engineering, reliability, understandability, [2]. Table 1 is denoted as the software quality

factors and quality-criteria of Boehm quality-mode.

4. SIMPLICITY QUALITY CRITERIA AND RELATED FACTORS

Quality criteria are the characteristics which properly define the quality factor. The software

quality criteria for the related factors are the characteristics of the software creation process or

software product by which the factor can be defined. The relationships amid the simplicity quality

factors between the related crucial criteria can be seen in Table 1.

Table1. Criteria of Simplicity Quality-Factors [1, 27, 28, 29, 30, 31]

Criterion

Definition Related Factors

Simplicity

Those attributes or the factors of the

program or the software that gives

implementation of functions in the most

understandable manner.

• Reliability

• Maintainability

• Testability

• Portability

• Flexibility

5. ESTABLISHING RELATION BETWEEN DESIGN PROPERTIES AND

SIMPLICITY FACTORS

Figure1: Mapping between Design Properties and Simplicity Factors

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.6, November 2018

76

6. MODEL DEVELOPMENT FOR SIMPLICITY EVALUATION OF OBJECT

ORIENTED SOFTWARE

In direction to create Simplicity evaluation model for object oriented software, “Multivariate

Linear Regression System” has been applied, that is specified as given below.

Z=b0+ b1 x1+ b2 x2+ b3 x3……bn xn Eq. (1)

Simplicity= b0+ b1 x Encapsulation+ b2 x Coupling+ b3 x Inheritance + b4 x Polymorphism

 Eq. (2)

The data set accustomed for creating simplicity evaluation model for object oriented software is

occupied from [26] that have been collected through the measured experimentation. It includes a

group of 20 object oriented design class diagrams (symbolized as P1 to P20) and the associated

metrics value of respective class diagram. Moreover, the mean value of the specialist’s score of

simplicity of these class diagrams is also given and labeled as ‘Known Values’ in this research

work. The association amid simplicity factor and program design properties has been recognized

as represented in figure one. Using SPSS, respective value of each coefficients is decided and

simplicity evaluation model is articulated as given below.

Simplicity= 4.741 -.686 x Encapsulation -1.843 x Coupling + .334 x Inheritance +

2.841 x Polymorphism Eq. (3)

Table 2 shows the coefficients for Simplicity evaluation model. The Unstandardized coefficients

component of the table 2 gives us the values that we require in order to develop the regression

equation (2). The experimental assessment of Simplicity is very hopeful to get simplicity index of

object oriented design for low cost software maintenance.

Table 2: Coefficients for Simplicity Evaluation Model

6.1. SIMPLICITY MODEL SUMMARY

The model summary table 3 results are very helpful when writing multiple regressions. Capital

(R), is the coefficient determinant that tells us how powerfully the all independent-variables are

associated to the respective dependent- variable. The value of “R Square” is also very

encouraging as it gives us the coefficient determination.

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.6, November 2018

77

Table 3: Simplicity Evaluation Model Summary

7. INVESTIGATIONAL TRYOUT

No problem, in what way powerful a hypothetical conclusion may be, it has to be experimentally

authenticated if it is functioning to be of any real-world use [6]. This is real in all engineering

systems, counting software engineering. Hence, in adding to the hypothetical or theoretical

authentication, an investigational and experimental test is similarly significant in directive to

make the claim additional adaptable. In assessment of this truth, an investigational authentication

of the developed simplicity evaluation model (equation 2) has been performed by the assistance

of design level metrics specified in the data set [26]. Summary of the values obtained by the

developed model against the ‘Known Values’ of simplicity are given in Table 4.

Spearman’s rank correlation coefficient (rs) used to get the association among values of

simplicity nature of a design using developed model and it’s given values. The ‘rs’ was calculated

by the method specified as under:

Rank Relation (rs) –

‘d’ = Variance amongst, Computed Rank and Known Rank of Simplicity

‘n’ = Quantity of all projects used in the experimentation.

Table 4: Simplicity Index Values

Projects

Detail

Projects Known

Values

Obtained Values Using Developed

Simplicity Model

P-11 7.0 5.54

P-12 8.3 3.92

P-13 7.9 4.56

P-14 8.6 7.75

P-15 9.6 7.90

P-16 7.4 4.31

P-17 8.5 6.91

P-18 6.9 2.40

P-19 9.3 6.24

P-20 6.8 2.69

Spearman’s Rank Correlation Coefficient (rs = 0.84242) computed for the developed model is

more than the threshold value for n=10. This displays that the values of simplicity model

calculated using proposed model are extremely associated with the ‘Given Values’.

Consequently, the association is satisfactory with the high level of confidence, i.e. at the 0.05.

The correlation is up to standard with high level of justification i.e. at the 95%. Hence, short of

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.6, November 2018

78

any damage of oversimplification our study can accomplish that simplicity evaluation model (in

eq. 2) calculations are consistent and effective in the viewpoint.

8. CONCLUSION AND FUTURE RESEARCH DIRECTION

This research work shows the importance of simplicity and its correlation with object oriented

design properties viz. Encapsulation, Coupling, Inheritance and Polymorphism. Further, research

study developed a simplicity evaluation model SEMOOD with the assistance of multiple linear

regression method on object oriented design properties. Statistical result confirms that simplicity

evaluation model is extremely significant and up to standard. The perfect validation on the

simplicity model it is to be completed in future on live industrial projects for improved suitability

and usefulness. Software simplicity is dynamic and one of the greatest noteworthy parts of the

software development life cycle nowadays. Above described five quality attributes, have

numerous highlighted properties in shared, in counting low level coupling, modularity and high

level cohesion. Design level Simplicity is directly boosted software Reliability, Flexibility,

Testability, Maintainability and Portability. Simplicity of the software when combined with

design quality attributes and criteria supports to develop project with less development and

further maintenance cost in the minimum time and framework, as well as improve acceptable

consistency and better reliability of the final delivered software. Still, the proposed research work

wants to be more investigational tryout with a bigger set of data for better level of acceptability

and utility.

REFERENCES

[1] Boehm BW, Brow JR, Lipow M, McLeod G, Merritt M. Characteristics of software quality. North

Holland Publishing. Amsterdam, the Netherlands; 1978.

[2] Abdullah, Dr, M. H. Khan, and Reena Srivastava. “Flexibility: A Key Factor To Testability”,

International Journal of Software Engineering & Applications (IJSEA), Vol.6, No.1, January 2015.

DOI: 10.5121/ijsea.2015.6108.

[3] McCall JA, Richards PK, Walters GF. Factors in software quality, RADC TR-77-369: 1977. (Rome:

Rome Air Development Center)

[4] Huda, M., Arya, Y.D.S. and Khan, M.H. (2015) Evaluating Effectiveness Factor of Object Oriented

Design: A Testability Perspective. International Journal of Software Engineering & Applications

(IJSEA), 6, 41-49. http://dx.doi.org/10.5121/ijsea.2015.6104

[5] Huda, M., Arya, Y.D.S. and Khan, M.H. (2015) Metric Based Testability Estimation Model for

Object Oriented Design: Quality Perspective. Journal of Software Engineering and Applications, 8,

234-243. http://dx.doi.org/10.4236/jsea.2015.84024

[6] Abdullah, Dr, Reena Srivastava, and M. H. Khan. "Testability Measurement Framework: Design

Phase Perspective”. International Journal of Advanced Research in Computer and Communication

Engineering, Vol. 3, Issue 11, Pages 8573- 8576 November 2014.

[7] Boehm BW, Brown JR, Lipow M. Quantitative evaluation of software quality, In Proceeding of the

2nd International Conference on Software engineering. 1976;592605.

[8] Abdullah, Dr, M. H. Khan, and Reena Srivastava. “Testability Measurement Model for Object

Oriented Design (TMMOOD)”. International Journal of Computer Science & Information

Technology (IJCSIT), Vol. 7, No 1, February 2015, DOI: 10.5121/ijcsit.2015.7115.

[9] Grady, RB. Practical software metrics for project management and process improvement, Prentice

Hall; 1992.

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.6, November 2018

79

[10] Huda, M., Arya, Y.D.S. and Khan, M.H. (2015) Quantifying Reusability of Object Oriented Design:

A Testability Perspective. Journal of Software Engineering and Applications, 8, 175-183.

http://dx.doi.org/10.4236/jsea.2015.84018

[11] Abdullah, Dr, Reena Srivastava, and M. H. Khan. “Modifiability: A Key Factor To Testability”,

International Journal of Advanced Information Science and Technology, Vol. 26, No.26, Pages 62-

71 June 2014.

[12] Dromey RG. Concerning the Chimera (software quality). IEEE Software. 1996;1:3343.

[13] Jacobson I, Booch G, Rumbaugh J. The unified software development process, Addison Wesley;

1999.

[14] Drown DJ, Khoshgoftaar TM, Seiya N. Evaluation any sampling and software quality model of high

assurance systems, IEEE Transaction on systems, Mean and Cybernetics, Part A: Systems and

Human. 2009;39(5):1097-1107.

[15] Abdullah, Dr, Reena Srivastava, and M. H. Khan. "Testability Estimation of Object Oriented Design:

A Revisit". International Journal of Advanced Research in Computer and Communication

Engineering, Vol. 2, Issue 8, pages 3086-3090, August 2013.

[16] Tomar AB, Thakare VM. A systematic study of software quality models, International Journal of

software engineering & application. 2011;12(4):61-70.

[17] ISO 9001:2005, Quality management system Fundamentals and vocabulary; 2005.

[18] Huda, M., Arya, Y.D.S. and Khan, M.H. (2014) Measuring Testability of Object Oriented Design: A

Systematic Review. International Journal of Scientific Engineering and Technology (IJSET), 3,

1313-1319.

[19] ISO 9001:2001, Quality management system Requirements; 2001.

[20] ISO /IEC25010: Software engineering– system and software quality requirement and evaluation

(SQuaRE)- system and software quality model; 2011.

[21] Huda, M., Arya, Y.D.S. and Khan, M.H. (2015) Testability Quantification Framework of Object

Oriented Software: A New Perspective. International Journal of Advanced Research in Computer

and Communication Engineering, 4, 298- 302. http://dx.doi.org/10.17148/IJARCCE.2015.4168

[22] McCable TJ. A complexity measure, IEEE Transaction on Software Engineering, 1976; SE-

2(4):308-320.

[23] Kemerer CF. An empirical validation of software code estimation models, Communications of the

ACM. 2008;30(5):416-429.

[22] Basili VR, Weiss DM. A methodology for collecting valid software engineering data, IEEE

Transactions on Software Engineering. 1984;SE-10:728-738.

[25] Pandian CR. Software metrics – A guide to planning, Analysis, and Application, CRC press

Company; 2004.

[26] MoboDexter Software India Pvt. Ltd., Novel Tech Park, Third Floor, #43/4, GB playa, Hosur Road

Bangalore

[27] Tomar AB, Thakare VM. A systematic study of software quality models, International

Journal of software engineering & application. 2011;12(4):61-70.

International Journal of Software Engineering & Applications (IJSEA), Vol.9, No.6, November 2018

80

[28] Boehm BW, Brow JR, Lipow M, McLeod G, Merritt M. Characteristics of software quality. North

Holland Publishing. Amsterdam, the Netherlands; 1978.

[29] Dromey RG. A model for software product quality. IEEE Transaction on Software

Engineering. 1995;21:146-162.

[30] ISO /IEC25010: Software engineering– system and software quality requirement and

evaluation (SQuaRE)- system and software quality model; 2011.

[31] Lee, Ming-Chang. "Software Quality Factors and Software Quality Metrics to Enhance Software

Quality Assurance." British Journal of Applied Science & Technology 4.21 (2014).

AUTHORS

Dr. Abdullah, Assistant Professor, Department of Information Technology,

Adigrat University, Ethiopia (Africa). Dr. Abdullah did MCA from UP

Technical University & Ph.D. (Computer Applications) from BBD University,

Lucknow India. He has more than Twelve Years of Teaching and Research

experience as an Associate Professor / Assistant Professor/ Lecturer in reputed

Universities of India and Foreign/Abroad.Dr. Abdullah has written Three Books

and sixteen study materials for different Indian Government and Private

Universities published numerous articles, several research papers in the National

and International refereed Journals and conference proceedings. His published

research work cited and accepted by lot of academicians and researchers across the world and published

research papers got 76 Google Scholar citations. His areas of expertise are Software Quality Assurance,

Software Testing, Object Oriented Design and Development. He has around Twelve Years of Teaching and

Research experience in India and Abroad. He has contributed a lot in academics & research in the form of

delivering lectures, research supervision and curriculum developments. He has also organized Seminars,

National & International Conferences. He is a Reviewer and Editorial Board member of various national

and International research journals as well as professional bodies.

Dr. Mahfuzul Huda currently working as Assistant Professor in the department

of Computer Science & Engineering, Saudi Electronic University, Kingdom of

Saudi Arabia. He has more than ten years of core teaching experience. Dr. Huda

has credible contribution in research work. His research papers accepted and

appreciated by various researchers across the world and his published research

papers got 66 Google Scholar citations with h-index: 5 & i10-index: 3, in a very

short span of time. Subsequently, he has guided more than 50 students for

academic projects and seminars and attended more than 30 seminars and

workshops related to academic work.

