

International Journal of Security, Privacy and Trust Management (IJSPTM) Vol 5, No 1, February 2016

DOI : 10.5121/ijsptm.2016.5102 15

USING LATTICE TO DYNAMICALLY PREVENT

INFORMATION LEAKAGE FOR WEB SERVICES

Shih-Chien Chou

Department of Computer Science and Information Engineering, National Dong Hwa

University, Taiwan

ABSTRACT

The use of web services becomes important. Since web services may be provided by unknown providers,

many researchers designed mechanisms to ensure secure access of web services. Existing mechanisms

generally statically decides whether a requester can invoke a web service but ignore the importance of

dynamically preventing information leakage during web service execution. This paper proposes a lattice-

based information flow control model WSIFC (web service information flow control) to dynamically

prevent information leakage. It uses simple rules to monitor the flows of sensitive information during web

service execution.

KEYWORDS

Web service, information flow control, information leakage prevention

1. INTRODUCTION

Many researchers design mechanisms to ensure secure access of web services. Existing

researches generally statically decide whether a requester can invoke a web service using

mechanisms such as attributes and credentials. In our opinion, the static operation is insufficient.

It is also necessary to dynamically ensure web service security. Dynamically ensuring web service

security prevents information leakage during web service execution. This prevention is important

because a web service may be dishonest or malicious, which may leak sensitive information

received from requesters. Even an honest and friendly web service may also incidentally leak

information during web service execution. For example, suppose a requester sends his credit card

information to an honest web service for a payment. If the web service incidentally displays the

credit card information on the screen and the information is captured by a malicious person,

information leakage occurs.

According to the above description, dynamically preventing information leakage during web

service execution is crucial. The prevention can be achieved by an information flow control

model [1-2], which ensures that every information flow is secure during software execution. An

information flow may occur under the following situation: (a) assign an expression result to a

variable, (b) read an input device, (c) write an output device, and (d) send information to another

site. Our previous work proposed an information flow control model for web services [3], which

is composed of a trust management mechanism and an information flow control model. The

former mechanism statically checks whether a requester can invoke a web service and the latter

model dynamically prevents information leakage during web service execution. Although the

dynamic information flow control model prevents all information leakage, its runtime overhead is

large. To reduce the overhead, we use a far simpler approach to design a new information flow

control model WSIFC (web service information flow control) for web services. WSIFC is a pure

dynamic model. It reuses the trust management mechanism of our previous work to statically

decide whether a requester can invoke a web service.

International Journal of Security, Privacy and Trust Management (IJSPTM) Vol 5, No 1, February 2016

16

2. RELATED WORK

XACML [4] is a standard offering mechanisms to describe access policies for web services. The

model proposed in [5] is an implementation of XACML. It allows requesters to use PMI

(privilege management infrastructure) for managing the checking, retrieval, and revocation of

authentication. The model also uses an RBAC-based web service access control policy to

determine whether a requester can invoke a web service. The model proposed in [6] uses X-

GTRBAC [7] to control the access of web services. X-GTRBAC can be used in heterogeneous

and distributed sites. Moreover, it applies TRBAC [8] to control the factor related to time. The

model in [9] determines whether a composition of web services can be invoked. It offers a

language to describe policies, which check whether a composition of web services can be

invoked. The model in [10] uses RBAC (role-based access control) concept [11] to define policies

of accessing a web service. It is a two-leveled mechanism. The first level checks the roles

assigned to requesters and web services. An authorized requester is a candidate to invoke a web

service. The second level uses parameters as service attributes and assigns permissions to the

attributes. An authorized requester can invoke a web service only when it possesses the

permissions to access the attributes.

In addition to the researches discussed above, quite a few researches focus on negotiation among

requesters and web services. In general, negotiation can be regarded as access control. We survey

some of them. The model Trust-Serv [12] uses state machines to dynamically choose web

services at run time. The choosing is a kind of negotiation. It uses trust negotiation [13] to select

web services that can be invoked. The kernel component to determine whether a web service can

be invoked is credential. The model in [14] uses digital credentials for negotiation. It defines

strategies for negotiation policies. The model in [15] handles k-leveled invocation of web

services. The primary component used in the model is credentials. In the survey of [16], the

authors especially emphasize the importance of data privacy in a cloud computing environment (a

cloud computing environment mode can also be applied in web services). They believe that

information flow control is a good solution for the problem. However, the article did not propose

a concrete information flow control model for cloud environments.

According to our survey, existing models generally statically determine whether a requester can

invoke a web service. As to dynamically preventing information leakage during web service

execution, they do nothing.

3. THE MODEL

Our previous work uses two time-consuming rules and a complicated join operator to control

every variable access [3]. This results in large runtime overhead. In our opinion, sending sensitive

information to a web services may be unavoidable. However, requesters may not send too much

sensitive information to web services according to security consideration. For the web services

whose providers are not trusted by a requester, the requester may even send no sensitive

information to the web services. To reduce runtime overhead, our model WSIFC controls only the

access of sensitive variables.

WSIFC is based on lattice. A lattice is a partial ordered graph consisting of a min-node and a

max-node. If a lattice is used to control information flows, the min-node possesses the least

privileges while the max-node possesses the most ones. The traditional lattice-based model uses

the “no read up” and “no write down” rules to control information flows (note that the “can flow”

relationships in [1] inherits the spirit of the two rules). If the security levels of sensitive

information are structured using the lattice model and the two rules are obeyed, no information

leakage will occur. However, the traditional lattice-based information flow control model is a

MAC (mandatory access control), which is criticized as too restricted. To loosen the restriction,

International Journal of Security, Privacy and Trust Management (IJSPTM) Vol 5, No 1, February 2016

17

WSIFC only places sensitive variables in a lattice and uses simple rules to replace the restricted

“no read up” and “no write down” rules.

Before formally defining WSIFC, we first describe information leakage in more details.

Generally, information leakage occurs when malicious persons or web services illegally obtain

others’ sensitive information. In general, persons can obtain information from screen or files, and

web services can obtain information from files or other web services (either executing on the

same site or on the other ones). Information leakage may thus happen when: (a) sensitive

information is output to screens or files or (b) sensitive information is transferred to other web

services. In our research, we suppose information transferring on the network is secure and thus

skip the problem of cryptography. We also skip the effect of viruses and worms because they are

out of the scope of our research. Below we turn our focus back to WSIFC.

WSIFC uses security levels to decide whether an instruction may leak sensitive information

during the execution of a web service. It attached a security level to every sensitive variable.

Since a lattice is partial ordered and WSIFC is lattice-based, security levels should also be partial

ordered. To achieve this, a security level in WSIFC is defined as: (Gp, security level number), in

which Gp is a group number and security level number decides the sensitivity of the variable. To

compare or exchange information associated with security levels, the information should be

within the same group, which achieves partial ordering. Partial ordering is necessary when

variables are incomparable. For example, a variable storing an American’s salary with a unit of

USD cannot be compared with one storing a Taiwanese’s salary with a unit of NTD.

According to the above description, the group number in a security level achieves partial ordering

and the security level number decides the sensitivity of a variable. A security level number is

between 0 and n, in which 0 means the less sensitive information and n the most sensitive one.

The number n is decided by the user, in which larger n results in finer-grained control. In addition

to security level, a sensitive variable is also associated with a tag, which is a set. A component in

the set is an IP address plus a port number pair (port numbers represent web services in the IP).

Tag decides whether sending information of a sensitive variable to another web service is secure.

If the IP address plus port number pair of a web service is within a sensitive variable’s tag,

information of the variable can be sent to the web service.

By now we have discussed sensitive variables. As to non-sensitive ones, they possess neither

security levels nor tags. That is, non-sensitive variables are not placed in a lattice. Nevertheless,

the security level and tag of a variable may be adjusted during web service execution, which

implies that a non-sensitive variable may become sensitive and vice versa during runtime. For

example, after executing the statement “a=b;”, the security level and tag of variable a is adjusted

to be the same as those of b. If b is sensitive, a becomes sensitive.

As mentioned before, sensitive information managed by a web service may be leaked only when:

(a) it is output to files or screens or (b) when it is transferred to other web services. The latter case

of leakage can be prevented by tags associated with sensitive variables. To achieve the former

leakage prevention, every file and screen that may receive output information should also be

associated with a security level. Generally, the security level of a screen is decided by its location.

The only possibility of changing a screen’s security level is changing its location. However,

changing screen location is only known by persons and web service will never know that.

Therefore, the security levels of screens will be unchanged during web service execution. As to

files, their security levels also cannot be adjusted because the adjustment will affect the access of

the existing information within the files. For example, if the security level number of a file is 3, it

can be accessed by a user possessing a privilege to access files whose security level number is 3

or lower. If the security level of a file is adjusted to be 4, the user mentioned above can no longer

International Journal of Security, Privacy and Trust Management (IJSPTM) Vol 5, No 1, February 2016

18

access the file. Adjusting the security levels of files is thus infeasible. In addition to writing a file,

reading a file may also cause information leakage. For example, if a low sensitive variable intends

to read the contents of a high sensitive file, rules should be defined to prevent information

leakage. We will give information leakage prevention rules for WSIFC after defining the model.

The kernel concepts of WSIFC have been described in details above. Below we give a definition

to WSIFC. To prevent information leakage during the execution of a web service, WSIFC should

be embedded in the web service.

Definition

WSIFC = (SV, SC, SF, SVSL, SCSL, SFSL, SVTAG, MIN, MAX), in which

a. SV is the set of sensitive variables. Initially, every variable in a web service is non-sensitive.

When the web service is invoked and receives sensitive information sent from a requester, the

parameters receiving sensitive information become sensitive. During web service execution,

sensitive parameters may be assigned to other variables, which results in more sensitive

variables that should be monitored.

b. SC is the set of sensitive screens. The security levels of screens are decided by their locations

and will be unchanged during web service execution.

c. SF is the set of sensitive files. The security levels of sensitive files cannot be changed.

d. SVSL is the set of security levels for sensitive variables. A security level is composed of a

group number and a security level number.

e. SCSL is the set of security levels for sensitive screens. The security level of a sensitive screen

cannot be changed during the execution of a web service.

f. SFSL is the set of security levels for sensitive files. The security level of a sensitive file

cannot be changed during the execution of a web service.

g. SVTAG is a set of tags. If the information of a sensitive variable can be transferred to other

web services, the variable should be associated with a tag containing a set of IP address plus

port number pairs.

h. MIN is the min-node of WSIFC.

i. MAX is the max-node of WSIFC.

For simplification purposes, we do not include other I/O devices such as keyboards and mice in

Definition 1. WSIFC uses the same approaches to control information flows to/from I/O devices

other than files and screens. If a device can be read, its control is the same as reading a file. If

information can be output to a device and the information can only be accessed by persons, the

control is the same as writing information to a screen. If information can be output to a device and

the information can be accessed by persons and web services, the control is the same as writing a

file.

(0,0)

(1,0)
(2,0)

(0,1) (1,1)
(2,1)

(0,2)

(1,2)
(2,2)

(0,15)

(1,15)

(2,15)

Figure 1. An example lattice of WSIFC

International Journal of Security, Privacy and Trust Management (IJSPTM) Vol 5, No 1, February 2016

19

In the lattice-based WSIFC, a node may contain one or more security levels. Moreover, since

variables, files, screens, and other I/O devices may be in the same security level, a security level

in WSIFC may be associated with multiple sensitive items such as variables and files. Figure 1

depicts an example lattice of WSIFC, which only shows the security levels but not the sensitive

items associated with the security levels. In the following paragraphs we will define the rules to

control information flows using WSIFC.

Rule 1. Sensitive variables appear in a derivation statement should be in the same group. Here a

derivation statement is one that will cause information flows such as assignment statement. As to

non-sensitive variables or constants, they can appear in any statement and will not affect the

execution of the statement. Rule 1 is an umbrella rule constraining the others. That is, if Rule 1 is

violated, no derivation statement can be executed

Rule 2. If the variable d_var is derived from variables in the sensitive variable set “{vari| vari is a

sensitive variable and i is between 1 and n}” and other non-sensitive variables, WSIFC allows

d_var to receive the derived information in any case. After the assignment, the security level

number and tag of d_var are respectively changed to))(()(var
1i

SLVMAX
n

i=
 and

i

n

i tag1=
I , in which:

a. The function SLV extracts a sensitive variable’s security level number from its security

level.

b. The function MAX extracts from a set of numbers the maximum one.

c. tagi is the tag of the sensitive variable vari. be executed.

Rule 2 may confuse many readers because it completely violates the “no read up” and “no write

down” rules of the traditional lattice-based model. In addition, it controls neither read nor write

access. We explain Rule 2 as follows. Before that, we make a crucial assumption, which is: every

data assigned to a variable is reliable.

Existing information flow control models generally do not allow information with high security

level to be assigned to low security level variable. On the other hand, WSIFC allows every

assignment. To prevent leakage when sensitive information is output, WSIFC changes the

security level and tag of a variable receiving a value as mentioned above. Suppose variable d_var

is assigned a value derived from a sensitive variable set {vari}. Then, the security level number of

d_var will be changed to))(()(var
1i

SLVMAX
n

i=
. According to the change, the security

level of d_var will be upgraded if the initial SLV(d_var) is smaller

than))(()(var
1i

SLVMAX
n

i=
. The upgrading prevents the variable d_var from being leaked. On

the other hand, if the initial SLV(d_var) is larger than))(()(var
1i

SLVMAX
n

i=
, the security

level of d_var will be downgraded. Under this situation, the information obtained by d_var will

also not be leaked. According to the crucial assumption “every data assigned to a variable is

reliable” mentioned above, both read and write access are secure according to Rule 2.

Below we use the statement “a=b+c+d;” to explain Rule 2 (here we bypass the discussion of tags,

which will be discussed in Rule 6). Suppose the initial security levels of the variables a, b, c, d,

are respectively (1,1), (1,2), (1,3), and (1,4). In this case, the security level of the variable a is the

smallest and existing information flow control model will ban the assignment. However, WSIFC

allows the above statement to execute. After the execution, WSIFC changes the security of

International Journal of Security, Privacy and Trust Management (IJSPTM) Vol 5, No 1, February 2016

20

variable a to be (1,4). According to the change, the security level of variable a have been

upgraded and therefore no information leakage will occur. On the other hand, if the initial

security level of variable a is (1,5), the security level of variable a will be set (1,4) after the

assignment.

Rule 2 will become non-secure only when the above crucial assumption isn’t fulfilled. In this

case, low security level variables may maliciously corrupt the information carried by high

security level variables (note that even in this case, no information leakage will occur). We cannot

estimate the possibility of the corruption. However, as the assumption is a compromise to reduce

runtime overhead, taking risk is unavoidable. We think that making a compromise to bypass write

check in Rule 2 is acceptable because the compromise may only corrupt but not leak information.

Since the primary objective of WSIFC is preventing information leakage, a compromise that will

not hurt the primary objective is not that serious.

Rule 3. To output the information of a sensitive variable SVAR to a screen SCRN, SLV(SCRN)

should be at least as large as SLV(SVAR). Remember that the function SLV extracts a sensitive

variable’s security level number. This rule avoids high sensitive information to be captured by

persons that can only read low sensitive information from a screen.

Rule 4. If a variable VAR intends to read information from a file FLE, the reading operation is

allowed. After the reading, the security level and tag of VAR should be set the same as those of

the information read from FLE. The spirit of this rule is the same as Rule 2, because reading a

value from a file corresponds to deriving a value from the file and then assigning the value to the

variable.

Rule 5. If a sensitive variable VAR intends to write its information to a file FLE, SLV(FLE)

should be at least as large as SLV(VAR) . Reading and writing a file are totally different. When

reading information from a file to a variable, the information being read can be protected as long

as the security level and tag of the variable are set the same as the information. On the other hand,

since the security level of a file cannot be changed as mentioned before, writing information with

high security level to a low security level file may result in information leakage.

Rule 6. To send the information of a sensitive variable to another web service, the service’s IP

address plus port number pair should be within the tag of the variable. In the sending operation,

the information and the security level of the variable should be sent together so that the web

service receiving the information can protect the information using WSIFC.

4. PROVE OF CORRECTNESS

Information leakage may occur under the following cases: (a) the information of a variable is

output to a screen, (b) the information of a variable is output to a file, and (c) the information of a

variable is sent to web services in other sites. The above cases reveal that information leakage

may occur only when variable contents are output (sending information to other sites can be

considered a special case of output). Below we prove that none of the above mentioned cases will

leak information.

Case 1: Outputting the information of a sensitive variable to a screen will not leak information.

To prove this case, we make the following assumptions: (a) SLV(VAR) of the sensitive variable

VAR is m and (b) VAR is output to a screen SCRN whose SLV(SCRN) is n. If a person intends to

access the screen SCRN, the person should possess a privilege to access screens whose security

level numbers are at least n. Since mn ≥ according to Rule 3, Case 1 is true.

International Journal of Security, Privacy and Trust Management (IJSPTM) Vol 5, No 1, February 2016

21

Case 2: Outputting the information of a sensitive variable to a file will not leak information.

Information output to a screen may only be leaked to persons. However, information output to a

file may be leaked to persons or leaked by web services that read the file. Both the above two

situations should be considered for Case 2. Proving information output to a file will not be leaked

to persons is similar to that in Case 1. We do not duplicate the proof. Below we prove

information output to a file will not be leaked by web services that read the file. Here we only

consider web services that will not transfer information to other sites because the type of web

services will be discussed in Case 3 below.

To prove Case 2, we assume that: (a) SLV(VAR) of the sensitive variable VAR is m, (b) VAR is

output to a file FLE whose SLV(FLE) is n, and (c) WSIFC is embedded in every web service that

will access FLE. The third assumption is crucial because WSIFC cannot control information

flows of a web service not embedding WSIFC. According to Rule 5, mn ≥ . If a web service

reads VAR from FLE and assigns its information to the variable VAR1, SLV(VAR1) should be set

the value m according to Rule 4. If VAR1 is output to a screen, the proof of Case 1 ensures that

the output information will not be leaked to persons. If VAR1 is output to a file FLE1, the proof

goes back to the beginning of this proof. That is, this proof is endless. Although the proof is

endless, we know that the information of a sensitive variable may be: (a) operated by a web

service, (b) output to a screen, or (c) written to a file. The information operated by a web service

will not be leaked because no output occurs. The information output to a screen will not be leaked

as described above. As to the information output to a file, Rules 3 through 5 ensures that the

information will not be leaked to persons. Since no information will be transferred to other sites

in this case, no information will be leaked to persons corresponds to no information leakage.

According to the above description, Case 2 is true.

Case 3: Sending the information of a sensitive variable to web services in other sites will not leak

information. Suppose the web service WEBSER executing on another site receives the

information of a sensitive variable VAR. To ensure WEBSER will not leak the information it

receives, WSIFC should be embedded in WEBSER. As Rule 6 required, WEBSER is within the

tag of VAR, which means that WEBSER is trusted by VAR. Suppose the parameter PAR in

WEBSER receives the information of VAR. Since receiving the information of an argument by a

parameter can be regarded as an assignment statement, the security level and tag of PAR will be

set the same as those of VAR according to Rule 2. After the argument has been received, WSIFC

will control the information flows of WEBSER during web service execution. According to Cases

1 and 2 above, no information leakage will occur in a normally executing web service that

embeds WSIFC. Therefore, Case 3 is true.

5. PROBLEM DISCUSSION

Many problems should be solved before WSIFC can be widely applied. We discuss some as

follows.

1. WSIFC should be embedded in every web service. To use WSIFC for information leakage

prevention during web service execution, WSIFC should be embedded in every web service. It is

really a problem to require every service provider to embed WSIFC in the web services they

provided. Perhaps someday every requester will understand the importance of preventing

information leakage during web service execution. At that day, a standard model for the

prevention will be defined. When the day comes, we hope that more or less of the concepts in

WSIFC can be included in the standard.

2. The definition of security levels between requesters and that within the web services should be

the same. We use an example to explain this. Suppose a requester thinks that a variable with a

International Journal of Security, Privacy and Trust Management (IJSPTM) Vol 5, No 1, February 2016

22

security level number 8 is only accessible by managers or employees with higher grades but a

web service thinks this security level is accessible by vice managers or employees with higher

grades. With the assumptions, the information sent to the web service may be leaked to vice

managers. To solve this problem, a standard seems necessary.

3. Even the above problems have been solved, information leakage may still occur. This problem

may happen in a web service provided by dishonest or malicious service providers. To solve this

problem, we suggest: (a) don’t send highly sensitive information to web services provided by

unfamiliar providers, (b) invoke web services provided by the providers trusted by a requester

whenever possible, and (c) never invoke any web service of a provider if it used to leak

information. The third solution may be the most important because it is a punishment. This

problem reveals that ensuring the security of every service invocation is difficult. Perhaps this is

the most serious problem to solve because requiring every service provider to be honest is almost

impossible.

There are still other problems. We do not intend to discuss more because many problems are not

within the technical area but within the human management area. We think that the problems are

out of the scope of our research.

6. CONCLUSION

Many researchers designed mechanisms to ensure secure access of web services. According to

our survey, existing models generally statically decide whether a requester can invoke a web

service but ignore the importance of dynamically preventing information leakage during web

service execution. This paper proposes an information flow control model WSIFC (web service

information flow control) for the prevention. WSIFC is based on lattice. The traditional lattice-

based information flow control model is a MAC (mandatory access control) and is criticized as

too restricted. To overcome this, WSIFC uses simple rules to replace the “no read up” and “no

write down” rules for MAC. To reduce runtime overhead, WSIFC only monitors the flows of

sensitive information using simple rules.

WSIFC should be embedded in every web service. If a web service does not embed the model,

information leakage may occur when the web service is invoked. Since web services are provided

by providers around the world, we cannot require every provider to embed WSIFC in their web

services. This is a problem almost without solution. Perhaps the software world needs a standard

for embedding an information flow control model in every web service. If the standard is finally

defined, we hope that the important concepts proposed by WSIFC can be used.

REFERENCES

[1] Denning, D. E., 1976. A Lattice Model of Secure Information Flow. Comm. ACM, vol. 19, no. 5,

236-243.

[2] Chou, S. –C., 2004. Embedding Role-Based Access Control Model in Object-Oriented Systems to

Protect Privacy. Journal of Systems and Software, 71(1-2), 143-161

[3] Chou S. –C., and Huang, C. –H., 2010. An Extended XACML Model to Ensure Secure Information

Access for Web Services. Journal of Systems and Software, vol. 83, no. 1., 77-84.

[4] OASIS, 2003. eXtensible Access Control Markup Language (XACML) Version 1.0. OASIS Standard

18.

[5] Shen, H. -B., Hong, F., 2006. An Attribute-Based Access Control Model for Web Services. IEEE

International Conference on Parallel and Distributed Computing Applications and Technologies

(PDCAT'06), 74-79.

[6] Bhatti, R., Bertino, E., Ghafoor, A., 2004. A Trust-based Context-aware Access Control Model for

Web Services. IEEE ICW’04, 184 – 191.

International Journal of Security, Privacy and Trust Management (IJSPTM) Vol 5, No 1, February 2016

23

[7] Bhatti, R., Ghafoor, A., Bertino, E., Joshi, J. B. D., 2005. X-GTRBAC: An XML-Based Policy

Specification Framework and Architecture for Enterprise-Wide Access Control. ACM Transactions

on Information and System Security, Vol. 8, No. 2, 187 – 227.

[8] Bertino, E., Bonatti P. A., Ferrari, E., 2001. TRBAC: A Temporal Role-Based Access Control Model.

ACM Transactions on Information and System Security, Vol. 4, No. 3, 191 – 233.

[9] Seamons, K. E., Winslett, M., Yu, T., 2001. Limiting the Disclosure Access Control Policies during

Automated Trust Negotiation. Network and Distributed System Security Symposium.

[10] Wonohoesodo R., Tari, Z., 2004. A Role Based Access Control for Web Services. Proceedings of the

2004 IEEE International Conference on Service Computing, 49-56.

[11] Sandhu, R. S., Coyne, E. J., Feinstein, H. L., Youman, C. E., 1996. Role-Based Access Control

Models. IEEE Computer, vol. 29, no. 2, 38-47.

[12] Skogsrud, H., Benatallah, B., Casati, F., 2004. Trust-Serv: Model-Rriven Lifecycle Management of

Trust Negotiation Policies for Web Services. International World Wide Web Conference, 53-62.

[13] Yu, T., Winslett, M., Seamons, K., 2003. Supporting Structured Credentials and Sensitive Policies

through Interoperable Strategies for Automated Trust Negotiation. ACM Transactions on Information

and System Security, vol. 6, no. 1, 1-42.

[14] Koshutanski, H., Massacci, F., 2005. Interactive Credential Negotiation for Stateful Business

Processes, Lecture notes in computer science, 256-272.

[15] ecella, M., Ouzzani, M., Paci, F., Bertino, E., 2006. An Access Control Enforcement for

Conversation-based Web Services. International World Wide Web Conference, 257-266.

[16] J. Bacon, D. Eyers, T. F. J. –M. Pasquier, J. Singh, and P. Piezuch, “Information Flow Control for

Secure Cloud Computing”, IEEE Trans. Network and Service Management, 11(1), pp. 76-89, 2014.

AUTHORS

Shih-Chien Chou is currently a professor in the Department of Computer Science and

Information Engineering, National Dong Hwa University, Hualien, Taiwan. His research

interests include software engineering, process environment, software reuse, and

information flow control.

