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Abstract: 
 
This paper describes two-fold approach towards utilizing Triple Modular Redundancy (TMR) in Wireless 

Adhoc Network (AdocNet). A distributed checkpointing and recovery protocol is proposed. The protocol 

eliminates useless checkpoints and helps in selecting only dependent processes in the concerned 

checkpointing interval, to recover. A process starts recovery from its last checkpoint only if it finds that it is 

dependent (directly or indirectly) on the faulty process. The recovery protocol also prevents the occurrence 

of missing or orphan messages. In AdocNet, a set of three nodes (connected to each other) is considered to 

form a TMR set, being designated as main, primary and secondary. A main node in one set may serve as 

primary or secondary in another. Computation is not triplicated, but checkpoint by main is duplicated in its 

primary so that primary can continue if main fails. Checkpoint by primary is then duplicated in secondary 

if primary fails too. 
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1. INTRODUCTION 
 

Distributed systems that execute processes on different nodes connected by a communication 

network [6] are prone to failure. One of the widely used approaches for providing fault tolerance 

is the checkpoint/rollback recovery mechanism. Checkpointing is the method of periodically 

recording the state of the system in stable storage. The saving of process state information may be 

required for error recovery, debugging and other distributed applications [7].  This periodically 

saved state is called the checkpoint of the process [7, 8]. A global state [22] is a set of individual 

process states, one per process [7]. The state contains a snapshot at some instant during the 

execution of a process. The snapshot is required to be consistent to avoid the domino effect [23] 

that is, multiple rollbacks during recovery. 

 

One of the most well-known methods of achieving fault tolerance is Triple Modular Redundant 

(TMR) [25] system. A minimum of three processors also known as replicas form a redundant 

group to perform replicated processing. Identical processing and distributed voting are performed 

on same input data. Intermediate result or output from each replica is exchanged among each 

other and majority voted upon. After successful majority voting the replicas either resume 

processing on the intermediate results or end their computation if it had been the final result. 

Communications among the replicas take place via communication links. Replica at the receiving 

end has to wait for a time-out period [26] for receiving before concluding that there may be  fault 
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in other part of the system. This concept of TMR is utilized in this work as a measure for 

achieving fault tolerance in a wireless adhoc network (AdhocNet) where a group of three nodes, 

known as mobile hosts (MH) form the three replicas. Also fault tolerance may be achieved by 

periodically using stable storage of the MHs to save the process‘ states, better known as 

checkpoints, during failure-free execution. When a failure occurs, the failed process restarts from 

its latest checkpoint. This minimizes the amount of lost computation. The proposed system is 

recoverable even if more than one failure (at most two) occurs in a TMR node. As is well known 

wireless adhoc network does not have any infrastructure facilities and hence each MH acts as 

router also. The concept of distributed systems is extended to the wireless environment. 

 

A TMR group consists of MHs that act as main, primary and secondary. The TMR groups are not 

exclusive, that is, MH acting as main may act as primary in another TMR group and so on. The 

concept of TMR is modified here in the sense that the three MHs do not perform identical 

processing throughout. But the checkpoint taken by a main MH is replicated in its primary MH. 

This is because in case a main MH fails, the primary MH can continue from the latest checkpoint. 

Similarly, the secondary MH receives a copy of the checkpoint every time the primary MH takes 

one. This continues until the primary MH fails. The communicating partners of this TMR group 

however are unaware of this change in the actual partner at the other end. It is assumed that 

several processes that are running on the MHs may communicate with each other depending on 

application requirement.  

 

In the present work checkpointing is initiated by a process of the system. In fact, each of the 

processes takes turn to act as the initiator. Generally, processes take local checkpoints after being 

notified by the initiator excepting special cases described in later sections. The processes 

synchronize their activities of the current checkpointing interval before finally committing their 

checkpoints. This removes inconsistency, if any, and then checkpoints are committed. The 

technique adopted in the present paper thus disallows the formation of neither zigzag paths nor 

zigzag cycle [4,11]. The checkpointing pattern described in the present paper takes only those 

checkpoints that will contribute to a consistent global snapshot thereby eliminating the number of 

―useless‖ (checkpoints that do not contribute to global consistency) checkpoints. Maintaining 

consistency is necessary to avoid the domino effect in case any process fails after taking its ith 

checkpoint. If the set of the ith checkpoints can be proved to be consistent, then in case of 

recovery the system has to roll back only up to the ith checkpoint since that set provides a 

consistent and hence a stable global state of the system.  

 

The processes do not append status information with each and every computation message but 

keeps updating own status whenever a message is sent or received. This information is required to 

find process dependence during recovery. Though the simplest way is to roll back all processes 

but this makes some unnecessary rollbacks. To avoid such rollbacks the processes in the present 

system exchange status information whenever a rollback is decided. Each process can find out for 

itself whether it requires rollback depending upon its relationship with the failed process.  

 

This paper describes that any global checkpoint taken in the above-mentioned fashion in the 

present system is not only consistent but also eliminates taking unnecessary checkpoints and the 

system has to roll back only to the last saved state in case of a failure. Also all processes in the 

system do not have to rollback following the rollback algorithm described in the paper. The rest 

of the paper is organized as follows. Section 2 throws light on some related works in this area. 
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Section 3 describes the system model, Section 4 discusses in details the checkpointing algorithm 

with a proof, Section 5 discusses the rollback procedure and the algorithm, Section 6 discusses 

integration of the activities of TMR AdhocNet and the last one, that is, Section 7 concludes the 

paper. 

 

2. RELATED WORKS 
 

With reference to Chandy & Lamport [1] and Wang et. al [24] Tsai & Kuo [23] states that "A 

global checkpoint M is consistent if no message is sent after a checkpoint of M and received 

before another checkpoint of M". Following these observations we regard consistency as the 

scenario where if a sender 'S' sends a message 'm' before it has taken its ith checkpoint, then 

message 'm' must have to be received by a receiver 'R' before the receiver has taken its ith 

checkpoint. A message will be termed missing if its send is recorded but receipt is not and 

otherwise it is termed as orphan [21]. Suppose a node fails after taking its ith checkpoint. It is 

desirable that the system in such a scenario should roll back to the last (ith) saved state and 

resume execution from there. If a system can ensure that there is no missing or orphan message in 

the concerned ith global checkpoint, then the set of all the ith checkpoints taken by its constituent 

processes is bound to be consistent. Unlike the approach that should exist in a distributed system 

Kalaiselvi and Rajaraman [5] have kept record at the message sending end and at the message 

receiving end and a checkpoint coordinator matches the log it gets from all the processes at each 

checkpointing time. The present system also keeps records of messages sent and received in each 

process but the log is matched in a distributed fashion. Due to disparity in speed or congestion in 

the network, a message belonging to (i+1)th checkpointing interval may reach its receiver who 

has not yet taken its ith checkpoint. Such a message is discarded in [21] and sender retransmits it. 

Another method of dealing with such messages is to prevent their occurrences by compelling the 

sender to wait for a certain time before sending a message after any checkpoint [13]. The present 

work discards such a message by adopting a technique in receiving whereas in another approach 

[11] any process refrains from sending during the interval between the receipt of checkpoint 

initiation message and completion of committing that checkpoint. Distributed systems that use the 

recovery block approach [17] and have a common time base may estimate a time by which the 

participating processes would take acceptance tests. These estimated instants form the pseudo 

recovery point times as described in [16]. The disadvantages of such a scheme are more than one, 

like, fast processes may have to wait for slow processes to catch up and other fault tolerance 

mechanisms like time out may be required. In [9,10] the authors have analyzed checkpoints taken 

in a distributed system having loosely synchronized clocks [13,14,18,19]. No special 

synchronization messages have been used in those methods but the existing clock synchronization 

messages were utilized. The work described in [4] however, allows processes to take checkpoints 

on one‘s own and then a consistent global checkpoint is constructed from the set of local 

checkpoints. The drawback of the method is that useless checkpoints can not be avoided. The 

approach taken by Strom et al. in [20] does not maintain a consistent global checkpoint at all 

times but has to save enough information to construct such a checkpoint when need arises. So, 

this requires logging of messages. Contrary to the present checkpointing protocol, The authors in 

[2,15] presents minimal snapshot collection protocol where dependency is calculated during 

checkpointing also and hence the actual time taken for formal commitment or abort of a 

checkpoint is not fixed. The concept of weight distribution and collection by the initiator in [2,15] 

appears superfluous and can be replaced if a participating process sends a list of processes 

dependent on it to the initiator. The overhead of checkpointing (in terms of the number of 
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checkpoints) is great in all of the CAS, CBR, CASBR and NRAS [8] protocols in comparison to 

the protocol presented in this paper. The present protocol possesses the Rollback-Dependency-

Trackability (RDT) property as described in [22] as shown in Section 5.  

 

A few checkpointing recovery techniques for mobile computing systems (infrastructured wireless 

and mobile networks) are described in the literature. In the two-tier checkpointing approach [27], 

coordinated checkpointing is used between the Mobile Service Stations (MSS) to reduce the 

number of checkpoints to be stored to a minimum. In [28] the log of unacknowledged messages 

are kept at stable storage of the home station (that is an MSS) of the mobile host. Gass and Gupta 

[29] in their algorithm takes three kinds of checkpoints—communication induced (taken after 

receiving an application message), local checkpoint (when an MH leaves the MSS to which it is 

connected to) and forced checkpoints (only the local variables are updated). All applications are 

assumed to be blocked during the algorithm execution thereby wasting computation power and 

information that failure has occurred is assumed to reach all fault free processes within finite time 

which is difficult in reality. This algorithm saves battery power by minimizing the recomputation 

time.  

 

The work in [30] describes checkpointing and recovery using TMR in wireless infrastructured 

network. The authors have described a checkpointing and recovery protocol for infrastructured 

mobile system in [31]. The authors in [32] utilized the concept of mobile agents for checkpointing 

purposes in mobile systems. The works in [31] and [32] utilized different approaches towards 

checkpointing for infrastructure mobile systems. The authors have considered an attack model 

and augmented Mobile Adhoc Network with security features in their work in [33]. The work in 

[33] has enabled us to consider any AdhocNet routing algorithm for the present work. 

 

3. SYSTEM MODEL AND ASSUMPTIONS 
 

Let us consider a system of ‗n‘ processes, P0, P1, …. Pn-1. Let the checkpoints (for the kth process) 

be denoted as the initial checkpoint CPk
0
 (i = 0), first checkpoint CPk

1
 (i=1), second checkpoint 

CPk
2
 (i=2) and so on. The time interval between any two consecutive checkpoints is called 

checkpointing interval that is eventually the next checkpoint number. This means that, the first 

checkpointing interval is the interval between the initial checkpoint and the first checkpoint. The 

initial checkpoint is taken when the system is being initialized. The processes communicate via 

messages only. We assume the following properties of the system: 

 

1. Initiation of checkpointing at regular intervals is done by processes. The initial checkpoint is 

taken upon system initialization and initiated by P0. The next checkpoint initiation is done by 

P1 and so on and so forth.  

2. Asynchronous communication has been assumed among the processes. Acknowledgement 

and time-out are part of the communication protocol.  

3. A process is aware of the TMR group it belongs to and its role in that group.  

4. Any AdhocNet routing algorithm may be used. 
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4. CHECKPOINTING  
4.1  The Algorithm 
 

The algorithm has a checkpoint initiator and uses explicit checkpoint synchronization messages. 

The initiator sends the initiation message to all others along with further information: number of 

messages sent to processes in the current checkpointing interval and number of messages 

received from processes in the current checkpointing interval. It must be mentioned here that the 

additional information regarding messages would not be sent during the initial checkpoint since it 

is taken just after the system has been initialized and hence it is assumed that communication 

among processes has not yet started. The information means that if Pk has sent a total of two 

messages to Pj in the current checkpointing interval, then Pk would write 2 as number of messages 

and j as process id as part of the first information. Similarly if Pj has indeed received all the two 

messages from Pk it would write 2 as number of messages and k as process id as part of the 

second information. Pj checks whether the total number of messages sent by Pk matches with that 

received by Pj. If the answer is positive, Pj takes the checkpoint. If not, then it waits for the 

unreceived message/s and takes the checkpoint after receiving it/them. During this time only 

those messages are received for which Pj is waiting and any unwanted message is discarded [20].  

The algorithm works as follows: 

 

The initial checkpoint is taken after system initialization in lines 7-10 (for the initiator) and lines 

14-16 (for other processes) in algorithm1. For any other checkpoint, the initiator first sends a 

―request for checkpoint‖ message followed by a message containing its status information for the 

current checkpointing interval (lines 11-12). Any other process on receiving the above (lines 16-

17) sends its own status information to all other processes (line 18) and waits for receiving such 

information from the others (line 19). After it receives status information from others it goes on to 

check whether there is any message that has been sent by some other process to it but not yet 

received by it (lines 20-23). It waits to receive the said message/s and then takes the checkpoint 

(lines 24-25).  

 

The variables used in the algorithm are described as follows: 

 

initiator:  pid of checkpoint initiator 

check_index:  checkpoint sequence number 

own_pid:  self process id 

msg_type:         denotes a tag for identifying various kinds of messages: 

   0: checkpoint-request message 

   1: process-status-information message 

   any other: computation message 

mess_sent_toi[j]: an array; values of whose indices denote the number of messages     

that the concerned process has sent to (i.e. if the value in  

mess_sent_toi[j] is n, this means that Pi (concerned process) has sent n 

messages to Pj in the current checkpointing interval) 

mess_recd_fmi[j]: an array; values of whose indices denote the number of messages that the 

concerned process has received from (i.e. if the value in 

mess_recd_fmi[j] is n, this means that Pi (concerned process) has  

received n messages from Pj in the current checkpointing interval) 
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The subroutines used in the algorithm are as follows: 

send, receive:   communication primitives 

take_checkpoint: saves process state 

recv_sp:    for executing the receive communication primitive with added  

                                    logic like checking message type, message sequence number or  

   even the sender etc 

   send_sp:     for executing the send communication primitive with added logic  

    like checking message type, message sequence number or even the  

    receiver etc  

 

The structure of the checkpointing algorithm is given below along with the line numbers 

mentioned in the leftmost column: 

 
1    Procedure Checkpoint(Pi) 

2    { 

3    initiator := 0; 

4 check_index := 0; 

5 dest_id := -1; 

6 if (initiator = own_pid)      

7     if  (check_index = 0)  

8          { msg_type = 0;  

9             send_sp(msg_type, dest_id, check_index, seq_no);  

10             take_checkpoint; } 
11    else{msg_type:= 0; send_sp(msg_type,dest_id, check_index,seq_no);  

12      msg_type := 1; send_sp(msg_type,dest_id, check_index, seq_no);} 

13  else if (check_index = 0) { 
14           recv_sp(recd_msg_type, send_id, recd_check_index, seq_no); 

15           take_checkpoint; } 

16       else{recv_sp(recd_msg_type,send_id, recd_check_index,seq_no); 

17         recv_sp(recd_msg_type, send_id, recd_check_index, seq_no); 

18         send_sp(recd_msg_type, dest_id, check_index, seq_no); 

19         recv_sp(recd_msg_type, send_id, recd_check_index, seq_no); 

20         for (i = 0; i<= n-1, i++)  

21          for (j = 0; j <= n-1 , j++) { 

22           if (i  j) { 

23            if (mess_sent_toi[j]  mess_recd_fmj[i]) 

24             if (own_pid = j)  

25             recv_sp(recd_msg_type,send_id,recd_check_index,seq_no);} 

26        take_checkpoint;  }   

27   check_index := check_index + 1; } 

 

The algorithm recv_sp works as follows: In lines 2 – 6 it receives only those messages 

whose checkpoint numbers equal to that of the receiver‘s checkpoint number and 

message sequence number matches the expected message sequence. In lines 7 – 9 the 

algorithm receives the checkpoint initiation messages. In lines 10 – 12 the algorithm 

receives messages from other processes containing corresponding status information. 

 
1    Procedure recv_sp(mtype,pid, checkid, seqno) 

2    { 

3     If ((mtype <> 0) OR (mtype <>1)) 
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4        { If  ((checkid = check_index) AND((seqno<= (mess_sent_toi[j])  

5                  AND ((seqno >=     (mess_recd_fmj[i] + 1))) ) 

6             receive(rmtype, pid, check_id, r_seq, recv_mess)  }  

7  else  ( if ( mtype = 0)   

8             if (checkid = 0)  receive(rmtype, checkid ) from P0 ; 

9             else receive(rmtype, checkid); 

10   else (if ( ( mtype = 1)  AND (checkid <> 0) AND (pid = -1) ) 

11                for (k = 0; ((k<=n) AND (k <> own_pid)); k++) 

12                 receive(rmtype,checkid, mess_sent_to, mess_recd_fm); 

13   }     } 

 

The algorithm send_sp works as follows: In lines 2 – 4 it sends computation messages 

and in lines 5 – 8 it sends own status information to all others. 
 
1    Procedure send_sp(mtype,pid, checkid, seqno) 

2    { 

3     if (((mtype <> 0) OR (mtype <>1)) AND (pid <> -1)) 

4            {send(mtype, pid, checkid,seqno, mess)  }  

5      else    

6          if ( (( mtype = 0)  OR (mtype = 1)) 

7                { for (k = 0; ((k<=n) AND (k <> own_pid)); k++) 

8                  send(mtype, checkid, mess_sent_to, mess_recd_fm);  

9    }                   } 

 

4.2  Brief Proof 
 

Theorem: 

 

The checkpoints taken by the algorithm form a consistent global checkpoint. 

Proof: The theorem is proved by contradiction. Let the checkpoints form an inconsistent global 

checkpoint. Then there should be a checkpoint CPi
k
 that happens before [1] another checkpoint 

CPj
k
. This implies that (i) there is at least a message m sent by Pi after CPi

k
 but received by Pj 

before CPj
k
 and (ii) there is at least a message m sent by Pi before CPi

k
 but received by Pj after 

CPj
k
. This can be proved in the following way:  

 

It must be mentioned here that, case ii stated above does not make CPi
k
 happen before CPj

k
. 

Hence it is not mandatory that messages recorded ―sent‖ in CPi
k
 should also have to be recorded 

―received‖ in CPj
k
. 

 

  Pr       t3  t4 

 

            CPr
k
 

          m 

       CPs
k
 

 

  Ps       t1  t2 
Figure 1. Message recorded received and not sent 
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Case (i):  Let us consider figure 1 and a fault-free scenario where messages reach destinations 

correctly.  

 

Assumptions: 

 

1. Message m not recorded sent 

2. Message m recorded received 

The following scenario is observed: 

i. Message m is sent at t2 

ii. Message m is received at t3 

iii. Checkpoint CPs
k
 of Ps is taken at t1 (t1 < t2 by assumption 1) 

iv. Checkpoint CPr
k
 of Pr is taken at t4 (t3 < t4 by assumption 2) 

v. Since Ps takes checkpoint at t1 (by assumption 1 and step iii) 

a. Ps has reached line 26 of algorithm via lines 16-25. 

b. Ps has checked its consistency with other (n-1) processes including Pr in lines 18 – 

25. 

vi. In line 18 Ps sends its status and Pr receives it in line19 in Pr‘s algorithm 

a. Pr is in lines 19-25 and no discrepancies are noted. 

b. Therefore, Pr reaches line 26 and hence takes checkpoint CPr
k
.  (by iv) thereby 

violating assumption 2 and scenario ii and iv. 

c. Message m reaches Pr and eventually gets rejected in lines 4-5 of procedure recv_sp 

of Pr since m carries a later checkpoint index (by i and iii). 

d. vi (b, c) contradicts assumption 2. 

 

Thus, there can not be any message m that is not recorded sent but recorded received in the same 

global checkpoint.  

 

Alternative Proof: 

With assumptions remaining the same, the following scenario is observed: 

 

i.   Message m is sent at t2 

ii. Message m is received at t3 

iii  Checkpoint CPs
k
 of Ps is taken at t1 (t1 < t2 by assumption 1) 

iv. Checkpoint CPr
k
 of Pr is taken at t4 (t3 < t4 by assumption 2) 

v. Assuming Pr takes checkpoint at t4 (by assumption 2 and step iv) 

a. Pr has checked its consistency with other (n-1) processes including Ps in lines 18 – 25 

thereby confirming that all messages sent by Ps have been received by Pr and vice 

versa. 

b. Pr has reached line 26 and taken checkpoint via lines 16-25. 

c. v (a, b) contradicts assumption 1. 

 

Thus, there can not be any message m that is not recorded sent but recorded received in the same 

global checkpoint.  

 

Case (ii)   :  Let us consider figure 2. 
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  Pr             t1       t3 

 

             CPr
k
 

             m 

 

  Ps           CP s
k
 

 

              t2        t4 

 
Figure 2. Message recorded sent and not received 

 
Assumptions: 1. Message recorded sent. 2. Message not recorded received. 

The following scenario is observed: 

 

i. Message m is sent at t2 

ii. Ps takes checkpoint at t4 (t2 < t4 by assumption 1) 

iii. Pr takes checkpoint at t1  

iv. Message m is received at t3 (t1 < t3 by assumption 2) 

v. Assuming Ps takes checkpoint at t4 

a. Ps reaches line 26 (and records sending of m (by (ii))) via lines 16 – 25. 

b. Ps has checked its consistency with other (n-1) processes including Pr in lines 18 – 

25. 

vi.        Similarly, when Pr takes checkpoint at t1 

a. Pr reaches line 26 via lines 16 – 25. 

b. Pr has checked its consistency with other (n-1) processes including Ps in lines 18 – 

25. 

c. Pr finds that message m from Ps is yet to be received by it (by iv) 

d. Pr is in line 25 via lines 20 – 24 until m is actually received in line 24. 

e. Pr can not reach line 26 and hence can not take checkpoint. 

f. vi (e) contradicts assumption 2. 

 

Hence, there can not be any message that is recorded ―sent‘ but not recorded ―received‖ in the 

present checkpointing protocol. 

 

5. RECOVERY 
5.1  Approach to Recovery  
 

Whenever consensus about the failure of a process is reached, it is also decided that processes 

should rollback in order to restart from the last saved consistent state. Since not all processes are 

dependent on the failed process in the concerned checkpointing interval so all of them need not 

roll back. The processes that communicated with the failed process should roll back and they are 

termed as being ―directly‖ dependent on the failed process. Still there are others who have 

communications with the directly dependent processes.  Hence recovery of the directly dependent 

processes would affect these ―indirectly‖ dependent processes. So, they have to roll back also. 

The task of finding whether a process is indirectly dependent on the faulty process has been taken 
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up using several methods in the literature. The technique pursued here is described with the help 

of an example for better understanding. 

 

Let us assume that in a system of 5 processes process2 is found to be faulty. The vectors used in 

the checkpointing algorithm that save (i) messages sent to and (ii) messages received from are 

sent by each process to all others. Let us consider figure 3 below and construct the above-said 

vectors for all the five processes. 

 

  P0        CP 

   

             CP a 

  P1 

        b 

  P2           CP 

 

                                                   CP 

  P3 

 

            CP            c 

  P4 

 
Figure 3. A scenario of process interactions via messages 

 

The CP indicates the last consistent checkpoint of each process.      represents the point where 

failure is detected. The entry ―-1‖ is used to denote end. 

 

Process id Message sent 

to (pid) 

Message received 

from (pid) 

        0  -1 1, -1 

        1   0, 2, -1  -1 

        2 -1   1, -1 

        3   4, -1  -1 

        4  -1  3, -1 

 

After the above vectors are available, each process builds the ―sr‖ data structure (an array used in 

the Detect_Recovery algorithm) in a distributed fashion. In each process the ―sr‖ array looks like 

the following array: 

 

Process id Message sent to (pid)/ 

Message received from (pid) 

  

        0 1, -1 

        1 0, 2, -1 

        2 1, -1 

        3 4, -1 

        4 3, -1 
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Let us now find out the dependency of each of the processes: (considering the faulty process id to 

be 2) 

 

P0:    

 Searches own sr entry to find if 2 exists there. 

 Since 2 is not there, so search the entry of sr[1] since 1 occurs in P0‘s sr-entry. P0 keeps track 

that it has searched its own sr-entry. 

 Gets 2 in sr[1]. 

 Concludes that P0 has to roll back. 

P1: 

 Searches own sr entry to find if 2 exists there. 

 Since 2 is there, concludes that P1 has to roll back. 

 

P2: 

 Searches own sr entry to find if 2 exists there. 

 Since 2 is not there, so search the entry of sr[1] since 1 occurs in P2‘s sr-entry. P2 keeps track 

that it has searched its own sr-entry. 

 Gets 2 in sr[1]. 

 Concludes that P2 has to roll back. 

 

P3: 

 Searches own sr entry to find if 2 exists there. 

 Since 2 is not there, so search the entry of sr[4] since 4 occurs in P3‘s sr-entry. P3 keeps track 

that it has searched its own sr-entry. 

 Since 2 is not in sr[4], so search the entry of sr[3] since 3 occurs in P4‘s sr-entry. P3 keeps 

track that it has searched sr-entry of 4. 

 sr[4] contains only 3 whose sr-entry has already been searched and 2 was not in sr[3]. 

 Concludes that P3 does not have to roll back. 

 

P4: 

 Searches own sr entry to find if 2 exists there. 

 Since 2 is not there, so search the entry of sr[3] since 3 occurs in P4‘s sr-entry. P4 keeps track 

that it has searched its own sr-entry. 

 sr[3] contains only 4 whose sr-entry has already been searched and 2 was not there. 

 Concludes that P4 does not have to roll back. 

 

Data structures used in the Algorithm for detecting recovery: 

 

sr[n][n]:  This array is constructed in each process after it gets the send-receive vectors of all 

other processes. This array denotes the pids of processes to/from which a particular process Pi (i 

<= n) has sent/received message during the current checkpointing interval. If process P1 has sent 

messages to processes P6, P2, P0 and has received messages from P4 and P3, then sr[1][n] will 

contain the elements as mentioned below:  

 

6 2 0 4 3 -1 
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The –1 in sr[1][5] indicates that valid data for row 1 ends.  

depends[]:  This vector contains the process ids whose send-receive vectors have been checked by 

a process to find whether it is dependent on the failed process. The end of this vector is indicated 

by –1. 

 

5.2  Algorithm for Detecting Recovery 
 
1  Procedure Detect_recovery(Pi) 

2    { 

3      k := 0; 

4   flag, flag1 := F; 

5  while (sr[ownpid][k] = pid_faulty) 

6   { flag := T; recover(Pi); } 

7  k1, v1 := 0; 

8  while (NOT flag1) 

9   { key := sr[ownpid][k1]; 

10     if (key == -1) 

11   flag1 := T; 

12        else 

13  { k2 := 0; 

14    while ((sr[key][k2]<> pid_faulty) OR(sr[key][k2] <> -1)) 

15       k2 := k2 + 1; 

16    if(sr[key][k2] == pid_faulty) 

17      { flag := T; recover(Pi,1); } 

18    else 

19      { depends[v1] := key; v1 := v1 + 1; 

20   depends[v1] := -1; k1 := k1 + 1; } 

21 flag2, flag3 := F; key1, k4 := 0; 

22 if (flag1) 

23  {  

24    while (NOT flag2) 

25     { k3 := 0; 

26       while (NOT flag3) 

27        { key2 := sr[depends[key1]][k4]; 

28          if ((key2 <> ownpid) OR (key2 <> -1)) 

29           {while((sr[key2][k3]<>pid_faulty)OR(sr[key2][k3]<>-1)) 

30                   k3 := k3 + 1; 

31            if (sr[key2][k3] == pid_faulty) 

32                  { flag,flag2,flag3 := T; recover(Pi,1); } 

33            else 

34              { j := 0;  

35                while ((depends[j] <> key2) OR (depends[j] <> 1)) 

36                        j := j + 1; 

37                if (depends[j] == -1) 

38                   { j := j – 1; depends[j] := key2; 

39                     j := j + 1; depends[j] := -1; } 

40                k4 := 0; } 

41          else { if (key2 == -1) 

42                   { key1 := key1 + 1; flag3 := T; k4 := 0; } 

43                 else { k4 := k4 + 1; flag3 := T; } 

44        } 

45     }  
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46    if (depends[key1] == -1) flag2 := T; 

47  } 

48 if (NOT flag) 

49    recover (Pi,-1); 

 

The concept of dependency is used in the above algorithm for recovery to minimize the number 

of nodes that roll back their computation. Only those nodes that have a dependency on the failed 

node since the latter node‘s last checkpoint is required to roll back to maintain global consistency. 

After the nodes roll back to their last saved consistent state, they have to retrace their computation 

that has been undone due to rollback. Types of messages that have to be handled are: 

 

1. Orphan messages:  This situation will arise when the sender rolls back to a state prior to 

sending while the receiver still has the record of its reception.  However these messages can 

not arise because whenever sender Pi rolls back, receiver Pj also rolls back because by the 

above algorithm Pj becomes dependent on Pi. 

 

2. Lost messages:  This situation will arise when the receiver rolls back to a state prior to 

reception of a message that is being still recorded as sent by the sender. However these 

messages can not arise because whenever receiver Pi rolls back, sender Pj also rolls back 

because by the above algorithm Pj becomes dependent on Pi. 

 

Since the above algorithm considers both the ―send‖ as well as the ―receive‖ vectors of a process 

in calculating dependency, so logging of messages by sender is not necessary as was the case in 

Prakash et. al [14].  

 

6. WORKING OF ADHOCNET-BASED TMR 
 

The above sections 3 and 4 describe the working of the checkpointing and the recovery protocols. 

This section describes the working of the TMR in AdocNet. Let us consider the following figure 

4 that depicts an AdocNet and the various TMR groups it has. The network has 6 MHs with 

communication links as shown. 

 

 

                                                                                                 N4 

                            N1                         N3                

 

                                                                             N5 

                                            N2                                                                           N6 

 
Figure 4. Example Wireless Adhoc Network 

 

Let us consider the following wrt figure 4. 

 

 TMR group1 or TMR1: N1 (main), N2 (primary) and N3 (secondary) 

 TMR group2 or TMR2: N3 (main), N4 (primary) and N5 (secondary) 

 TMR group3 or TMR3: N4 (main), N5 (primary) and N6 (secondary) 

And so on. 
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Each MH knows its role in the group and also about the other two MHs belonging to its group. 

Hence, N3 is aware that it acts as secondary in TMR1 and as main in TMR2. The responsibilities 

associated with the roles are different. 

  

6.1  Checkpointing 
 

The main MHs of each TMR are the only initiators in a group and can initiate checkpointing. 

Hence N1 and N3 and N4 are the initiators here. According to the checkpointing algorithm 

described in the above section, checkpoint requests are received by all MHs and checkpoints 

taken accordingly depending on the activities in the current checkpointing interval. The MHs 

execute processes independently and the processes exchange messages frequently. The message 

exchange builds a dependence relation among them. A process executing on N1 may also send 

message to N3, belonging to the same TMR. Since any MH may take checkpoint in a particular 

checkpointing interval, the copies of its checkpoint are to be kept in the main and in the primary 

of that TMR. Whenever an MH is either main or primary, only one copy has to be sent to the 

other. But if an MH is secondary, then a copy each is sent to its main and primary. This may be 

an overhead in the network. However if the checkpointing interval can be chosen judiciously, this 

extra circulation of checkpoints would not be that much of an overhead. Whenever a new 

checkpoint is to be stored, the previous one is deleted in the corresponding main or primary. In 

case of failure of any one of the MHs in a TMR, that TMR reduces to Dual Modular Redundancy 

(DMR). In that case copies of checkpoints are with both the MHs in that group.  

 

6.2  Recovery 
 

Once the failed MH is identified (possibly after some time-out since message sending and non-

receipt of acknowledgement), the processes in the system go to the recovery mode and exchange 

status information with each other. According to the recovery algorithm described above, a 

process is able to identify whether it should recover or not. It then proceeds to collect its 

checkpoint if it is secondary, otherwise the checkpoint is with itself only. Role change will 

happen to an MH if any other MH in its TMR is detected to have failed. 

 

6.3  An Example Scenario 
 

Suppose N3 is detected to have failed. After subsequent status exchange, it is found that N2 and 

N5 are dependent on N3. The latest checkpoints of N2 and N5 are with (N1 and N2) and (N4 and 

N5) respectively. Hence N2 and N5 have their checkpoints. N3 was the main in TMR2 with N4 

(primary) and N5 (secondary). Henceforth, N4 becomes main and N5 becomes primary in TMR2.  

Another important issue that needs to be considered in this changed scenario is that, henceforth 

N4 will take up the role of N3. Hence the MHs is the network may be made aware that the process 

running on N3 would now execute on N4. This is an additional task for N4. However, generally, 

this should not pose any hindrance to the working scenario in the network.  

 

7. CONCLUSION 
 

The checkpointing algorithm proposed in this paper constructs consistent checkpoints in a 

distributed manner. Hence, forced checkpoints as well as useless checkpoints are never taken. 
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The checkpointing protocol described in the present work also eliminates the occurrences of both 

missing and orphan messages. Thus, each and every checkpoint taken by a process contributes to 

a consistent global snapshot and hence only the last global snapshot is required to be retained. 

The overhead of the present checkpointing protocol is the (n
2
) number of messages required 

during checkpointing (where n is the total number of processes). Though other algorithms have 

(n) number of messages for the same but drawbacks like checkpoint commit time, failure of 

checkpoint coordinator, handling multiple checkpoint initiations are associated with them. 

Recovery of self is decided by each of the processes after collecting system-wide information. 

The dependence relation among the processes can be tracked on-line. A minimum number of 

processes is required to recover depending on their relation with the failed process.  

 

Moreover this fault tolerance technique of checkpointing and recovery is based on TMR concept 

and that too in a wireless adhoc network. This paper proposes the approach towards obtaining 

fault tolerance using checkpointing and recovery on wireless adhoc network based TMR. The 

technique adopted is able to tolerate both the transient and permanent faults. The number of faults 

that can be tolerated is maximum two in each group of the TMR MHs in the wireless adhoc 

network. 

 

This work does not consider node mobility in the adhoc network. However, the proposal can be 

extended to mobile ad hoc network. 
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