
International Journal of UbiComp (IJU), Vol.6, No.4, October 2015

DOI:10.5121/iju.2015.6403 28

 CHECKPOINTING WITH MINIMAL RECOVERY IN

ADHOCNET BASED TMR

Sarmistha Neogy
Department of Computer Science & Engineering, Jadavpur University, India

Abstract:

This paper describes two-fold approach towards utilizing Triple Modular Redundancy (TMR) in Wireless

Adhoc Network (AdocNet). A distributed checkpointing and recovery protocol is proposed. The protocol

eliminates useless checkpoints and helps in selecting only dependent processes in the concerned

checkpointing interval, to recover. A process starts recovery from its last checkpoint only if it finds that it is

dependent (directly or indirectly) on the faulty process. The recovery protocol also prevents the occurrence

of missing or orphan messages. In AdocNet, a set of three nodes (connected to each other) is considered to

form a TMR set, being designated as main, primary and secondary. A main node in one set may serve as

primary or secondary in another. Computation is not triplicated, but checkpoint by main is duplicated in its

primary so that primary can continue if main fails. Checkpoint by primary is then duplicated in secondary

if primary fails too.

Keywords:

checkpointing, dependency tracking, rollback recovery, adhoc networks, triple modular redundancy

1. INTRODUCTION

Distributed systems that execute processes on different nodes connected by a communication

network [6] are prone to failure. One of the widely used approaches for providing fault tolerance

is the checkpoint/rollback recovery mechanism. Checkpointing is the method of periodically

recording the state of the system in stable storage. The saving of process state information may be

required for error recovery, debugging and other distributed applications [7]. This periodically

saved state is called the checkpoint of the process [7, 8]. A global state [22] is a set of individual

process states, one per process [7]. The state contains a snapshot at some instant during the

execution of a process. The snapshot is required to be consistent to avoid the domino effect [23]

that is, multiple rollbacks during recovery.

One of the most well-known methods of achieving fault tolerance is Triple Modular Redundant

(TMR) [25] system. A minimum of three processors also known as replicas form a redundant

group to perform replicated processing. Identical processing and distributed voting are performed

on same input data. Intermediate result or output from each replica is exchanged among each

other and majority voted upon. After successful majority voting the replicas either resume

processing on the intermediate results or end their computation if it had been the final result.

Communications among the replicas take place via communication links. Replica at the receiving

end has to wait for a time-out period [26] for receiving before concluding that there may be fault

International Journal of UbiComp (IJU), Vol.6, No.4, October 2015

30

in other part of the system. This concept of TMR is utilized in this work as a measure for

achieving fault tolerance in a wireless adhoc network (AdhocNet) where a group of three nodes,

known as mobile hosts (MH) form the three replicas. Also fault tolerance may be achieved by

periodically using stable storage of the MHs to save the process‘ states, better known as

checkpoints, during failure-free execution. When a failure occurs, the failed process restarts from

its latest checkpoint. This minimizes the amount of lost computation. The proposed system is

recoverable even if more than one failure (at most two) occurs in a TMR node. As is well known

wireless adhoc network does not have any infrastructure facilities and hence each MH acts as

router also. The concept of distributed systems is extended to the wireless environment.

A TMR group consists of MHs that act as main, primary and secondary. The TMR groups are not

exclusive, that is, MH acting as main may act as primary in another TMR group and so on. The

concept of TMR is modified here in the sense that the three MHs do not perform identical

processing throughout. But the checkpoint taken by a main MH is replicated in its primary MH.

This is because in case a main MH fails, the primary MH can continue from the latest checkpoint.

Similarly, the secondary MH receives a copy of the checkpoint every time the primary MH takes

one. This continues until the primary MH fails. The communicating partners of this TMR group

however are unaware of this change in the actual partner at the other end. It is assumed that

several processes that are running on the MHs may communicate with each other depending on

application requirement.

In the present work checkpointing is initiated by a process of the system. In fact, each of the

processes takes turn to act as the initiator. Generally, processes take local checkpoints after being

notified by the initiator excepting special cases described in later sections. The processes

synchronize their activities of the current checkpointing interval before finally committing their

checkpoints. This removes inconsistency, if any, and then checkpoints are committed. The

technique adopted in the present paper thus disallows the formation of neither zigzag paths nor

zigzag cycle [4,11]. The checkpointing pattern described in the present paper takes only those

checkpoints that will contribute to a consistent global snapshot thereby eliminating the number of

―useless‖ (checkpoints that do not contribute to global consistency) checkpoints. Maintaining

consistency is necessary to avoid the domino effect in case any process fails after taking its ith

checkpoint. If the set of the ith checkpoints can be proved to be consistent, then in case of

recovery the system has to roll back only up to the ith checkpoint since that set provides a

consistent and hence a stable global state of the system.

The processes do not append status information with each and every computation message but

keeps updating own status whenever a message is sent or received. This information is required to

find process dependence during recovery. Though the simplest way is to roll back all processes

but this makes some unnecessary rollbacks. To avoid such rollbacks the processes in the present

system exchange status information whenever a rollback is decided. Each process can find out for

itself whether it requires rollback depending upon its relationship with the failed process.

This paper describes that any global checkpoint taken in the above-mentioned fashion in the

present system is not only consistent but also eliminates taking unnecessary checkpoints and the

system has to roll back only to the last saved state in case of a failure. Also all processes in the

system do not have to rollback following the rollback algorithm described in the paper. The rest

of the paper is organized as follows. Section 2 throws light on some related works in this area.

International Journal of UbiComp (IJU), Vol.6, No.4, October 2015

31

Section 3 describes the system model, Section 4 discusses in details the checkpointing algorithm

with a proof, Section 5 discusses the rollback procedure and the algorithm, Section 6 discusses

integration of the activities of TMR AdhocNet and the last one, that is, Section 7 concludes the

paper.

2. RELATED WORKS

With reference to Chandy & Lamport [1] and Wang et. al [24] Tsai & Kuo [23] states that "A

global checkpoint M is consistent if no message is sent after a checkpoint of M and received

before another checkpoint of M". Following these observations we regard consistency as the

scenario where if a sender 'S' sends a message 'm' before it has taken its ith checkpoint, then

message 'm' must have to be received by a receiver 'R' before the receiver has taken its ith

checkpoint. A message will be termed missing if its send is recorded but receipt is not and

otherwise it is termed as orphan [21]. Suppose a node fails after taking its ith checkpoint. It is

desirable that the system in such a scenario should roll back to the last (ith) saved state and

resume execution from there. If a system can ensure that there is no missing or orphan message in

the concerned ith global checkpoint, then the set of all the ith checkpoints taken by its constituent

processes is bound to be consistent. Unlike the approach that should exist in a distributed system

Kalaiselvi and Rajaraman [5] have kept record at the message sending end and at the message

receiving end and a checkpoint coordinator matches the log it gets from all the processes at each

checkpointing time. The present system also keeps records of messages sent and received in each

process but the log is matched in a distributed fashion. Due to disparity in speed or congestion in

the network, a message belonging to (i+1)th checkpointing interval may reach its receiver who

has not yet taken its ith checkpoint. Such a message is discarded in [21] and sender retransmits it.

Another method of dealing with such messages is to prevent their occurrences by compelling the

sender to wait for a certain time before sending a message after any checkpoint [13]. The present

work discards such a message by adopting a technique in receiving whereas in another approach

[11] any process refrains from sending during the interval between the receipt of checkpoint

initiation message and completion of committing that checkpoint. Distributed systems that use the

recovery block approach [17] and have a common time base may estimate a time by which the

participating processes would take acceptance tests. These estimated instants form the pseudo

recovery point times as described in [16]. The disadvantages of such a scheme are more than one,

like, fast processes may have to wait for slow processes to catch up and other fault tolerance

mechanisms like time out may be required. In [9,10] the authors have analyzed checkpoints taken

in a distributed system having loosely synchronized clocks [13,14,18,19]. No special

synchronization messages have been used in those methods but the existing clock synchronization

messages were utilized. The work described in [4] however, allows processes to take checkpoints

on one‘s own and then a consistent global checkpoint is constructed from the set of local

checkpoints. The drawback of the method is that useless checkpoints can not be avoided. The

approach taken by Strom et al. in [20] does not maintain a consistent global checkpoint at all

times but has to save enough information to construct such a checkpoint when need arises. So,

this requires logging of messages. Contrary to the present checkpointing protocol, The authors in

[2,15] presents minimal snapshot collection protocol where dependency is calculated during

checkpointing also and hence the actual time taken for formal commitment or abort of a

checkpoint is not fixed. The concept of weight distribution and collection by the initiator in [2,15]

appears superfluous and can be replaced if a participating process sends a list of processes

dependent on it to the initiator. The overhead of checkpointing (in terms of the number of

International Journal of UbiComp (IJU), Vol.6, No.4, October 2015

32

checkpoints) is great in all of the CAS, CBR, CASBR and NRAS [8] protocols in comparison to

the protocol presented in this paper. The present protocol possesses the Rollback-Dependency-

Trackability (RDT) property as described in [22] as shown in Section 5.

A few checkpointing recovery techniques for mobile computing systems (infrastructured wireless

and mobile networks) are described in the literature. In the two-tier checkpointing approach [27],

coordinated checkpointing is used between the Mobile Service Stations (MSS) to reduce the

number of checkpoints to be stored to a minimum. In [28] the log of unacknowledged messages

are kept at stable storage of the home station (that is an MSS) of the mobile host. Gass and Gupta

[29] in their algorithm takes three kinds of checkpoints—communication induced (taken after

receiving an application message), local checkpoint (when an MH leaves the MSS to which it is

connected to) and forced checkpoints (only the local variables are updated). All applications are

assumed to be blocked during the algorithm execution thereby wasting computation power and

information that failure has occurred is assumed to reach all fault free processes within finite time

which is difficult in reality. This algorithm saves battery power by minimizing the recomputation

time.

The work in [30] describes checkpointing and recovery using TMR in wireless infrastructured

network. The authors have described a checkpointing and recovery protocol for infrastructured

mobile system in [31]. The authors in [32] utilized the concept of mobile agents for checkpointing

purposes in mobile systems. The works in [31] and [32] utilized different approaches towards

checkpointing for infrastructure mobile systems. The authors have considered an attack model

and augmented Mobile Adhoc Network with security features in their work in [33]. The work in

[33] has enabled us to consider any AdhocNet routing algorithm for the present work.

3. SYSTEM MODEL AND ASSUMPTIONS

Let us consider a system of ‗n‘ processes, P0, P1, …. Pn-1. Let the checkpoints (for the kth process)

be denoted as the initial checkpoint CPk
0
 (i = 0), first checkpoint CPk

1
 (i=1), second checkpoint

CPk
2
 (i=2) and so on. The time interval between any two consecutive checkpoints is called

checkpointing interval that is eventually the next checkpoint number. This means that, the first

checkpointing interval is the interval between the initial checkpoint and the first checkpoint. The

initial checkpoint is taken when the system is being initialized. The processes communicate via

messages only. We assume the following properties of the system:

1. Initiation of checkpointing at regular intervals is done by processes. The initial checkpoint is

taken upon system initialization and initiated by P0. The next checkpoint initiation is done by

P1 and so on and so forth.

2. Asynchronous communication has been assumed among the processes. Acknowledgement

and time-out are part of the communication protocol.

3. A process is aware of the TMR group it belongs to and its role in that group.

4. Any AdhocNet routing algorithm may be used.

International Journal of UbiComp (IJU), Vol.6, No.4, October 2015

33

4. CHECKPOINTING
4.1 The Algorithm

The algorithm has a checkpoint initiator and uses explicit checkpoint synchronization messages.

The initiator sends the initiation message to all others along with further information: number of

messages sent to processes in the current checkpointing interval and number of messages

received from processes in the current checkpointing interval. It must be mentioned here that the

additional information regarding messages would not be sent during the initial checkpoint since it

is taken just after the system has been initialized and hence it is assumed that communication

among processes has not yet started. The information means that if Pk has sent a total of two

messages to Pj in the current checkpointing interval, then Pk would write 2 as number of messages

and j as process id as part of the first information. Similarly if Pj has indeed received all the two

messages from Pk it would write 2 as number of messages and k as process id as part of the

second information. Pj checks whether the total number of messages sent by Pk matches with that

received by Pj. If the answer is positive, Pj takes the checkpoint. If not, then it waits for the

unreceived message/s and takes the checkpoint after receiving it/them. During this time only

those messages are received for which Pj is waiting and any unwanted message is discarded [20].

The algorithm works as follows:

The initial checkpoint is taken after system initialization in lines 7-10 (for the initiator) and lines

14-16 (for other processes) in algorithm1. For any other checkpoint, the initiator first sends a

―request for checkpoint‖ message followed by a message containing its status information for the

current checkpointing interval (lines 11-12). Any other process on receiving the above (lines 16-

17) sends its own status information to all other processes (line 18) and waits for receiving such

information from the others (line 19). After it receives status information from others it goes on to

check whether there is any message that has been sent by some other process to it but not yet

received by it (lines 20-23). It waits to receive the said message/s and then takes the checkpoint

(lines 24-25).

The variables used in the algorithm are described as follows:

initiator: pid of checkpoint initiator

check_index: checkpoint sequence number

own_pid: self process id

msg_type: denotes a tag for identifying various kinds of messages:

 0: checkpoint-request message

 1: process-status-information message

 any other: computation message

mess_sent_toi[j]: an array; values of whose indices denote the number of messages

that the concerned process has sent to (i.e. if the value in

mess_sent_toi[j] is n, this means that Pi (concerned process) has sent n

messages to Pj in the current checkpointing interval)

mess_recd_fmi[j]: an array; values of whose indices denote the number of messages that the

concerned process has received from (i.e. if the value in

mess_recd_fmi[j] is n, this means that Pi (concerned process) has

received n messages from Pj in the current checkpointing interval)

International Journal of UbiComp (IJU), Vol.6, No.4, October 2015

34

The subroutines used in the algorithm are as follows:

send, receive: communication primitives

take_checkpoint: saves process state

recv_sp: for executing the receive communication primitive with added

 logic like checking message type, message sequence number or

 even the sender etc

 send_sp: for executing the send communication primitive with added logic

 like checking message type, message sequence number or even the

 receiver etc

The structure of the checkpointing algorithm is given below along with the line numbers

mentioned in the leftmost column:

1 Procedure Checkpoint(Pi)

2 {

3 initiator := 0;

4 check_index := 0;

5 dest_id := -1;

6 if (initiator = own_pid)

7 if (check_index = 0)

8 { msg_type = 0;

9 send_sp(msg_type, dest_id, check_index, seq_no);

10 take_checkpoint; }
11 else{msg_type:= 0; send_sp(msg_type,dest_id, check_index,seq_no);

12 msg_type := 1; send_sp(msg_type,dest_id, check_index, seq_no);}

13 else if (check_index = 0) {
14 recv_sp(recd_msg_type, send_id, recd_check_index, seq_no);

15 take_checkpoint; }

16 else{recv_sp(recd_msg_type,send_id, recd_check_index,seq_no);

17 recv_sp(recd_msg_type, send_id, recd_check_index, seq_no);

18 send_sp(recd_msg_type, dest_id, check_index, seq_no);

19 recv_sp(recd_msg_type, send_id, recd_check_index, seq_no);

20 for (i = 0; i<= n-1, i++)

21 for (j = 0; j <= n-1 , j++) {

22 if (i j) {

23 if (mess_sent_toi[j] mess_recd_fmj[i])

24 if (own_pid = j)

25 recv_sp(recd_msg_type,send_id,recd_check_index,seq_no);}

26 take_checkpoint; }

27 check_index := check_index + 1; }

The algorithm recv_sp works as follows: In lines 2 – 6 it receives only those messages

whose checkpoint numbers equal to that of the receiver‘s checkpoint number and

message sequence number matches the expected message sequence. In lines 7 – 9 the

algorithm receives the checkpoint initiation messages. In lines 10 – 12 the algorithm

receives messages from other processes containing corresponding status information.

1 Procedure recv_sp(mtype,pid, checkid, seqno)

2 {

3 If ((mtype <> 0) OR (mtype <>1))

International Journal of UbiComp (IJU), Vol.6, No.4, October 2015

35

4 { If ((checkid = check_index) AND((seqno<= (mess_sent_toi[j])

5 AND ((seqno >= (mess_recd_fmj[i] + 1))))

6 receive(rmtype, pid, check_id, r_seq, recv_mess) }

7 else (if (mtype = 0)

8 if (checkid = 0) receive(rmtype, checkid) from P0 ;

9 else receive(rmtype, checkid);

10 else (if ((mtype = 1) AND (checkid <> 0) AND (pid = -1))

11 for (k = 0; ((k<=n) AND (k <> own_pid)); k++)

12 receive(rmtype,checkid, mess_sent_to, mess_recd_fm);

13 } }

The algorithm send_sp works as follows: In lines 2 – 4 it sends computation messages

and in lines 5 – 8 it sends own status information to all others.

1 Procedure send_sp(mtype,pid, checkid, seqno)

2 {

3 if (((mtype <> 0) OR (mtype <>1)) AND (pid <> -1))

4 {send(mtype, pid, checkid,seqno, mess) }

5 else

6 if (((mtype = 0) OR (mtype = 1))

7 { for (k = 0; ((k<=n) AND (k <> own_pid)); k++)

8 send(mtype, checkid, mess_sent_to, mess_recd_fm);

9 } }

4.2 Brief Proof

Theorem:

The checkpoints taken by the algorithm form a consistent global checkpoint.

Proof: The theorem is proved by contradiction. Let the checkpoints form an inconsistent global

checkpoint. Then there should be a checkpoint CPi
k
 that happens before [1] another checkpoint

CPj
k
. This implies that (i) there is at least a message m sent by Pi after CPi

k
 but received by Pj

before CPj
k
 and (ii) there is at least a message m sent by Pi before CPi

k
 but received by Pj after

CPj
k
. This can be proved in the following way:

It must be mentioned here that, case ii stated above does not make CPi
k
 happen before CPj

k
.

Hence it is not mandatory that messages recorded ―sent‖ in CPi
k
 should also have to be recorded

―received‖ in CPj
k
.

 Pr t3 t4

 CPr
k

 m

 CPs
k

 Ps t1 t2
Figure 1. Message recorded received and not sent

International Journal of UbiComp (IJU), Vol.6, No.4, October 2015

36

Case (i): Let us consider figure 1 and a fault-free scenario where messages reach destinations

correctly.

Assumptions:

1. Message m not recorded sent

2. Message m recorded received

The following scenario is observed:

i. Message m is sent at t2

ii. Message m is received at t3

iii. Checkpoint CPs
k
 of Ps is taken at t1 (t1 < t2 by assumption 1)

iv. Checkpoint CPr
k
 of Pr is taken at t4 (t3 < t4 by assumption 2)

v. Since Ps takes checkpoint at t1 (by assumption 1 and step iii)

a. Ps has reached line 26 of algorithm via lines 16-25.

b. Ps has checked its consistency with other (n-1) processes including Pr in lines 18 –

25.

vi. In line 18 Ps sends its status and Pr receives it in line19 in Pr‘s algorithm

a. Pr is in lines 19-25 and no discrepancies are noted.

b. Therefore, Pr reaches line 26 and hence takes checkpoint CPr
k
. (by iv) thereby

violating assumption 2 and scenario ii and iv.

c. Message m reaches Pr and eventually gets rejected in lines 4-5 of procedure recv_sp

of Pr since m carries a later checkpoint index (by i and iii).

d. vi (b, c) contradicts assumption 2.

Thus, there can not be any message m that is not recorded sent but recorded received in the same

global checkpoint.

Alternative Proof:

With assumptions remaining the same, the following scenario is observed:

i. Message m is sent at t2

ii. Message m is received at t3

iii Checkpoint CPs
k
 of Ps is taken at t1 (t1 < t2 by assumption 1)

iv. Checkpoint CPr
k
 of Pr is taken at t4 (t3 < t4 by assumption 2)

v. Assuming Pr takes checkpoint at t4 (by assumption 2 and step iv)

a. Pr has checked its consistency with other (n-1) processes including Ps in lines 18 – 25

thereby confirming that all messages sent by Ps have been received by Pr and vice

versa.

b. Pr has reached line 26 and taken checkpoint via lines 16-25.

c. v (a, b) contradicts assumption 1.

Thus, there can not be any message m that is not recorded sent but recorded received in the same

global checkpoint.

Case (ii) : Let us consider figure 2.

International Journal of UbiComp (IJU), Vol.6, No.4, October 2015

37

 Pr t1 t3

 CPr
k

 m

 Ps CP s
k

 t2 t4

Figure 2. Message recorded sent and not received

Assumptions: 1. Message recorded sent. 2. Message not recorded received.

The following scenario is observed:

i. Message m is sent at t2

ii. Ps takes checkpoint at t4 (t2 < t4 by assumption 1)

iii. Pr takes checkpoint at t1

iv. Message m is received at t3 (t1 < t3 by assumption 2)

v. Assuming Ps takes checkpoint at t4

a. Ps reaches line 26 (and records sending of m (by (ii))) via lines 16 – 25.

b. Ps has checked its consistency with other (n-1) processes including Pr in lines 18 –

25.

vi. Similarly, when Pr takes checkpoint at t1

a. Pr reaches line 26 via lines 16 – 25.

b. Pr has checked its consistency with other (n-1) processes including Ps in lines 18 –

25.

c. Pr finds that message m from Ps is yet to be received by it (by iv)

d. Pr is in line 25 via lines 20 – 24 until m is actually received in line 24.

e. Pr can not reach line 26 and hence can not take checkpoint.

f. vi (e) contradicts assumption 2.

Hence, there can not be any message that is recorded ―sent‘ but not recorded ―received‖ in the

present checkpointing protocol.

5. RECOVERY
5.1 Approach to Recovery

Whenever consensus about the failure of a process is reached, it is also decided that processes

should rollback in order to restart from the last saved consistent state. Since not all processes are

dependent on the failed process in the concerned checkpointing interval so all of them need not

roll back. The processes that communicated with the failed process should roll back and they are

termed as being ―directly‖ dependent on the failed process. Still there are others who have

communications with the directly dependent processes. Hence recovery of the directly dependent

processes would affect these ―indirectly‖ dependent processes. So, they have to roll back also.

The task of finding whether a process is indirectly dependent on the faulty process has been taken

International Journal of UbiComp (IJU), Vol.6, No.4, October 2015

38

up using several methods in the literature. The technique pursued here is described with the help

of an example for better understanding.

Let us assume that in a system of 5 processes process2 is found to be faulty. The vectors used in

the checkpointing algorithm that save (i) messages sent to and (ii) messages received from are

sent by each process to all others. Let us consider figure 3 below and construct the above-said

vectors for all the five processes.

 P0 CP

 CP a

 P1

 b

 P2 CP

 CP

 P3

 CP c

 P4

Figure 3. A scenario of process interactions via messages

The CP indicates the last consistent checkpoint of each process. represents the point where

failure is detected. The entry ―-1‖ is used to denote end.

Process id Message sent

to (pid)

Message received

from (pid)

 0 -1 1, -1

 1 0, 2, -1 -1

 2 -1 1, -1

 3 4, -1 -1

 4 -1 3, -1

After the above vectors are available, each process builds the ―sr‖ data structure (an array used in

the Detect_Recovery algorithm) in a distributed fashion. In each process the ―sr‖ array looks like

the following array:

Process id Message sent to (pid)/

Message received from (pid)

 0 1, -1

 1 0, 2, -1

 2 1, -1

 3 4, -1

 4 3, -1

International Journal of UbiComp (IJU), Vol.6, No.4, October 2015

39

Let us now find out the dependency of each of the processes: (considering the faulty process id to

be 2)

P0:

 Searches own sr entry to find if 2 exists there.

 Since 2 is not there, so search the entry of sr[1] since 1 occurs in P0‘s sr-entry. P0 keeps track

that it has searched its own sr-entry.

 Gets 2 in sr[1].

 Concludes that P0 has to roll back.

P1:

 Searches own sr entry to find if 2 exists there.

 Since 2 is there, concludes that P1 has to roll back.

P2:

 Searches own sr entry to find if 2 exists there.

 Since 2 is not there, so search the entry of sr[1] since 1 occurs in P2‘s sr-entry. P2 keeps track

that it has searched its own sr-entry.

 Gets 2 in sr[1].

 Concludes that P2 has to roll back.

P3:

 Searches own sr entry to find if 2 exists there.

 Since 2 is not there, so search the entry of sr[4] since 4 occurs in P3‘s sr-entry. P3 keeps track

that it has searched its own sr-entry.

 Since 2 is not in sr[4], so search the entry of sr[3] since 3 occurs in P4‘s sr-entry. P3 keeps

track that it has searched sr-entry of 4.

 sr[4] contains only 3 whose sr-entry has already been searched and 2 was not in sr[3].

 Concludes that P3 does not have to roll back.

P4:

 Searches own sr entry to find if 2 exists there.

 Since 2 is not there, so search the entry of sr[3] since 3 occurs in P4‘s sr-entry. P4 keeps track

that it has searched its own sr-entry.

 sr[3] contains only 4 whose sr-entry has already been searched and 2 was not there.

 Concludes that P4 does not have to roll back.

Data structures used in the Algorithm for detecting recovery:

sr[n][n]: This array is constructed in each process after it gets the send-receive vectors of all

other processes. This array denotes the pids of processes to/from which a particular process Pi (i

<= n) has sent/received message during the current checkpointing interval. If process P1 has sent

messages to processes P6, P2, P0 and has received messages from P4 and P3, then sr[1][n] will

contain the elements as mentioned below:

6 2 0 4 3 -1

International Journal of UbiComp (IJU), Vol.6, No.4, October 2015

40

The –1 in sr[1][5] indicates that valid data for row 1 ends.

depends[]: This vector contains the process ids whose send-receive vectors have been checked by

a process to find whether it is dependent on the failed process. The end of this vector is indicated

by –1.

5.2 Algorithm for Detecting Recovery

1 Procedure Detect_recovery(Pi)

2 {

3 k := 0;

4 flag, flag1 := F;

5 while (sr[ownpid][k] = pid_faulty)

6 { flag := T; recover(Pi); }

7 k1, v1 := 0;

8 while (NOT flag1)

9 { key := sr[ownpid][k1];

10 if (key == -1)

11 flag1 := T;

12 else

13 { k2 := 0;

14 while ((sr[key][k2]<> pid_faulty) OR(sr[key][k2] <> -1))

15 k2 := k2 + 1;

16 if(sr[key][k2] == pid_faulty)

17 { flag := T; recover(Pi,1); }

18 else

19 { depends[v1] := key; v1 := v1 + 1;

20 depends[v1] := -1; k1 := k1 + 1; }

21 flag2, flag3 := F; key1, k4 := 0;

22 if (flag1)

23 {

24 while (NOT flag2)

25 { k3 := 0;

26 while (NOT flag3)

27 { key2 := sr[depends[key1]][k4];

28 if ((key2 <> ownpid) OR (key2 <> -1))

29 {while((sr[key2][k3]<>pid_faulty)OR(sr[key2][k3]<>-1))

30 k3 := k3 + 1;

31 if (sr[key2][k3] == pid_faulty)

32 { flag,flag2,flag3 := T; recover(Pi,1); }

33 else

34 { j := 0;

35 while ((depends[j] <> key2) OR (depends[j] <> 1))

36 j := j + 1;

37 if (depends[j] == -1)

38 { j := j – 1; depends[j] := key2;

39 j := j + 1; depends[j] := -1; }

40 k4 := 0; }

41 else { if (key2 == -1)

42 { key1 := key1 + 1; flag3 := T; k4 := 0; }

43 else { k4 := k4 + 1; flag3 := T; }

44 }

45 }

International Journal of UbiComp (IJU), Vol.6, No.4, October 2015

41

46 if (depends[key1] == -1) flag2 := T;

47 }

48 if (NOT flag)

49 recover (Pi,-1);

The concept of dependency is used in the above algorithm for recovery to minimize the number

of nodes that roll back their computation. Only those nodes that have a dependency on the failed

node since the latter node‘s last checkpoint is required to roll back to maintain global consistency.

After the nodes roll back to their last saved consistent state, they have to retrace their computation

that has been undone due to rollback. Types of messages that have to be handled are:

1. Orphan messages: This situation will arise when the sender rolls back to a state prior to

sending while the receiver still has the record of its reception. However these messages can

not arise because whenever sender Pi rolls back, receiver Pj also rolls back because by the

above algorithm Pj becomes dependent on Pi.

2. Lost messages: This situation will arise when the receiver rolls back to a state prior to

reception of a message that is being still recorded as sent by the sender. However these

messages can not arise because whenever receiver Pi rolls back, sender Pj also rolls back

because by the above algorithm Pj becomes dependent on Pi.

Since the above algorithm considers both the ―send‖ as well as the ―receive‖ vectors of a process

in calculating dependency, so logging of messages by sender is not necessary as was the case in

Prakash et. al [14].

6. WORKING OF ADHOCNET-BASED TMR

The above sections 3 and 4 describe the working of the checkpointing and the recovery protocols.

This section describes the working of the TMR in AdocNet. Let us consider the following figure

4 that depicts an AdocNet and the various TMR groups it has. The network has 6 MHs with

communication links as shown.

 N4

 N1 N3

 N5

 N2 N6

Figure 4. Example Wireless Adhoc Network

Let us consider the following wrt figure 4.

 TMR group1 or TMR1: N1 (main), N2 (primary) and N3 (secondary)

 TMR group2 or TMR2: N3 (main), N4 (primary) and N5 (secondary)

 TMR group3 or TMR3: N4 (main), N5 (primary) and N6 (secondary)

And so on.

International Journal of UbiComp (IJU), Vol.6, No.4, October 2015

42

Each MH knows its role in the group and also about the other two MHs belonging to its group.

Hence, N3 is aware that it acts as secondary in TMR1 and as main in TMR2. The responsibilities

associated with the roles are different.

6.1 Checkpointing

The main MHs of each TMR are the only initiators in a group and can initiate checkpointing.

Hence N1 and N3 and N4 are the initiators here. According to the checkpointing algorithm

described in the above section, checkpoint requests are received by all MHs and checkpoints

taken accordingly depending on the activities in the current checkpointing interval. The MHs

execute processes independently and the processes exchange messages frequently. The message

exchange builds a dependence relation among them. A process executing on N1 may also send

message to N3, belonging to the same TMR. Since any MH may take checkpoint in a particular

checkpointing interval, the copies of its checkpoint are to be kept in the main and in the primary

of that TMR. Whenever an MH is either main or primary, only one copy has to be sent to the

other. But if an MH is secondary, then a copy each is sent to its main and primary. This may be

an overhead in the network. However if the checkpointing interval can be chosen judiciously, this

extra circulation of checkpoints would not be that much of an overhead. Whenever a new

checkpoint is to be stored, the previous one is deleted in the corresponding main or primary. In

case of failure of any one of the MHs in a TMR, that TMR reduces to Dual Modular Redundancy

(DMR). In that case copies of checkpoints are with both the MHs in that group.

6.2 Recovery

Once the failed MH is identified (possibly after some time-out since message sending and non-

receipt of acknowledgement), the processes in the system go to the recovery mode and exchange

status information with each other. According to the recovery algorithm described above, a

process is able to identify whether it should recover or not. It then proceeds to collect its

checkpoint if it is secondary, otherwise the checkpoint is with itself only. Role change will

happen to an MH if any other MH in its TMR is detected to have failed.

6.3 An Example Scenario

Suppose N3 is detected to have failed. After subsequent status exchange, it is found that N2 and

N5 are dependent on N3. The latest checkpoints of N2 and N5 are with (N1 and N2) and (N4 and

N5) respectively. Hence N2 and N5 have their checkpoints. N3 was the main in TMR2 with N4

(primary) and N5 (secondary). Henceforth, N4 becomes main and N5 becomes primary in TMR2.

Another important issue that needs to be considered in this changed scenario is that, henceforth

N4 will take up the role of N3. Hence the MHs is the network may be made aware that the process

running on N3 would now execute on N4. This is an additional task for N4. However, generally,

this should not pose any hindrance to the working scenario in the network.

7. CONCLUSION

The checkpointing algorithm proposed in this paper constructs consistent checkpoints in a

distributed manner. Hence, forced checkpoints as well as useless checkpoints are never taken.

International Journal of UbiComp (IJU), Vol.6, No.4, October 2015

43

The checkpointing protocol described in the present work also eliminates the occurrences of both

missing and orphan messages. Thus, each and every checkpoint taken by a process contributes to

a consistent global snapshot and hence only the last global snapshot is required to be retained.

The overhead of the present checkpointing protocol is the (n
2
) number of messages required

during checkpointing (where n is the total number of processes). Though other algorithms have

(n) number of messages for the same but drawbacks like checkpoint commit time, failure of

checkpoint coordinator, handling multiple checkpoint initiations are associated with them.

Recovery of self is decided by each of the processes after collecting system-wide information.

The dependence relation among the processes can be tracked on-line. A minimum number of

processes is required to recover depending on their relation with the failed process.

Moreover this fault tolerance technique of checkpointing and recovery is based on TMR concept

and that too in a wireless adhoc network. This paper proposes the approach towards obtaining

fault tolerance using checkpointing and recovery on wireless adhoc network based TMR. The

technique adopted is able to tolerate both the transient and permanent faults. The number of faults

that can be tolerated is maximum two in each group of the TMR MHs in the wireless adhoc

network.

This work does not consider node mobility in the adhoc network. However, the proposal can be

extended to mobile ad hoc network.

References:

1. K. M. Chandy, & L. Lamport, (1985) Distributed Snapshots : Determining Global States of

Distributed Systems, ACM Trans. On Computer Systems, Vol. 3, No.1, pp. 63-75.

2. G. Cao & M. Singhal, (1998) On Coordinated Checkpointing in Distributed Systems, IEEE Trans. on

Parallel & Distributed Systems, Vol. 9, No. 12, pp. 1213-1225.

3. M. Elnozahy, L. Alvisi, Y. Wang & D. B. Johnson, (1999) A Survey of Rollback-Recovery Protocols

in Message-Passing Systems, Report - CMU-CS-99-148.

4. I. C. Garcia & L. E. Buzato, (1999) Progressive Construction of Consistent Global Checkpoints,

ICDCS.

5. S. Kalaiselvi, & V. Rajaraman, (1997) Checkpointing Algorithm for Parallel Computers based on

Bounded Clock Drifts, Computer Science & Informatics, Vol. 27, No. 3, pp. 7-11.

6. R. Koo & S. Toueg, (1987) Checkpointing and Rollback Recovery for Distributed Systems,

 IEEE Trans. on Software Engineering, Vol. SE-13, No.1, pp. 23-31.

7. D. Manivannan, R. H. B. Netzer & M. Singhal, (1997) Finding Consistent Global Checkpoints in

a Distributed Computation, IEEE Trans. On Parallel & Distributed Systems, Vol.8, No.6, pp. 623-

627.

8. D. Manivannan, Quasi-Synchronous Checkpointing:Models, Characterization, and Classification,

IEEE Trans. on Parallel and Distributed Systems, Vol.10, No.7, pp703-713.

9. Sarmistha Neogy, Anupam Sinha & P. K. Das, (2010), Checkpointing with Synchronized Clocks in

Distributed Systems, International Journal of UbiComp (IJU), Vol. 1, No.2, pp. 65 – 91

10. S. Neogy, A. Sinha & P. K. Das, (2001) Checkpoint processing in Distributed Systems Software

Using Synchronized Clocks, Proceedings of the IEEE Sponsored International Conference on

Information Technology: Coding and Computing: ITCC 2001, pp. 555-559.

11. S. Neogy, A. Sinha & P. K. Das, (2004) CCUML: A Checkpointing Protocol for Distributed System

Processes, Proceedings of IEEE TENCON 2004, pp. B553 – B556

12. R. H. B. Netzer & J. Xu, (1995) Necessary and Sufficient Conditions for consistent global snapshots,

IEEE Trans. On Parallel & Distributed Systems, 6(2), pp. 165-169.

International Journal of UbiComp (IJU), Vol.6, No.4, October 2015

44

13. N. Neves & K. W. Fuchs, Using Time to Improve the Performance of Coordinated Checkpointing,

http://composer.ecn.purdue.edu/~fuchs/fuchs/ipdsNN96.ps

14. N. NeveS & K. W. Fuchs, Coordinated Checkpointing without Direct Coordination,

http://composer.ecn.purdue.edu/~fuchs/fuchs

15. R. Prakash & M. Singhal, (1996) Low-Cost Checkpointing and Failure Recovery in Mobile

Computing Systems, IEEE Trans. On Parallel & Distributed Systems, Vol. 7, No. 10, pp.1035-1048.

16. P. Ramanathan & K. G. Shin, (1993) Use of Common Time Base for Checkpointing and Rollback

Recovery in a Distributed System, IEEE Trans. On Software Engg., Vol.19, No.6, pp. 571-583.

17. B. Randell, (1975) System Structure for Software Fault Tolerance, IEEE Trans. On Software Engg.,

Vol. SE-1, No.2, pp. 220-232.

18. A. SinhA, P. K. Das & D. Basu, (1998) Implementation and Timing Analysis of Clock

Synchronization on a Transputer based replicated system, Information & Software Technology, 40,

pp. 291-309.

19. T. K. Srikanth, & S. Toueg, (1987) Optimal Clock Synchronization, JACM, Vol. 34, No.3, pp. 626-

645.

20. R. E. Strom & S. Yemini, (1985) Optimistic Recovery in Distributed Systems, ACM Transactions on

Computer Systems, Vol.3, No.3, pp. 204-226.

21. Z. Tong, Y. K. Richard & W. T. Tsai, (1992) Rollback Recovery in Distributed Systems Using

Loosely Synchronized Clocks, IEEE Trans. On Parallel & Distributed Systems, Vol. 3, No.2, pp.

246-251.

22. J. Tsai & S. Kuo, (1998) Theoretical Analysis for Communication-Induced Checkpointing

Protocols with Rollback-Dependency Trackability, IEEE Trans. On Parallel & Distributed

Systems, Vol.9, No.10, pp. 963-971.

23. J. Tsai, Y. Wang & S. Kuo, (1999) Evaluations of domino-free communication-induced

checkpointing protocols, Information Processing Letters 69, pp. 31-37.

24. Y. M. Wang, A. Lowry & W. K. Fuchs, (1994) Consistent Global Checkpoints based on dependency

tracking, Information Processing Letters vol. 50, no. 4, pp. 223-230

25. R. E. Lyons, & W. Vanderkulk, (1962) The Use of Triple Modular Redundancy to Improve Computer

Reliability, IBM Journal, pp. 200-209

26. C. J. Hou & K. G. Shon, (1994) Incorporation of Optimal Time Outs Into Distributed Real-Time

Load Sharing, IEEE Trans. on Computers, Vol.43, No.5, pp. 528-547

27. K. S. Byun and J.H. Kim, (2001) Two-Tier Coordinated Checkpointg Algorithm For Cellular

Networks, ICCIS

28. S. Neogy, (2004) A Checkpointing Protocol for a Minimum set of Processes in Mobile Computing

Systems, Proceedings of the IASTED International Conference on Parallel and Distributed

Computing Systems (IASTED PDCS 2004), pp. 263-268

29. R. C. Gass, B. Gupta, An Efficient Checkpointing Scheme for Mobile Computing Systems, Computer

Science Department of Southern Illinois University

30. S. Neogy, (2007) WTMR – A new Fault Tolerance Technique for Wireless and Mobile Computing

Systems, Proceedings of the 11
th

 International Workshop on Future Trends of Distributed Computing

Systems (FTDCS 2007), pp. 130 – 137

31. C. Chowdhury, S. Neogy, (2007) Consistent Checkpointing, Recovery Protocol for Minimal number

of Nodes in Mobile Computing System, Lecture Notes in Computer Science, 2007, Volume

4873, High Performance Computing – HiPC 2007, pp. 599-611

32. Chandreyee Chowdhury, Sarmistha Neogy, (2009) Checkpointing using Mobile Agents for Mobile

Computing System, International Journal of Recent Trends in Engineering, ISSN 1797-9617, Vol. 1,

No.2, May 2009, Academy Publishers, pp. 26 – 29

33. S. Biswas, T. Nag, S. Neogy, (2014) Trust Based Energy Efficient Detection and Avoidance of Black

Hole Attack to Ensure Secure Routing in MANET, IEEE Xplore International Conference on

Applications and Innovations in Mobile Computing (AIMoC 2014), pp. 157 – 164

