
International Journal of Web & Semantic Technology (IJWesT) Vol.7, No.1, January 2016

DOI : 10.5121/ijwest.2016.7103 29

MEASURING SEMANTIC RELATEDNESS BETWEEN

TWO WIKIPEDIA ARTICLES

Dhanya Raghu
1

1
Department of Computer Science and Engineering, PES Institute of Technology,

Bangalore, India

ABSTRACT

This paper mainly focuses on estimating the relatedness and similarities between any two Wikipedia [1]

articles. This paper describes various ways of determining the similarities. We hypothesize that by using

some kind of properties of the Wikipedia articles, which can be internal or external, we can estimate the

relatedness between Wikipedia articles. Each article is believed to have some kinds of internal properties

and some external properties. Internal properties are those which are embedded inside the articles. It can

be, for instance, have something to do with the content and text of the articles. External properties are

those which are deduced or inferred from the articles. It can be, for example, the topic of the articles or

even the closest distance between the two articles when plotted in a graph or in a category hierarchy.

External properties include the properties associated with individual articles like topics (as mentioned),

categories of the articles. Other techniques which are relevant when comparing the Wikipedia articles are

cosine similarity, Jaccard similarity measure etc.

KEYWORDS

Wikipedia, semantic, relatedness, similarities

1. INTRODUCTION

Wikipedia is an information repository that is created by a community of users who bring in their

knowledge and create articles. Wikipedia, an important source of information: These articles

follow a certain schema, and the users can choose to provide additional information which is

optional. Wikipedia is an authentic source of information and hence is consulted by many on a

regular basis. People consult Wikipedia to gather information about topics of interest to them, and

they can choose to edit and add additional information if they so desire.

Motivation: Wikipedia is a community database created by millions of users using a web 2.0

mechanism. Wikipedia contains a huge database with millions of pages out of which many are

related to each other. The relationship between the wiki articles plays an important role in a

further analysis of Wikipedia, it leads to semantic analysis and ultimately building a

recommendation engine. This kind of relationship determining is used in online shopping

websites to recommend related items the customer wants to buy.

Users login to Wikipedia and create pages of interest to them. When they create these pages

which are referred to as “articles” in Wikipedia terminology, they need to identify related articles.

The articles that are related to a given article contains information which is related to the current

article. Users search for articles using the search option supported in Wikipedia, and they are

interested in identifying related articles.

International Journal of Web & Semantic Technology (IJWesT) Vol.7, No.1, January 2016

30

Additionally, many of the recommendation engines use Wikipedia as concept database, and they

rely on the information networking provided in Wikipedia to make recommendations. For

example, when a user is looking for information about a certain brand of paint, he/she would find

it helpful if we could provide a set of related paints to him as well. These recommendation

engines are core to several of the software based marketplaces, and they thrive on providing

useful recommendations to their users. All the above-mentioned uses require a way to relate

articles.

2. IMPLEMENTATIONS IN THIS PAPER
2.1 Dhanya (myMethod)

All wiki articles must belong to at least one category. Using the entire Wikipedia, input any two

articles, determine the list of categories for each of them, and if they have one or more common

categories, they are considered as related. For any particular category, the category hierarchy is

built as a graph where the category hierarchy graph is traversed upwards towards a common

parent until found. That article with the category name is the root and all its children are updated

in the graph at each level and the relatedness between any two articles in the category hierarchy is

calculated by determining the distance between the two articles (basically the number of edges)

and a relatedness index is found. This relatedness index, however, cannot be compared with the

other similarity measures because of the different methods applied for finding each similarity.

2.2 Cosine Similarity [3]:

It makes use of the textual content of any two Wikipedia articles and determines the relatedness

in the form of cosine measure which tends to 1 as the relatedness increases. It uses the vector

space model of documents modelled as vectors with Term Frequency (TF) and Inverse Document

Frequency (IDF) counts.

2.3 Jaccard Similarity [4]:

Usually, this uses the common “bag of words” model, which is simplistic, but is sufficient for

many applications. For any two datasets A and B, The Jaccard similarity is defined as JS(A, B) =

|A union B|/ |A intersection B|. Here, A and B are two wiki articles. A more general approach is

to shingle the document. This takes consecutive words and groups them as a single object. A k-

shingle is a consecutive set of k words. So the set of all 1-shingles is exactly the bag of words

model. An alternative name to k-shingle is a k-gram.

2.4 WikiMiner:

An online tool to estimate the similarities of wiki articles.

All of the above implementations have been experimented with selected article pairs given in the

Wikipedia standard dataset WordSim353 and the results are tabulated.

3. IMPLEMENTATION OF METHOD “DHANYA” (MYMETHOD)

The first method of determining the similarities of Wikipedia articles uses a graphical approach.

The wiki graph is depicted as G<V,E> where V=wiki article URL. Vi=wiki article(i) URL and

the edge E =1 if between any two vertices Vi and Vj, there exists a connection. Basically, it lists

the categories of both the pages and declares that they are related if they have one or more same

categories. More the common categories more is the relatedness.

International Journal of Web & Semantic Technology (IJWesT) Vol.7, No.1, January 2016

31

Open source tools used:

A. Jgrapht [5]: This tool provides the basic graph libraries needed for building the wiki graph

and adding vertices, edges and also to find the shortest path between any two vertices. The

vertices are basically URL objects and we have built a directed graph.

B. Httpclient [7]: This is a tool used to obtain the wiki articles in the form of XML strings from

the HTTP server using the httpget() method.The content of the response entity is the wiki

article that we need.

C. Wikixmlj [6]: This is an XML parser that parses the xml strings obtained by the http client

and provides methods like getCategory() and getLinks() that we use to extract the categories

and subcategories.

3.1 Algorithm:

Prerequisite: Availability of a Wiki graph in memory for performing the relatedness operations.

 The

procedure BuildWikiGraph() described loads the entire Wikipedia articles into an in-memory

graph data structure.

FindIfRelated: Finds out if the given two articles are related

FindRelatednessMeasure: Find out how strongly the given two articles are related.

Wikigraph BuildWikiGraph()

{

Read the Wiki category

read the subcategories of the given category

for each subcategory {

 read articles in each subcategory

 Update wiki graph

}

return Wikigraph

}

Algorithm FindIfRelated (article a1, article a2){

{

 read two articles (a1 and a2)
If a1.category == a2.category then the two articles are related as they belong to the same category

else they are not related

}

Algorithm FindRelatednessMeasure(article a1, article a2)

{

Find the distance between a1 and the category to which it belongs

d1 = distance(category, a1)

d2 = distance(category, a2)

relatednessMeasure = d1 + d2

}

International Journal of Web & Semantic Technology (IJWesT) Vol.7, No.1, January 2016

32

Each wiki article is considered as a vertex in the wiki graph and the edges represent that the two

wiki articles are related (connected). To find out whether two articles are related:

Input: Two wiki article names as strings

Output: print all the common categories thus proving that the two articles are related

else print: not related.

3.2 Steps:

Httpclient has the httpget method to obtain the wiki articles in html format as a stream of bytes.

We can view the data retrieved from the http server by the getEntity() method of the response

entity. But, we want the entities in xml format because wikixmlj is an XML parser. So, we use the

httpget method to obtain the wiki articles as special export which is the wiki articles in xml

format.

The xml strings of two wiki articles are fed as an input to the wikixmlj, which parses these xml

strings and provides methods to extract links and categories from the parsed objects. We obtain

all the categories of the two wiki articles in two string arrays. We, then use string comparison and

print out all the common categories if any. The existence of a common category thus proves that

the articles are related.

3.2.1 Building the wiki graph:

Input: one category

We again obtain this wiki page as an xml string. We use wikixmlj to parse the Wiki page and

extract all the sub-categories by calling getLinks() method of the wikixmlj.

Once we get all the sub-categories in an ArrayList, for each sub-category, we extract its

subcategories and so on. The wiki graph is constructed with the main category as the root, each

sub-category is the parent of all the sub-categories extracted from it. The next part is to compute

the distance between any two vertices. Since this wiki graph is a directed graph, it is possible to

traverse the graph in only one direction which depends on the direction in which the edges are

added.

So, here, we can traverse from the root towards its children vertices. So, to compute the total

length of the path between any two vertices v1 and v2, we compute the distance between the root

and v1 plus the distance between the root and v2.

Then, the relativeness index is found by the following formula:

for(int i=1;i<=pathlength;i++)

{

relativenessIndex = relativenessIndex + (1.0/(Math.pow(2,i)));

}

This formula is got by the following reasoning:

Each edge in the path between the two vertices is given a weight which starts from one vertex,

and the weight is reduced by half at each edge in the path.

International Journal of Web & Semantic Technology (IJWesT) Vol.7, No.1, January 2016

33

4. OTHER METHOD IMPLEMENTATIONS
4.1 Cosine Similarity:

It basically calculates the cosine product between two document vectors.

Implementation: Initially, the documents between which the cosine similarity has to be found are

listed in a folder. Each document is inputted into the algorithm and all the contents of the input

document are read. Then, the string builder class is invoked and the document is parsed, meaning

the document is tokenized into individual terms and the duplicate terms are eliminated.

Calculation of the tf-idf matrix: Term Frequency also known as TF measures the number of times

a term (word) occurs in a document. In reality, each document will be of different size. On a large

document, the frequency of the terms will be much higher than the smaller ones. Hence, we need

to normalize the document based on its size. So, divide the term frequency by the total number of

terms. Then, the inverse document frequency matrix is found. The documents, sometimes have

some terms occurring repeatedly, but these terms might not actually be relevant in determining

the similarity. On the other hand, some terms, though are less frequent, may be relevant in

determining the similarity. So, there is a need to weigh up the relevance of these less frequent

terms and weigh down the relevance of high-frequency irrelevant terms. Logarithms are useful

here. Consider some documents with the term computer in them.

Ex: IDF(computer) = 1 + log(Total Number Of Documents / Number Of Documents with term

computer in it).

The next step is to multiply the tf and idf values and these products become the parameters for

finding the cosine similarity.

4.2 Jaccard Similarity:

This makes use of the k-shinglings technique and is the ratio of the common shinglings between

the documents and the total number of distinct shinglings in the two documents put together. A

bag of words is 1-shingle. The k-shingle approach is better. K-shingle is a sequence of k

characters. The formula for jaccard similarity: J(A, B) = |A union B| / |A intersection B|.

5. EXPERIMENTS AND RESULTS:

Table.1 showing the tabulated results of all similarity measures.

International Journal of Web & Semantic Technology (IJWesT) Vol.7, No.1, January 2016

34

Figure.1 showing the results of the various methods of similarity measures for Wikipedia Articles.

Example output for tiger and cat wiki articles: It finds the shortest path between tiger article and

the common category page (root) and the same is repeated for wiki article cat. Then, these

distances are added and relatedness index is calculated. For instance, consider wiki articles- tiger

and cat.

Shortest path from

http://en.wikipedia.org/wiki/Lists_of_animals to http://en.wikipedia.org/wiki/tiger

size of the path list is 2

[(http://en.wikipedia.org/wiki/Lists_of_animals:

http://en.wikipedia.org/wiki/endangered_species),

(http://en.wikipedia.org/wiki/endangered_species : http://en.wikipedia.org/wiki/tiger)]

Shortest path from

http://en.wikipedia.org/wiki/Lists_of_animals to http://en.wikipedia.org/wiki/Cat

size of the path list is 2

[(http://en.wikipedia.org/wiki/Lists_of_animals:

http://en.wikipedia.org/wiki/List_of_domesticated_animals

(http://en.wikipedia.org/wiki/List_of_domesticated_animals : http://en.wikipedia.org/wiki/Cat)]

Relativeness Index is 0.9375

6. EXPLANATION OF THE RESULTS:

Human: It is the standard, accepted and a precise value of similarity obtained from the wikiSim

353 dataset. So, it is used as a standard to compare the output of other similarity measures.

Dhanya: This method is the first method explained in the paper. The values of similarity obtained

from this method cannot be compared with the other measure because, it finds the distance

between two wiki article nodes in a category hierarchy. It adds up all the weights of the edges in

the shortest path between the two nodes and gives the total distance between the two nodes. So,

International Journal of Web & Semantic Technology (IJWesT) Vol.7, No.1, January 2016

35

lesser the distance, more the similarity, unlike the other methods where greater the measure,

greater is the similarity.

Cosine: This is the output of the cosine similarity measure. It is mostly accurate and close to the

human values in most of the resulting output.

Jaccard: The output of jaccard similarity measure. This is less accurate than cosine similarity.

WikiMiner: This is also accurate, but not all articles are recognised by this online tool.

7. FUTURE WORK:

1. Import the entire Wikipedia graph into Neo4j and run the shortest path algorithm which gives a

possible measure of similarity.

2. Using Apache Lucene to find probabilistic similarity measures between the articles.

3. Using R, perform topic modeling and use the topics to determine the similarity.

8. ACKNOWLEDGEMENT:

I, Dhanya Raghu, would sincerely like to thank my project guide, Dr. Raghu A, for guiding this

project into a successful one.

9. CITATIONS:

1. http://wikipedia.org

2. Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias, Ehud Rivlin, Zach Solan, Gadi, Wolfman, and

Eytan Ruppin, "Placing Search in Context: The Concept Revisited", ACM Transactions on Information

Systems, 20(1):116-131, January 2002

3. https://en.wikipedia.org/wiki/Jaccard_index

4. https://en.wikipedia.org/wiki/Cosine_similarity

5. http://jgrapht.org/javadoc/

6. https://code.google.com/p/wikixmlj/

7. http://hc.apache.org/httpclient-3.x/userguide.html

8. https://www.aaai.org/ Papers /AAAI/2006/AAAI06-223.pdf

9. www.cs.technion.ac.il/~gabr/papers/ijcai-2007-sim.pdf

10. www.cms.waikato.ac.nz/.../ papers /08-DM-IHW-Semantic_ relatedness .pdf

Author

I am a Computer Science and Engineering undergraduate at PES Institute of

Technology, Bangalore, India. My research interests in Computer Science include Data

and Graph Mining, Cloud computing and Machine Learning.

