International Journal of Web & Semantic Technology (IJWesT) Vol.7, No.3/4, October 2016

AUTOMATIC CONVERSION OF RELATIONAL DATABASES
INTO ONTOLOGIES: A COMPARATIVE ANALYSIS OF
PROTEGE PLUG-INS PERFORMANCES

Kgotatso Desmond Mogotlaneland Jean Vincent Fonou-Dombeu®

'The South African Mint Company, Pretoria, South Africa
*Department of Software Studies, Vaal University of Technology, Vanderbijlpark, South
Africa

ABSTRACT

Constructing ontologies from relational databases is an active research topic in the Semantic Web domain.
While conceptual mapping rules/principles of relational databases and ontology structures are being
proposed, several software modules or plug-ins are being developed to enable the automatic conversion of
relational databases into ontologies. However, the correlation between the resulting ontologies built
automatically with plug-ins from relational databases and the database-toontology mapping principles has
been given little attention. This study reviews and applies two Protégé plug-ins, namely, DataMaster and
OntoBase to automatically construct ontologies from a relational database. The resulting ontologies are
further analysed to match their structures against the database-to-ontology mapping principles. A
comparative analysis of the matching results reveals that OntoBase outperforms DataMaster in applying
the database-to-ontology mapping principles for automatically converting relational databases into
ontologies

kE YWORDS

Relational Database, Ontology, Sematic Web, Protégé Plug-in, Database-to-Ontology Mapping Principles.

1. INTRODUCTION

Ontologies are an integral part of the growth and eventual realisation of the Semantic Web [1].
Ontology is an explicit specification of a conceptualisation that describes semantics of data [3]; it
constitutes the backbone of Semantic Web applications [4], [6]. Due to the importance of
ontologies in Semantic Web, researchers have proposed different methods and techniques to
convert traditional relational databases into well-structured ontologies. In fact, relational
databases remain an important source of data for many websites and applications [7],[8].

Ontology construction from a relational database used to be a manual and tedious process which
relied solely on ontology editors and human experts [9]. Over the years, many tools and
algorithms that enabled the automatic conversion of a relational database into ontology have been
proposed. Examples of such tools and algorithms include: DB20OWL, R20, D2RQ, Data

DOI : 10.5121/ijwest.2016.7403 21

International Journal of Web & Semantic Technology (IJWesT) Vol.7, No.3/4, October 2016

Semantic Preservation, DartGrid Semantic, Semantic Bridge, Automapper,XTR-RTO, RTAXON,
Leaning Ontology from Relational Databases, Ontology Generator (RDB20n), and RDBToOnto
amongst others [10], [11], [12], [13]. The World Wide Web Consortium (W3C) through their
RDB2RDF Working Group are also developing a direct mapping standard that focuses on
translating relational database into RDF (Resource Description Framework) ontology [2].

The problem with many of the abovementioned tools is that they are still at the prototype stage
and are not yet available to the public. In fact, some of these tools are still under development and
are not yet fully fledged products. Furthermore, these tools have not yet been applied on real
world databases to ascertain their performance in the automatic conversion of relational databases
into ontologies. Protégé is a widely used ontology editing platform which offers great
extensibility and scalability [14]. Its extensibility is due to plug-ins developed by Semantic Web
experts. A plug-in is a separately developed software module that adds more functionality to
existing software. Examples of Protégé plug-ins include OntoLT [15], SIM-DLA [16],
DataMaster [17], DataGenie[18], OntoBase [19] and RONTO [20]. OntoLT enables the
extraction of ontology from text within Protégé [15].SIM-DLA is a Protégé plug-in that enables
the comparison of ontology concepts and their meanings through the measurement of semantic
similarities [16]. DataMaster, DataGenie, OntoBase and RONTO are Protégé plug-ins that deal
with the conversion of relational databases into ontologies. However, the RONTO plug-in is still
under development and is not yet available for use in the Semantic Web community [20]. Further,
due to technical challenges such as unresolved errors and bugs [18], DataGenie functionalities
were improved to create the DataMaster plug-in [17].

In light of the above, DataMaster and OntoBase are the only plug-ins for automatic conversion of
relational databases into ontologies that are currently available for use in Protégé. However, their
performances in accurately applying the database-to-ontology mapping principles [2], [9], [12],
[21], [22], [23], [24] are still unreported. In fact, to the best of our knowledge, the database-to-
ontology mapping performances of DataMaster and OntoBase plug-ins have not been reported in
any previous study. This study aims at filling this gap in the Semantic Web literature. The
DataMaster and OntoBase plug-ins are applied to automatically construct ontologies from a
relational database. The resulting ontologies are further analysed to match their structures against
the database-toontology mapping principles. A comparative analysis of the matching results
reveals that OntoBase outperforms DataMaster in applying the database-to-ontology mapping
principles.

The rest of the paper is organized as follows. Section 2 presents existing Semantic Web tools and
algorithms for the conversion of relational databases into ontologies. The formal structure of a
relational database as well as the database-to-ontology mapping principles are discussed in
Section 3. Section 4 presents the experiments and results of the application of the database-to-
ontology mapping rules/principles defined in Section 3. The paper ends with a conclusion and
future work in Section 5.

22

International Journal of Web & Semantic Technology (IJWesT) Vol.7, No.3/4, October 2016

2. REVIEW OF DATABASE-TO-ONTOLOGY MAPPING TOOLS AND
ALGORITHMS

As mentioned earlier, various tools and algorithms have been developed to support the conversion
of relational databases into ontologies. A relational database to ontology mapping tool called
DB20OWL is presented in [21].DB2OWL enables the automatic generation of OWL ontologies
from relational database schemas. However, DB2OWL is still at the prototype stage and not yet
available for widespread utilisation in the Semantic Web community.

In [17], a Protégé plug-in, namely, DataMaster is presented. The DataMaster plug-in enables the
import of schema structure and data from relational database into Protégé-OWL or Protégé-
Frames ontology. OntoBase,another Protégé plug-in is presented in [19]. It utilises reverse-
engineering to create ontology from a relational database schema [19]. Both DataMaster and
OntoBase Protégé plug-ins are open source software that can be downloaded free of charge from
the Internet. DataMaster comes as part of the Protégé ontology editor package while OntoBase
can be downloaded separately [19].

In addition to DataMaster and OntoBase, other Protégé plug-ins, namely, RONTO and DataGenie
are presented in [20] and [18], respectively. RONTO is described as a semiautomatic tool that
enables schema matching between relational schemata and ontologies. However, RONTO was
implemented as a prototype and is not yet available for use in the Semantic Web community.
DataGenie is another Protégé plug-in which was developed to enable the import of a relational
database into ontology. However, due to technical challenges such as unresolved errors and

bugs [18], DataGenie functionalities were improved to create the DataMaster plug-in [17].

An algorithm called MARSON (Mapping between Relational Schemas and Ontologies) is
presented in [1]. The algorithm establishes simple mappings between a relational database
schema and ontology. Another algorithm,namely, RTAXON is presented in [25]. It enables the
building of ontology from the schema definition and data stored in the database [25]. The
RTAXON algorithm is implemented in a prototype application called RDBToOnto [13], [26].
Another prototype ontology generator, namely, RDB2on is presented in [12]. The RDB2on uses
predefined transformation rules to automatically transform a relational database to OWL
Ontology [12]. The database-to-ontology mapping rules/principles are discussed in the next
section.

3. RELATIONAL DATABASE TO ONTOLOGY MAPPING

In this section, relational database, ontology and database-to-ontology mapping rules/principles
are defined to set the conceptual background of the study.

3.1 Relational Database

A relational database is a data model which includes sets of relationships, attributes, and basic
types [24]. A relational database could be represented in the form of a relational database schema

23

International Journal of Web & Semantic Technology (IJWesT) Vol.7, No.3/4, October 2016

[25]. The relational database schema defines the structure of the database [26] and consists of the
following main elements [16], [21], [27], [24],[28]:

* Relation - database table with a set of columns, rows and constraints.

* Attribute - column of a database table.

* Tuple - record or row of a database table.

* Domain - data type of a column of a database table. This is the type of values that a column can
have e.g.

Integer values etc.

* Primary Key - a constraint placed on a column to maintain entity integrity in the table. A
primary key maintains unique rows in the table.

* Foreign Key - a constraint placed on a column to maintain referential integrity. A foreign key
maintains relationships among database tables.

A relational database can have different types of relationships between its tables. The
relationships are maintained by the use of foreign keys. Let’s consider two related tables T1 and
T2 with sets of rows R1 and R2, respectively.The possible relationships between the tables of the
relational database are as follows:

* One to One relationship - one row rli € R1 (1 <i<n) in T1 corresponds to only one row 12j €
R2 (1 £j<m)in T2, where n and m are the numbers of rows in T1 and T2, respectively, i.e., only
one row in T1 corresponds to only one row in T2.

* One to Many relationship - each row rli € R1 (1 <i<n) in T1 corresponds to s2j € R2 (1 <j <
m) in T2, where s2j = {r2k, 1 <k <m} is a set of rows in T2, n and m, the numbers of rows in T1
and T2, respectively. This means that one row in T1 can have many corresponding rows in T2. In
this relationship, a primary key in T1 will be a foreign key in T2.

* Many to Many relationships - a set a rows sli € R1 (1 <i<n) in T1 corresponds to a set of rows
s2j € R2 (1 £j<m) in T2, where n and m are the number of rows in T1 and T2,respectively, i.e.,
many rows in T1 corresponds to many rows in T2. These relationships are normally resolved by a
use of bridge tables.

3.2 Definition of Ontology

Ontology is a knowledge base system representing the common and shared vocabularies/concepts
within a specific domain as well as the relationships between them [9], [16], [27]. Typical
ontology elements are concepts,relationships/properties, axioms and instances [24], [28]. A
concept is the basic component of ontology. The relationships/properties between concepts define
how concepts are semantically related to each other in the ontology. Axioms are the statements in
the ontology, i.e., the logical combinations of concepts and properties. The instances are the
occurrences/values of concepts or properties in the ontology. The popular languages for the
formal representation of ontology are RDF and Web Ontology Language (OWL). However,OWL
is preferred over RDF [9], [30], due to the weak expressive power of the RDF language
[291,[30].1t is also said to be the most advanced ontology representation language [31]. The
common keywords of the OWL language for representing ontology elements are defined below
[20], [29], [32], [24], [27], [31]:
1. Class:

24

International Journal of Web & Semantic Technology (IJWesT) Vol.7, No.3/4, October 2016

It represents a concept of an ontology in OWL [9, 30]. An example of OWL representation of a
class named PropertyType is given in the line of code below.

<owl:Class rdf:ID = "#PropertyType" />
2. Object Property:

This OWL construct defines relationships between ontology classes [24]. Object Properties are
defined using domains and ranges which are the classes that are in relation with one another [16].
The following code presents an OWL Object Property named PropertyTypelDInstance. The
domain of the PropertyTypelDInstance Object Property is the PropertyService class and its range
the PropertyType class, i.e., PropertyService and PropertyType are in a relation with one another.

<owl:ObjectProperty rdf:ID="#PropertyTypelDInstance"/>
<rdf:type rdf:resource="#functional property'/>
<rdfs:domain rdf:resource="#PropertyService"/>
<rdfs:range rdf:resource="#PropertyType"/>
</owl:ObjectProperty/>

3. Datatype Property:

It represents the attributes of ontology classes in OWL [20]. Datatype Properties are also defined
using domains and ranges; here, the domain represents a class that the property belongs to and
range represents the type and limit of data that the property can store [16]. An example of OWL
Datatype Property named Description is given in the code below. The domain of the Datatype
Property is the PropertyType class and the range is String. The range indicated that Description
Datatype Property represents string values.

<owl: DatatypeProperty rdf:1D="#Description"/>
<rdfs: domain rdf:resource="#PropertyType'/>
<rdfs:range rdf:resource="XMLSchema#string"/>
</owl:DataTypeProperty/>

4. Individual:

It is an instance of a class or property. An example of an Individual named PropertyTypelnstance
is given in the OWL code below. This is an instance of the PropertyType class.

<owl:PropertyType rdf:1D="#PropertyTypelnstance"/>

<owl: PropertyTypelD rdf: datatype="&xsd; int">1< owl:PropertyTypelD/>

<owl:Descripion rdf:datatype="XMLSchema#string">Residential

<owl:Description/>

<owl:Ratable rdf:datatype="XMLSchema#string">Yes <owl:Ratable/>

Class, Object Property, and Datatype Property are the main OWL elements as they represent
ontology concepts,relationships between the concepts and attributes of the concepts. Classes and

25

International Journal of Web & Semantic Technology (IJWesT) Vol.7, No.3/4, October 2016

properties are components upon which the ontology hierarchy is built [29]. In the OWL
hierarchy, owl:Thing is the base class and any other class in the ontology inherits from it [20].
The next Subsection presents a review of existing mapping rules that govern the conversion of a
relational database into O WL ontology.

Relations Primary Key Foreign Kev
Prope iy Ty pe(Propery Type 1D, Propery Ty pelDd None

Description)
Prope rty Service (Property ServicelD, ProperyService DD Service[Id mfers to

Servicel D, ProperiyTypell}) ServieelD) in Service
PropertyTypel D}
mfers to
Property TypelD) in
Property Type

Service(ServicelD, Description, ServicelDd None

Typel

Custome r{CustomerDd, Name, 1D, Customerl DD None

Fe gistrationNo, PhysicalAddress,
PostalA ddress, Telephone,
CellPhone, Email)

Ouery(Query D, CostomerID, QueryID CustomerlD) refers 1o
Status, Type, DateEnten:d, CustomerlD) in
DateClosed. Details, AttendedBy) Customer

AttendedBy refers wo
EmployeelD) in
Employec

Table 1: Sample Relational Database Schema

3.3 Relational Database to Ontology Mapping Rules/Principles

The process of converting a relational database into ontology follows certain mapping
rules/principles [16], [20],[22], [24], [27], [29], [32], [33]. Mapping rules define how relational
database components including Tables,Columns, Foreign Keys, etc., can be converted into
ontology components such as Classes, Properties, Instances,etc. In this Subsection, existing
mapping rules are discussed using a sample relational database schema in Table 1.The mapping
rules used to convert the database tables in Table 1 into OWL ontology constructs are presented
below.

1. Rule 1

Mapping of Tables to OWL Classes: Each table in the relational database is mapped into
ontology OWL class with similar name except for bridging bridge tables that are used to resolve
many-to-many relationships [20], [16], [32], [24]. On that note, only all the four tables in Table 1
are mapped to OWL classes as in the sample code below.

<owl:Class rdf:ID = "#PropertyType" />
<owl:Class rdf:ID = "#Service" />
<owl:Class rdf:ID = "#Customer" />
<owl:Class rdf:ID = "#Query" />
<owl:Class rdf:ID = “PropertyService” />

26

International Journal of Web & Semantic Technology (IJWesT) Vol.7, No.3/4, October 2016

The PropertyService table (Table 1) was also converted to an OWL class because it couldn’t be
recognised as a bridge table even though it is used to resolve a many-to-many relationship
between PropertyType and Service database tables. This is because it has a separate
PropertyServicelD Primary Key in addition to the two foreign keys (ServiceID and
PropertyTypelD). Rule 2 underneath elaborates more on handling of bridge tables.

2. Rule 2

Handling of Bridge Tables: Bridge tables are not mapped into separate OWL classes. This rule
applies to properly constructed bridge tables which have foreign keys from the tables
participating in a many-tomany relationship as its main primary keys. Even though there is no
separate class, many-to-many relationships are still represented by Object Properties in the
ontology [33]. More on Object Properties is covered in Rule 6 and 7 underneath.

3. Rule 3

Mapping of Referential Integrity Relationships to Inheritance Hierarchy: OWL Classes are
arranged in a hierarchy based on the relationships in the database. In a relationship between two
tables, a table that has a foreign key will be mapped into a sub-class of the main class obtained
from a table with a corresponding primary key. For example, from the classes created in Rule 1
above, Query will be a sub class of Customer because of a relationship between Query and
Customer tables. Query table has a CustomerID foreign key to symbolise its

dependence on the Customer table. An example of OWL code is depicted below:

<owl:Class rdf:ID = "#Query">
<rdfs:subClassOf rdf:resource="#Customer”
<owl:Class />

4. Rule 4

Mapping of Non-Referential Integrity Columns into Datatype Properties: All columns in the
relational database are mapped into Datatype Properties, except all the foreign keys which
maintain referential integrity in the database [20], [24], [32], [33]. For instance, the Query class
obtained in Rule 1 will have QueryID,Status, Type, DateEntered, DateClosed, and Details as
Datatype Properties. CustomerID and AttendedBy are excluded from Datatype Properties list.
The basic OWL code of the Datatype Property named Details in the Query class is provided
below.

<owl: DatatypeProperty rdf:1D = "#Details" />
</owl:DatatypeProperty/>
5. Rule 5

Representation of Datatype Property host class as Domain and Data Type as Range: A Datatype
Property includes domain and range which represents the host class and the type of data that will

27

International Journal of Web & Semantic Technology (IJWesT) Vol.7, No.3/4, October 2016

be represented,respectively [20], [24], [32], [33]. The code below shows the Query class as the
domain of the Details Datatype Property, whereas, its range is the string datatype, i.e., the Details
Datatype Property will represent string values.

<owl: DatatypeProperty rdf:1D = "#Details" />
<rdfs:domain rdf:resource = "#Query" />
<rdfs:range rdf:resource = "XMLSchema#string" />
</owl:DatatypeProperty/>

6. Rule 6

Mapping of Relationships represented by referential integrity columns into Object Properties:
All relationships that are expressed with foreign keys in a relational database are mapped into
OWL Object Properties [16], [20], [29], [32]. Two Object Properties are created for one-to-many
or a many-to-many relationship, one for the relationship and one for its inverse. For instance, the
Query and Customer classes obtained in Rule 1 would produce two Object Properties which are
represented by a CustomerID Functional Property within the Query class and a CustomerID
Inverse Functional Property within the Customer class. This is because the Query class was
derived from a Query table with a foreign key that points to a primary key in the Customer table.
An OWL code for the Object Properties between the Query and Customer classes is given below:

<owl:ObjectProperty rdf:ID = "#CustomerIDInstance"/>
<rdf:type rdf:resource = "#functional property" />
</owl:ObjectProperty />

<owl:ObjectProperty rdf:1D = "#CustomerIDInstance"/>
<rdf:type rdf:resource = "#inversefunctional property" />
</owl:ObjectProperty />

7. Rule 7

Representation of Object Property host classes as domain and range: An Object Property
includes domain and range which represent the two classes in relation with one another. The
domain is a class with a functional property while a range is a class with an inverse functional
property [16], [20], [29], [32]. From the code shown below, the domain of the Object Property
CustomerlIDInstance is the Query class, whereas, its range is the Customer class. This Object
Property defines the semantic relationship between the Query and Customer classes in

the ontology.

<owl:ObjectProperty rdf:ID = "#CustomerIDInstance"/>
<rdf:type rdf:resource = "#functional property" />
<rdfs:domain rdf:resource = "#Query" />

<rdfs:range rdf:resource = "#Customer" />
</owl:ObjectProperty />

28

International Journal of Web & Semantic Technology (IJWesT) Vol.7, No.3/4, October 2016

8. Rule 8

Mapping of Tuples to Individuals: All database table records are mapped to individuals in
ontology [20], [29], [24], [32]. For instance, if the Service table from Table 1 had two rows of
data, those rows will be mapped to OWL individuals as in the code below:

<owl:Service rdf:1D="#Servicelnstance"/>

<owl: ServicelD rdf: datatype="4&xsd;int">1

</ owl: ServicelD>

<owl: Description rdf: atatype="XMLSchema#string">Electricity

<owl: Description/>

<owl: Type rdf: datatype="XMLSchema#string">Consumable <owl: Type/>
<owl: Service rdf: ID="#Servicelnstance2"/>

<owl: ServicelD rdf: datatype="&xsd;int">2

</ owl:Servicel D>

<owl: Description rdf: datatype="XMLSchema#string">Refuse Removal </owl: Description>
<owl: Type rdf: datatype="XMLSchema#string">Basic

</owl: Type>

9. Rule 9

Mapping of Column Constraints into Property Cardinalities: Database column constraints e.g.
NULL and NOT NULL are mapped into Ontology Property Cardinalities [22], [29]. Cardinalities
are there to further specify and place restrictions on ontology properties [29]. For example, let us
say the Query table in Table 1 has a QueryID column which is declared as NOT NULL and a
Type column which is NULL. This will lead to the following cardinalities in the ontology:

<owl:Restriction>

<owl:onProperty rdf:resource="#QuerylD"/>
<owl:minCardinality> 1< owl:minCardinality/>
<owl:maxCardinality>0< owl:maxCardinality/>
<owl:Restriction/>

<owl:Restriction>

<owl:onProperty rdf:resource="#Type" />
<owl:minCardinality>0< owl:minCardinality/>
<owl:maxCardinality> 1< owl:maxCardinality/>
<owl:Restriction/>

29

International Journal of Web & Semantic Technology (IJWesT) Vol.7, No.3/4, October 2016
4. EXPERIMENTS
4.1. Dataset

An Oracle database developed in [32] was modified and used as the input database in the
experiments in this study.The database was built from the Municipality Information System for
service delivery in the authors’ country [32].The main tables of the database are Account,
AccountService, Arrangement, Arrears, Customer, Employee,Manager, Payment, Property,
PropertyService, PropertyType, Query, Service, Tariff, CustomerType, Penalty,Rebate,
ValuationRoll and ValuationRollType. This study does not expand on the process used to build
the entity relationship diagram (ERD) from which the database was developed. Interested readers
may refer to the work in [32] for further information. Figure 1 presents the Municipality database
schema in a tabular format including all the tables, columns and relationships that exist in the
database.

Felar v Primary Foey Foremn Fey

AL OO { ACC Ul DY, O oad T, AL CouaTDy Cun e T 7 afars o CUusioane T in

PropertyIDy, Dt Openesd, Balanos, States) Chrstommesr
FropertyID} r=fer= & Proper I D in
Property

A countSerrios { AocountServic=TTh, A oot Se ovios ITF Accomtl Dy sefers to Ao oot Ty o

Accoundll, PropertySercical I, Dhate, DT DU

S, Tonsumnpdon, Feading) FropertyServicell} sefers o
DropariySar-icall? in Dy iy Sarvica

Arrengament (Amaemend] T Accound D, | Acsengeoeendd T Accomill; rafars oo AcCound D dm

Drme=, Balamcos | Tnestalmmesmt, St tu= Ao ot

Agsears (A er 21D, AccoundIDy, Diala, Ags, | AssearsID AccoundD safers 00 AL CouwmIDy in

Armeoumit) Ao oumt

Customer Typs (usomer Tyl LY, T mer Lypsl IF Hom=

Dre = riptiond

Cmetoresr { Cissboame] TF, Custoaess Thyape] TF, Ay e eI TF Cuastomer TypelD¥ o=fecs to

MNamne , ID- Fa gistrs thond o, Costeanar T el in Cusmmer Ty s

DPhysics LAddes se, Dostal Addes s

| Telephona Callphone Emaedil)

Employes (Employea D, hManamarITy, Employell Alamager I} rafars oo Manage Ty in

MWarme, Svrnames, Te=lephons, Csl iphons, lsmam=r

Emaill

helann mer ('hIaM. D, Wames, Surnames, olmTem g TO» Home=

Tzl x, Call Ernai

Paroment { PavmentlD, AccountDy, Dats, ParmentdDr AccomatlD refers to Accountly

Dlerhod. Aonnuet) Auor ot

Panalty { Panaltyll?, Accountd?, Dwete, A ge, | DenebyIT AccomnilDy refers oo Ac ooundlr in

Aanoumnt. Intens st. Dascripion) Aocount

Droparty (Dropanyll DropertyT ypally, Droparcd D Froperiy Typell} rafars to

Stmiedo, Staidaddne s, Fegisiere dinmneT, Propery TvpeTT i Bropsr v Ty

Oroneriddrecs, Date Re mictered,
Maric=tValne, Stal'u-a;-
PropertySearvic = (Propertyoervic I 1Y, ProperyServicel I Service T r=fers to ServiceTDr in
ServiceIDr, Progerty Tyl D0 Service

Property Typelly rafoss o
Droperty ThypaITh i Droper e Thyps

Droperoy Typs {Dropety Typl Dy, Dropa ety T ypally o

Do ey

P TN (0T VTP, Lo INe I, SHaTIkS, [T Tagin] TR e TIF TeT275 B CAkslonTesT I1F 118

Type=, Dat=Ents red, DrateClomsd, Damils, ACArstoaTesT

Atpende B Attended By refers to Employ==Ilr in
Employeas

Febate {FabatslD, Accound D, fumount, AccountdDy AccoummtlD refers to AccountdD in

Daacription Joc ouEst

Sarvice { Sarvicel I, Thasoription. Typa) SarcalTr Hona

Tamif {TamfA >, Ssreloall?, TamifATy Service D rafars oo Sarcloally in

Dropergy T ypelD. SterfDate, EndlDae, Sancice

Paical P‘zu'put\"‘l‘l.‘pnm mafars oo
Prop=riyTyp=IT} in Propsr iy Typs

Tafuatonioll (v alustiono 1LY, o a T tio nro [T Valuaton Roll Ty pel I} r=f=r= to

S b tomFol TT yge=Ile | 'Prcp-rly]'D Sl veartionFol Type=TD i

LaztVaiver, SasilDae, EndDai % aluationPooll Typs

BodaricatValney Froperty Lypell} refars o
DropeertyThopa 1D in Droport:Thepa
LastVaher refers to Employael D dn

Eamg oyes
WE MR ool Ty e (v &lus Gonsl T T ypa Dy, | Wa ls o el [Dypal | Tode
D dipeiode, T ursd i odu p=]

Figure 1: Oracle Database Schema for Municipality Information System [32]

30

International Journal of Web & Semantic Technology (IJWesT) Vol.7, No.3/4, October 2016

The screenshot in Figure 2 shows a view of the Municipality database in Figure 1 created in
Oracle 11g. Oracle was chosen as Relational Database Management System (RDBMS) because it
is highly recommended for Semantic Web development [12], [21]. The database in Figure 2 was
initially migrated into Oracle from Microsoft SQL Server [32].

O Sl Ceicr T .

File Edit Wi Hawhgane Run W R e Towals Help
EFoEE o0 Rl O -0 -
[Commetions = | |[lrscors = (o)) [08] Atter Table.sg) = | fMuncpaity = | (G Creating Ext
- ¢y Columrn Dats Consrsrts |[Srarts | Ststistion | Trigger (=1
e - @ W =
=, Muricpaiity o S B3 W B sorn, | e
-l Tmblun (i bwracl) il servicem [§ CESCRIFTION
- T Ao T S —— —=
0 s SEAVICE 1 Wacesr Consumptisn
L2 I Electricity

I sappancEMErT
B sarREars

HH CusTOMER

Il CUSTOMERTYFE

A Baslo El=atr
4 Bafure
ER-1
& Sewarage Additionsl

Emmove

Bmod ou e

et = Smwmzagw
i rasrusc=rn

EH FayrEnT

I FEras T

I PROFERTY

[FACPERTY SERVICE
[FROPERTYTYPE

EH queny

I REBATE

o

[=vemtammams

EH TarRIm

EEH vALLIATIOMADLL

I vALUATIOMAGLLTYRE

e ER

i a s

LI

it

Figure 2: Screenshot of the Oracle Database

It can be noticed in Figure 2 that the database has an extra Sysdiagrams table which wasn’t
included in Figure 1.The Sysdiagrams table was automatically created by Oracle during the
migration from Microsoft SQL Server. This table is not a critical part of the database.
Furthermore, the database was loaded with test data before the experiments, i.e, four rows in the
Manager table and six rows in the Service table (Figure 2)

4.2. Computer and Software Environment

Experiments were carried out on a Dual Core 32 bit Notebook with 2 GB of RAM and a
Windows 7 Operating System. It is important to recall that, Oracle 11g Express Edition was used
as RDBMS. Two plug-ins, namely,DataMaster [17] and OntoBase [19] were used to
automatically construct ontologies from the Oracle database in Protégé version 3.5. Both plug-ins
utilize the Oracle JDBC driver to establish a connection to the Oracle database.The graphical
representation of the output ontologies from DataMaster and OntoBase was done using
virtualization plug-ins including OntoGraf [34] and OWLViz [33]. A Semantic Web tool that
generates a structured documentation of ontology, namely, Parrot [35] was used to display and
analyse the structure of the output ontologies codes from DataMaster and OntoBase.

31

International Journal of Web & Semantic Technology (IJWesT) Vol.7, No.3/4, October 2016

TAMMIF 1]
FREFERATY
LN FAAHNASEM -]
i FEHALTY)
5
i A RS .
¢ BatarypaMrapsye 5
L mERATE]
AL UATIONMGLL T Y™ .
.l':i:".ﬁ\.JrlT!FFVIi:F
L e
£ MmOty ERT]
1 CUETORIERM]
FROFERTYEERVICE]
FROEERTYT YRR
oM 1]
¢ Oihjmetrope e

Fomianles

o
[&CnDUNT 1]
O GUBTOMERT YRR
{ EmeLovER
CMALUATIONAS L

 AMPANGEMENT 3

Figure 3: Inheritance Structure of Ontology Constructed with DataMaster Plug-in via OWLViz
4.3 Experimental Results

Figure 3 shows the classes of the OWL ontology constructed from the Oracle database (Figure 1
and 2) with the DataMaster plug-in. The graphical representation of classes in Figure 3 was
obtained with the OWLViz virtualisation plug-in. The complete graph of the resulting ontology is
shown in Figure 4; this graph was generated with the OntoGraf [34] virtualisation plug-in. Figure

4 shows all the classes of the ontology constructed with the DataMaster plug-in and the
relationships between them.

32

International Journal of Web & Semantic Technology (IJWesT) Vol.7, No.3/4, October 2016

i 'n‘.ﬁ.I.LﬁTIE!RﬂLLTY

® Ciss
= []

5 T 1 PROPERTYSERVICE
T ri
B CUSTOMER d
—— [Sousoer |-
ACCOUNTSERWICE
* B ARRANGEMENT

CUSTOMERTYPE

Figure 4: Ontology Constructed with DataMaster Plug-in

Similarly, OntoBase plug-in was used to construct OWL ontology from the Oracle database
(Figure 1 and 2).Figure 5 shows a screenshot of the ontology constructed with OntoBase within
Protégé. The ontology in Figure 5 was further represented graphically with the OntoGraf

visualization plug-in as in Figure 6. In Figure 6, all classes of the resulting ontology and the
relationships between them are shown.

33

International Journal of Web & Semantic Technology (IJWesT) Vol.7, No.3/4, October 2016

THIMG
> EYSTEM-CLASS
v TYPE
> ACTION
v :TUPLE.
v dbo_hunicipality.
dbo_hunicipality ACCOURT.
o _hdunicipality ACCOUNTSERYVICE.
clbo_buni cipality ARRAMGEMERNT.
dbo_Municipality ARREARS.
dbo_hunicipality CUSTOMER.
cdhio_bdunicipalty CUSTORERTYPE.
dbo_municipality EMPLOYEE.
dbo_hkunicipality MAMNAGER.
dbo_hunicipality PAYMEMT.
dbo_municipality PEMALT Y.
dbo_municipality PROPERTY .
clbo_buni cipality PROPERTY SERWICE.
clbo_buni cipality PROPERTY TPE.
dbo_hunicipality SUERY .
dbo_hunicipality REEATE.
dbo_municipality SERYICE.
clbo_buni cipality 5% SDISGRAMS.

Figure 5: Screenshot of Ontology Constructed with OntoBase Plug-in

As mentioned earlier, the OWL codes of the ontologies constructed with both DataMaster and
OntoBase plug-ins were further analysed using the Parrot [35] ontology documentation software.
Parrot displayed the structure of the resulting OWL ontologies as well as useful comments that
explained the OWL constructs (classes, Datatype Properties, Object Properties, etc.) within the
ontologies.

Figure 7 shows the mapping results of the Oracle database (Figure 1 and 2) into ontology (Figure
3 and 4) with the DataMaster plug-in. The results in Figure 7 (a and b) shows that all tables were
successfully mapped to ontology classes (Figure 3 and 4) including the PropertyService table
which is used to resolve the many-to-many relationship. In fact, the PropertyService table has a
Primary Key and cannot be treated as a bridge table. In addition to the classes mapped from the
relational database tables, four other classes were created.

34

International Journal of Web & Semantic Technology (IJWesT) Vol.7, No.3/4, October 2016

@ dbo_Nunicipai
y.PRHEﬁRS & dba Municipalit
- - yOUERY
ey o g T B dbo_Municipait
o \ 2 v MBANAGER
\ s Y ’ f \ - T
® dbo Municipalt | S
Y ACCOUNT i o,
'j \ J 3 \\. \.
B dha Municipait o N, T T R iy
VARRANGEMENT |——) »
T ® doo Municgalil | i @ dba_Muricipail
‘ A & Y EMPLOYEE
e =g a1
| ® dbo Municipait [7 M
@ ToRG y.CUSTOMER \
e @ dbo Muricipaiit
v PROPERTYSERVI VSYSDIAGRAMS
7 e
e I'.
.. 1 1 4
/ i 'I'.' 'l--. ¥ : \
M. # dbo_Murigpait |\ $ ‘SERVICE
© dba_Municipait yeEc
y.PROPERTYTYPE
\!‘

1 @ dbo, Muricipait
yTARRIF

Figure 6: Part of Ontology Constructed with OntoBase

With regards to Datatype Properties, Figure 7 (a, b) shows that all 105 columns were mapped into
Datatype Properties irrespective of whether they were foreign keys or not. DataMaster also added
7 extra Datatype Properties. This finding reveals a slight deviation from the mapping principles in
Subsection 3.3. The results in Figure 7(b) shows that all 21 foreign keys in the input Oracle
database were successfully mapped to Object Properties with the addition of 4 more Object
Properties. A deviation here is that duplicate Object Properties were not created to represent
inverse functional properties as stated in the mapping principles in Subsection 3.3.

35

International Journal of Web & Semantic Technology (IJWesT) Vol.7, No.3/4, October 2016

120 17,
100 m Tables

80

®m Columns
&0
an Foreign Keys
19 21 19)
20 10 ® Primary Keys
0 - = Rows
Database
{a)
120 111
W Classes

100

80

m Datatype

Bl Properties

e 23 25 Object Properties

20 - e

0 - ® Individuals
DataMaster Ontology

Figure 7: (a) Database components (b) DataMaster Ontology Components

The results in Figure 7(b) shows that all 10 test rows in the input Oracle database were
successfully mapped to Individuals. Lastly, the DataMaster plug-in did not produce any
cardinality although there were NULL and NOT NULL columns in the database. However, it
handled bridge tables according to the mapping principles.Further more, although DataMaster
generated an inheritance hierarchy as in Figure 3, it did not comply with the mapping principles
in Subsection 3.3. Overall, the results in Figure 7 show that, according to database-to-ontology
mapping principles, the ontology constructed with the DataMaster plug-in captured most of the
features of the input database even though there were slight deviations from the mapping
principles.

Similarly, Figure 8 shows the mapping results of the Oracle database (Figure 1 and 2) into
ontology (Figure 5 and 6) with the OntoBase plug-in. Figure 8 (a and b) shows that all tables in
the database were successfully mapped to ontology classes with an addition of 1 class. The
PropertyService table was also converted into a class. In fact, the PropertyService table has a
Primary Key and could not be traited as a bridge table.

36

International Journal of Web & Semantic Technology (IJWesT) Vol.7, No.3/4, October 2016

120 1
100 M Tables
B0
® Columns
&0
an Foreign Keys
19 1 19
20 - s 1 ®Primary Keys
0 - ¥ Rows
Database
[a}
B0 a5
62 B Classes
60 _
401 20 ¥ Datatype
pi] 18 Properties
0 Object Properties
OntoBase Ontology

(b}
Figure 8: (a) Database components (b) OntoBase Ontology Components

Results in Figure 8 (a and b) shows that all columns of the database were mapped into Datatype
Properties except for foreign keys. In fact, the OntoBase plug-in produced fewer Datatype
Properties; this proves that foreign key columns were indeed excluded. This is a major
conformance with the mapping principles in Subsection 3.3.

With regard to Object Properties, the results in Figure 8 (b) show that all foreign keys were
successfully mapped to Object Properties with all the necessary duplicates due to one-to-many
and many-to-many relationships. In Figure 8 (b), it is shown that all 10 test rows in the input
Oracle database were successfully mapped to Individuals.Lastly, similar to DataMaster, the
OntoBase plug-in did not produce any cardinality although there were NULL and NOT NULL
columns in the database. However, as DataMaster, it also handled bridge tables according to the
mapping principles. Furthermore, different from DataMaster, OntoBase generated an inheritance
hierarchy that complies with the mapping principles in Section 3.3. Overall the results in Figure 8
reveal that the structure of the ontology obtained with the OntoBase plug-in has few deviations
and does capture accurately the features of the input database according to the database-to
ontology mapping principles in Subsection 3.3.

37

International Journal of Web & Semantic Technology (IJWesT) Vol.7, No.3/4, October 2016

120

112
105

100

80
62 62
60

B Database

40 B DatahMaster Ontology

25
192320 21 OntoBase

20 1010 10

0 , , ~

Tables & Classes Columns & ForeignKeys & Rows &
Datatype Object Properties Individuals
Praoperties

Figure 9: Chart of Comparison of Performances of DataMaster and OntoBase Plug-ins

Figure 7 and 8 presented separate results for DataMaster and OntoBase plug-ins. In Figure 9, all
the results are tallied and the mapping performances of both plug-ins are compared. It is shown in
the left block of Figure 9 that 19 database tables (left bar) are mapped into 23 ontology classes in
DataMaster (middle bar) and 20 ontology classes in OntoBase (right bar). In the second left block
of Figure 9, 105 database columns (left bar) are mapped into 112 Datatype Properties in
DataMaster (middle bar) and 62 Datatype Properties in OntoBase (right bar). The second right
block of Figure 9 depicts 21 database foreign keys (left bar) that are mapped into 25 Object
Properties in DataMaster (middle bar) and 68 Object Properties in OntoBase (right bar). These
results reveal that DataMaster has more deviations from the mapping principles as far as
producing an accurate Ontology from the relational database is concerned. OntoBase on the other
hand conformed with the mapping principles in Subsection 3.3; this conformance is witnessed in
the low number of Datatype Properties (62) in the resulting ontology compared to the number of
columns (105) in the input database as well as the high number of Object Properties (68)
compared to the number of foreign keys (21) in the input database.

5. CONCLUSION

In this study, ontologies were automatically constructed from an Oracle relational database with
two Protégé plugins,namely, DataMaster and OntoBase. The semantic structures of the resulting
ontologies were analysed by means of two visualization plug-ins including OntoGraf and
OWLViz as well as an ontology documentation software, namely, Parrot. The performances of
the plug-ins were further measured based on the database-toontology mapping rules/principles.
The results revealed that both tools reasonably convert a relational database to ontology with
slight deviations from the database-to-ontology mapping principles. The results of the studies

38

International Journal of Web & Semantic Technology (IJWesT) Vol.7, No.3/4, October 2016

provide interesting insights on the performance and accuracy of Protégé plug-ins in converting
relational databases into ontologies; this may be useful to developers who are developing Sematic
Web applications that interface legacy relational databases of organizations.The future direction
of the research would be to repeat the experiments with larger relational databases and measure
the scalabilities of DataMaster and OntoBase plug-ins. Another addition is to expand the study
with Semantic Web tools other than Protégé.

REFERENCES

[1] Hu W. and Qu Y., “Discovering Simple Mappings Between Relational Database Schemas and
Ontologies,” in Proc. 6th International Semantic Web Conference, Busan, Korea, pp. 225-238, 2007.

[2] Gherabi N., Addakiri K. and Bahaj M., “Mapping relational database into OWL Structure with data
semantic preservation,” International Journal of Computer Science and Information Security, vol. 10,
no. 1, pp. 42-47,

2012.

[3] Cristani M. and Cuel R., “A Comprehensive Guideline for Building a Domain Ontology from
Scratch,” in Proc. WWW 2012 - Session: Ontology Representation and Querying: RDF and
SPARQL, Graz, Austria, pp.205- 212, 2004.

[4] Madhu G., Govardhan A. and Rajinikanth T.V., “Intelligent Semantic Web Search Engines: A Brief
Survey,”International Journal of Web & Semantic Technology (IIWesT), vol. 2, no. 1, pp. 34-42,
2011.

[5] Imandi N. and Rizvi S.A.M., “An Approach to OWL Concept Extraction and Integration across
Multiple Ontologies,” International Journal of Web & Semantic Technology (IJWesT), vol. 3, no. 3,
pp. 33-51, 2012.

[6] Spanos D., Stravrou P. and Mitrou N., “Bringing Relational Databases into the Semantic Web: A
Survey,”Semantic Web Journal, vol. 3, no. 2, pp. 169-209, 2012.

[7] Sequeda J.F., Marcelo A. and Miranker D.P., “On Directly Mapping Rational Databases to RDF and
OWL,” in Proc. WWW 2012 - Session: Ontology Representation and Querying: RDF and SPARQL,
Lyon, France, pp.649-658, 2012.

[8] Tirmizi S.H., Sequeda J. and Miranker D., “Translating SQL Applications to the Semantic Web,” in
Proc.19th International Conference on Database and Expert Systems (DEXA 2008),Turin, Italy, pp.
450-464,2008.

[9] Li M., Du X. and Wang S., “Learning Ontology from Relational Database,” in Proc. Fourth
International Conference on Machine Learning and Cybernetics, Guangzhou, China, pp. 3410-3415,
2005.

[10] Jain V. and Singh M., “A framework to Convert Relational Database to Ontology For Knowledge
Database in Semantic Web,” International Journal of Scientific & Technology Research, vol. 2, no.
10, pp. 9-12, 2013.

[11] Pasha M. and Sattar A., “Building Domain Ontologies From Relational Database Using Mapping
Rules,”International Journal of Intelligent Engineering & Systems, vol. 5, no. 1, pp. 20-27, 2013.

[12] Zhou S., Ling H., Han M. and Zhang H., “Ontology Generator from Rational Database on Jena,”
Computer and Information Science Technology, vol. 3, no. 2, pp. 263-267, 2010.

[13] Cerbah F., “Learning highly structured semantic repositories from relational database: The
RDBToOnto tool,” in Proc. 5th Annual European Semantic Web Conference (ESWS 2008), Tenerife,
Canary Islands,Spain, Jun 2008.

[14] Alatrish E.S., “Comparison of Ontology Editors,” eRAF Journal on Computing, Vol. 4, pp. 23-38,
2012.

39

[17]
(18]
(19]

[20]

(21]
[22]
(23]
[24]

[25]

International Journal of Web & Semantic Technology (IJWesT) Vol.7, No.3/4, October 2016

Buitelaar P., Olejnik D. and Sintek M., “A Protégé Plug-in for Ontology Extraction from Text Based
on Linguistic Analysis,” in Proc. 1st European Semantic Web Symposium (ESWS 2004), Heraklion,
Greece,May 2004.

Mulligann C., Trame J. and Krzysztof J., “Introducing the new SIMDLA Semantic Similarity
Measurement Plug-in for the Protégé Ontology Editor,” in Proc. 1st ACM SIGSPATIAL International
Workshop on Spatial Semantics and Ontologies, Chicago, USA, Nov 2011.

Nyulas C., O’Connor M. and Tu S., “DataMaster - a Plug-in for Importing Schemas and Data from
Relational Databases into Protégé,” in Proc. 10th International Protg Conference, Budapest, Hungary,
pp. 15-18, 2007.

DataGenie. Available at:http://protege.cim3.net/cgibin/wiki.pl ?DataGenie [Accessed 10.10.2015].
OntoBase. Available at: http://code.google.com/p/ontobase/;
http://protegewiki.stanford.edu/wiki/OntoBase [Accessed 11.10.2015].

Papapanagiotou P., Katsiouli P., Tsetsos V., Anagnostopoulos C. and Hadjiefthymiades S.,
“RONTO:Relational to Ontology Schema Matching,” AIS SIGSEMIS Bulletin, vol. 3, no. 3, pp. 32-
36, 2006.

Cullot N., Ghawi R. and Ytongnon K., “DB20OWL: A Tool for Automatic Database-to-Ontology
Mapping,” in: Michelangelo Ceci; Donato Malerba & Letizia Tanca, ed. ’SEBD’, pp. 491-494, 2007.
Telnarova Z., “Relational database as a source of ontology creation,” in Proc. International Multi-
conference on Computer Science and Information Technology, Wisla, Poland, pp. 135-139, 2010.
Sedighi S.M. and Javidan R., “Semantic query in a relational database using local ontology
construction,” South African Journal of Science, vol. 108, no. 11/12, pp. 1-10, 2012.

Zhang L. and Li K., “Automatic Generation of Ontology Based on Database,” Journal of
Computational Information Systems, vol. 7, no. 4, pp. 1148-1154, 2011.

Cerbah F., “Mining the Content of Relational Databases to Learn Ontologies with Deeper
Taxonomies,” inProc. [IEEE/WIC/ACM International Joint Conference on Web Intelligence (WI'08)
and Intelligent Agent Technology (IAT’08), Sydney, Australia, pp. 553-557, 2008.

Transitioning Applications to Ontology, RDBToOnto: From Relational Databases to Ontologies.
Available at: http://www.taoproject.eu/researchanddevelopment/demosanddownloads
/RDBToOnto.html [Accessed 11.10.2015].

Navathe S.B., “Evolution of Data Modelling for Databases,” Communications of the ACM, vol. 35,
no. 9, pp.112-123, 1992.

Mahmood N., Burney A. and Ahsan K., “A logical Temporal Relational Model,” International
Journal of Computer Science Issues, vol. 7, no. 1, pp. 1-9, 2010.

Saleh M.E., “Semantic-Based Query in Relational Database using Ontology,” Canadian Journal on
Data,Information and Knowledge Engineering, vol. 2, no. 1, pp. 1-16, 2011.

Jia C. and Yue W., “Rules-based object-relational databases ontology construction,” Journal of
Systems Engineering and Electronics, vol. 20, no. 1, pp. 211-215, 2009.

Lemaignan S., Siadat A., Dantan J. and Semenenko A., “MASON: A Proposal for an Ontology of
Manufacturing Domain,” In the Proceedings of the IEEE Workshop on Distributed Intelligent
Systems:Collective Intelligence and its Applications, Prague, Czech Republic, 2006.

Authors, Published Manuscript.

OWLViz. Available at: http://protegewiki.stanford.edu/wiki/OWLViz [Accessed 20.10.2015].
OntoGraf. Available at: http://protegewiki.stanford.edu/wiki/OntoGraf [Accessed 20.10.2015].

Parrot: A RIF and OWL documentation service. Available at: http://ontorule-project.eu/parrot/parrot
[Accessed 20.10.2015].

40

