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ABSTRACT 

 

This paper considers a two-hop network consisting of a source, two parallel half-duplex relay nodes, and 

two destinations. While the destinations have an adequate power supply, the source and relay nodes 

rely on harvested energy for data transmission. Different from all existing works, the two relay nodes 

can also transfer their harvested energy to each other. For such a system, an optimization problem is 

formulated with the objective of maximizing the total data rate and conserving the source and relays 

transmission energy, where any extra energy saved in the current transmission cycle can be used in 

the next cycle. It turns out that the optimal solutions for this problem can be either found in a closed- 

form or through one-dimensional searches, depending on the scenario. Simulation results based on both 

the average data rate and the outage probability show that energy cooperation between the two relays 

consistently improves the system performance. 
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1. INTRODUCTION 
 

In the past few years, there has been a significant research progress on energy harvesting (EH) 

communications as it’s a promising approach to realize green communications, which allows to 

power the communication devices and networks with renewable energy sources; see recent 

review papers [1]–[4] and references therein. Various types of energy sources can be utilized to 

supplement energy supplies such as solar, wind, vibration, motion, and electromagnetic (EM) 

wave [5]. Further, through power transfer by radio waves, energy cooperation allows wireless 

nodes to intentionally transfer some energy to others to assist communications [6]. 
 

In EH, the main focus is on the development of energy harvesting models, protocols, and 

transmission schemes. For instance, in point-to-point communications, both the transmitter 

and the receiver could be equipped with energy-harvesting devices, and energy transfer can 

happen between the transceivers [7]–[10]. 
 

Recently, considerable research efforts have been extended toward energy harvesting networking 

like cooperative networks, cognitive radio networks, multiuser interference networks, and cellular 

networks [11]–[19]. For instance, in [12] a two-hop relay channel with energy-harvesting source 

and relay nodes, and one-way energy transfer from the source node to the relay node was 

studied. Multiple access and two-way channels are considered in [13] with energy harvesting 
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transmitters that transfer energy to each other. An energy-harvesting diamond relay channel is 

analyzed in [14], where the source can transfer some of its harvested energy to the relays. In 

[18], a multi-relay network is investigated where the relays that are randomly located within the 

cooperating area and a single best relay is selected to the decoded source message to the 

destination. Recently, EH in the domain of the fifth generation (5G) has been studied in [19]. 
 

There are several other works in the aforementioned research areas related to energy cooperation 

(EC) but not on energy-harvesting sensor networks [20]–[25]. The transmitter design for 

wireless information and EC in a multiple-input single-output interference channel was 

investigated in [20]. In the context of cognitive radio networks, the primary transmitter can 

transmit power to secondary transmitters such that the latter can obtain the extra power to help 

the former besides serving their own secondary users [21]. In a wireless powered cellular 

communication network, downlink wireless energy transfer can be used to assist the uplink 

information transmissions [22], and EC among base stations has been studied in [24]. 
 

Several objectives have been considered when designing energy harvesting communications 

systems, including data rate, outage probability, harvested energy, and total power consumption 

[26]. For example, the minimization of the outage probability is considered in [27]–[29] while the 

data rate is maximized in [30], [31]. The work in [30] attempts to maximize the data rate under 

heavy channel fluctuations and energy variations. In [31], the optimal water level for the data rate 

maximization was proposed based on a recursive water-filling approach. 
 

On the other hand, regarding the EH models and based on the availability of non-causal 

knowledge about energy arrivals at the transmitters, the researchers primarily divide those 

models into two streams: deterministic models [32], [33] and stochastic models [34], [35]. In the 

former one, a full knowledge of energy arrival instants and amounts available at the transmitters 

beforehand. In the stochastic models, the energy renewal processes are regarded as random 

processes. 
 

For energy scheduling designs, there are two approaches: offline and online, depending on 

whether the knowledge of channel state information (CSI) and energy state information (ESI) are 

available at the beginning of a transmission. In offline approaches, the full (causal and non-

causal) knowledge of CSI and ESI during the energy scheduling period is available at the 

transmitter side a priori and the optimization problems are formulated to maximize certain short-

term objectives and solved by convex optimization techniques [31], [36]. Online approaches, on 

the other side, only account for the causal knowledge of the CSI and ESI [37], [38]. 
 

In this paper, we consider a two-hop network consisting of a source, two parallel half-duplex 

relay nodes, and two destinations, where the two energy-harvesting relays can exchange their 

harvested energies to each other. To the best of our knowledge, a system with energy-

conferencing relays has not been studied in all existing works, and hence the study herein 

offers a fresh perspective. For such a system, we formulate an optimization problem to 

maximize the total data rate of the network while conserving the system resources via 

judicious choices of the source and relays transmission energy on the source-to-relay links and 

relay-to-destination links, respectively, and the energy transfer between the two relay nodes. The 

optimal system solution is found either in a closed-form or through one-dimensional searches. 

Moreover, we study the outage probability at the two destinations and show how EC between the 

two relays can reduce the system outage. 
 

The remainder of this paper is organized as follows. Section 2 describes the system model 

and assumptions and Section 3 provides the problem formulation. The solutions to the 

optimization problem under different scenarios are detailed in Section 4, and a numerical 
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example is presented in Section 5. Section 6 extends the analysis to the outage probability while 

Section 7 concludes this paper. 
 

2.  SYSTEM DESCRIPTION AND ASSUMPTIONS 
 

Fig. 1 shows the considered system, which consists of a source S, two parallel relays R1 and 

R2, and two destinations D1 and D2. Each node is equipped with a single antenna. S, R1, and R2 
rely on harvested energy while D1 and D2 are powered with adequate power supply. There is no 

direct link between S and D1 and D2, and that R1 and R2 are half-duplex working in either a 

receive mode or in a transmit mode. R1 and R2 will apply decode-and-forward (DF) relaying 

scheme to forward the data just received from the previous time slot. 

 

 

 

Fig. 1.  A two-hop network with energy conferencing relays. 

 

One transmission cycle consists of two stages; the information collection stage, in which, S, R1, 

and R2 collect the information about channels states and energy harvested at each node then 

decide the optimum solutions to be used. Once this stage is over, data transmission stage starts 

which will be done in two consecutive time slots as follows: In the first time slot, S will 

transmit two different data streams to R1 and R2 simultaneously. In the second time slot, R1 and 

R2 will decode and then forward their data separately to their destinations. Moreover, data 

transmission through the upper hop links, i.e., S − R1 and R1 – D1 will be orthogonal on data 

transmission through the lower hop links, S − R2 and R2 − D2. After finishing a whole 

transmission cycle, there is a sleeping period, during which, S, R1, and R2 will have the time 

to harvest more energy to be used in next transmission cycle while D1 and D2 will be idle as 

shown in Fig. 2. 
 

Throughout the paper, the following set of assumptions are considered. 
 

1) EC between R1 and R2 is done via two conferencing links that could be wired or wireless. 

These links assumed to be orthogonal to each other and also orthogonal to the source-to-

relays and relays-to-destinations links. Moreover, data transmission and energy transfer 

channels are orthogonal, i.e., energy transfer does not create interference to data 

communication [39]. 
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Fig. 2.  A timeline showing two consecutive transmission cycles, separated by a sleeping period. 

 

2) S, R1, and R2 have separate batteries and harvested energies are stored in the batteries. The 

energy loss during the energy transfer procedure will be modelled by a multiplicative 

efficiency factor, although other models would be applicable. 
 

3) The processing energy required by circuits at any relay is negligible compared to the 

energy used for signal transmission especially when transmission distances are large which 

is applicable in our work [40], [41]. 
 

4) In our work, the CSI and the energy harvested at S, R1, and R2 nodes are assumed to be 

collected and known before the start of the transmission cycle and this knowledge 

assumed to be correct. Hence system optimization can be performed. 

3.  PROBLEM FORMULATION 
 

The delivery of the data to D1 and D2 from S will be done in two time slots; during the first 

time slot, S will transmit data to R1 and R2 concurrently on two separate channels. In the 

second time slot, R1 and R2 will forward the received the data to their designated destinations on 

two separate channels. Note that the S − R1 and R1 − D1 could be on the same channel, and so 

does S − R2 and R2 − D2. On the first hop, S broadcasts independent data streams to R1 and R2. 

The baseband discrete-time channel with two relays is 
 

 

where xk [m] is the signal intended for relay k at time slot m, hk denote the channel gain from 

the source to relay k, yk [m] is the received signal at relay k during time slot m, and wk [m] is 

the noise at relay k during time slot m which is assumed independent and identically 

distributed (i.i.d.) complex Gaussian with �(0, �wk

� ). 
 

On the second hop, R1 and R2 are responsible to decode the data received from the first hop and 

then forward it during the next time slot. Hence 

 

 
 

where xl [n] is the signal intended from relay k to destination Dl at time n, gl denote the 

channel gain from the relay k to destination Dl , zDl [n] is the received signal at destination Dl  

during time slot n, and �	
[�] is the noise at destination Dl  assumed i.i.d. complex Gaussian 

with �(0, ��	k

� ).  
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Let ES, ER1
, and ER2 denote the energy available per symbol during the data transmission 

slot at the beginning of each transmission cycle at S, R1, and R2, respectively. Note that	�S, 

	�R1
	and	�R2 are random variables, but the values of their realizations are assumed known 

before the cycle starts. When R1 transfers δ12 amount of energy to R2, the energy at the 

receiver is γ12 δ12, where γ12 is the transfer efficiency from R1 to R2. When R2 transfers δ21 

amount of energy to R1, the received energy is γ21 δ21, where γ21 is the transfer efficiency from 

R2 to R1. The transfer efficiencies are less than one, which accounts for the potential loss due 

to various reasons in the energy transfer procedure. Furthermore, γ12 and γ21 are not necessarily 

the same. 

On the first hop, define CS,R1 
and CS,R2  

as the maximum data rates from S to R1 and from S to 

R2, respectively. Hence 

 

 

where �s1 and �s2 is the average energy per transmit symbol from S to R1 and R2, 

respectively, with 0 ≤ �s1
+ �s2

≤ �S. 
 

On the second hop, define CR1,D1 
and CR2,D2 

as the maximum data rate from R1 to D1 and from 

R2 to D2, respectively. Hence, 
 

where �R1 and �R2 is the average energy per transmit symbol from R1 and R2, respectively. 
 

 

If C1 and C2 are the maximum data rates of the upper and lower hops’ links, respectively. 

Then, the total data rate of a two-hop DF network is 

 

                                   Ctotal  = C1+C2 = min{CS,R1 
, CR1 ,D1

} + min{CS,R2 
, CR2 ,D2 

}.            (7) 

For each direction of energy transfer, one optimization problem needs to be formulated as 

follows [42]. 
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1) From R1 to R2 : 

 

2) From R2 to R1 : 

 

 

Note that the equality constraints in (8b) and (8c), and also (9b) and (9c), are imposed since 

when the maximum total data rate is achieved, any extra energy due to the imbalance of data 

rates on the first and second hops can be saved for next cycle of transmission and will be added 

to the newly harvested energy by that node. We will call this strategy as energy saving 

strategy (ESS). Hence, at the end of any transmission cycle, the saved energy at R1, R2, and S 

for the next transmission cycle is defined as follows 
 

 

where ∗ indicates the optimal value to be found later. For each realization of the channel gains 
and the harvested energy levels, the system aims to maximize Ctotal while conserving the 

transmission energy at S, R1, and R2. 
 

The optimization problems in (8a) and (9a) will be carried out separately. The final solution will 

be selected from the two tentative solutions based on the data rate comparison. 
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4. SOLUTIONS 
 

The optimization problems (8a) and (9a) have multiple inequality constraints. They could be 

solved through the Karush-Kuhn-Tucker (K.K.T.) conditions, however, the procedure is 

cumbersome. Through heuristic reasoning, most constraints can be removed in different scenarios 

and optimal solutions can be found through one-dimensional searches. 

 

A. First hop is the bottleneck 
 

Assuming that the first hop is the bottleneck and the second hop can fully support the first hop. 

The sum rate of the first-hop links C1
sum = CS,R1  + CS,R2 and the problem is to find the energy 

allotment that maximizes this sum rate subject to the constraint that �s1
+ �s2

= �S. This is a 

standard water-filling problem on power allocation over parallel Gaussian channels [43]. The 

solution is: 

 
where v is chosen so that 

 
 

where (x)+ denotes the positive part of x. 
 

Once we optimized the first hop, we can proceed to check whether the second hop can support 

the optimal solution from the first hop. We have the following cases of interest: 
 

Case A1): 
|��|��w	�

� �s�∗
|��|��w��

	 < 	�R�and 
|��|��w	�

� �s�∗
|��|��w��

	< 	�R�. Under this condition, there is no need for EC 

between R1 and R2 as both have enough energy. The optimal solution is: 

 

 
 

 

Case A2): 
|��|��w	�

� �s�∗
|��|��w��

	< 	�R�but �R� <	 |��|��w	�
� �s�∗

|��|��w��
< �R� + ���  �R� −

|��|��w	�
� �s�∗

|��|��w��
". Under this 

condition, R1 will transfer energy to R2 to support the data rate as required by the first hop. 

 

 
 

 

Case A3): 
|��|��w	�

� �s�∗
|��|��w��

	< 	�R�but �R� <	 |��|��w	�
� �s�∗

|��|��w��
< �R� + ���  �R� −

|��|��w	�
� �s�∗

|��|��w��
". Under this 

condition, R2 will transfer energy to R1, which can support the data rate as required by the first 

hop. 
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B. First hop is not the bottleneck 
 

Since the first hop is not the bottleneck, the second hop needs to exhaust all the available energy, 

i.e., �R�
saved = �R�

saved = 0. Moreover, as we have two directions of energy transfer, let us 

investigate each direction separately. 
 

1) Energy Transfer from R1 to R2: Under the assumption that the first hop has enough energy to 

support the second hop, the target then is to maximize C2
sum

 = CR1,D1  + CR2,D2 on the second hop. 

Since 
 

 
 

by taking the derivative relative to $��, we obtain 

 

 
This objective function is convex, which can be verified by checking its second derivative. 

However, the constraints in (8h) should be imposed to make sure that the solution is in range, we 

define 
 

 
 

Now we need to check if condition (8f) has been satisfied by using the energy transfer	$1̅2
unc. 

Plugging 	$�� = $1̅2
unc into (15) leads to one unique optimal values for �s1

 and �s1
, which are 

denoted as 	�s̅1

unc	and 	�s̅2

unc.  

 

If indeed 	�̅s1

unc +		�̅s2

unc ≤	�S, then the condition is satisfied which means that the first hop can 

fully support the optimized second hop, and hence 	�s1

* = �̅s1

unc	and 	�s2

* = �̅s2

unc. In short, if Cases 

A1-A3 are not applicable, this leads us to where the optimization problem in (8a) is solved as 

follows. 
 

 

Case B1): If	�̅s1

unc +		�̅s2

unc ≤ �s, then the optimal solution to (8a) is 

 
 

and 

 

 
 

However, if �s1
+	�s2

> �S then the condition (8f) needs to be enforced and a one-dimensional 

search on 	$12
*  solves the optimization problem in (8a) which leads to maximize Ctotal for this 

direction. 
 

Case B2): The solution is 
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2) Energy Transfer from R2 to R1: The optimization problem in (9a) is solved following the 

same steps as in the opposite direction, i.e., R1 to R2. Explanations are now skipped, with only 

key equations provided. The optimum value of $�� for an unconstrained optimization on the 

second hop is 
 

 
 

based on which we define the truncated version 	$2̅1
unc within the interval [0, �R�]. Plugging 

$�� = 	$2̅1
unc	 into (16), and denote the solution on �s1

 and �s2
	 as 	�s̅1

unc	and 	�̅s2

unc. Plugging �s1
+

�s2
= �S into (9f) to make sure that this condition is satisfied. 

 

Case B3): The optimal solution to (9a) is 

 

 
and 

 
If �s1

+	�s2
> �S, a one-dimensional search on 	$21

*  will be performed to solve the optimization 

problem in (9a) which maximizes Ctotal for this direction. 

 

Case B4): The solution is 

 

 
 

Based on the results from (22) and (26), the system should be able to determine the direction of 

energy transfer that maximizes the total data rate of the network. 

 

5. NUMERICAL EXAMPLE 
 

For numerical simulation, both first- and second-hop channels experience Rayleigh fading as: 

ℎ(~*�+0, �h,
�- and .(~*� /0, �g,

�0 ,				1 = 1,2. For the first hop, we assume �h1

� = �h2

�  , �w1

� =
�w2

� , and the maximum average SNR at the relay is �h1

� �S �w1

�4 . 

 

The energy levels �S, �R�and �R�  at the S, R1, and R2 are randomly generated from a Gaussian 

distribution �S~�+5S, �ES

� - and �R,~�/5R, , �ER,
� 0 ,				1 = 1, 2, respectively. For the second hop, 

we also assume �g
1

� = �g
2

� , and define the average SNR at the destinations as follows 

 

 
 

The numerical values of the system variables are set as follows: �w1

� = �w2

� = 1mJ, �w	1

� = �w	2

� = 

1mJ, and ��� = ���= 90% under the assumption that the conferencing links are wires. It is worth 

to mention here that if these links are assumed to be wireless, then ��� and ��� should be much 

lower due to high energy loss in the free space. 
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Fig. 3. Capacity versus the average SNR at the destinations for energy cooperation (EC) and no energy 

cooperation (No EC), where the relay energy levels and the channel gains are randomly generated with 

�R� , �R� , �S~�(100mJ, 50mJ). 
 

 

 
 

Fig. 4. Capacity versus the average SNR at the destinations for EC and No EC, where the relay energy 

levels and the channel gains are randomly generated with �S~�(300mJ, 50mJ) while 

�R� , �R�~�(100mJ, 50mJ). 
 

 
 

Fig. 5. Capacity versus the average SNR at the destinations, where the relay energy levels and the channel 

gains are randomly generated with �R�~�(200mJ, 50mJ) while �R� , �S~�(100mJ, 50mJ). 
 

 



International Journal of Wireless & Mobile Networks (IJWMN) Vol. 10, No. 1, February 2018 

                                                                                                                                                                        45 

 

 
 

Fig. 6. Gain versus the average SNR at the destinations, where the relay energy levels and the channel 

gains are randomly generated with �R� , �R� , �S~�(100mJ, 50mJ). 
 

Fig. 3, Fig. 4, and Fig. 5 show capacity as a function of the average SNR at the destinations with 

ESS is adopted for different values of �R� , �R� , �S. Fig. 3 and Fig. 4 show that, for any values of 

�R� , �R� , �S, EC is always helpful for the system and better than no EC. It is worth to mention 

here that, the role of ES is to control the maximum capacity that system can reach, which is 

expected. In Fig. 3, the highest capacity was about 10 bits/s/Hz while this floor got higher to 

about 12 bits/s/Hz when ES is increased as Fig. 4 shows. 

 

On the other hand, Fig. 5 shows that, when �R�is less than �R�, EC will be helpful to increase the 

data rate at D2 with no degradation on D1’s data rate. In other words, the strong relay will not 

sacrifice its rate by EC but it will help the weak relay which benefits the overall system. 

 

Fig. 6 shows the gain we get by adopting EC. It can be easily observed that this gain is much 

higher at low average SNR. This is justifiable as, at low average SNR, EC is crucial to help the 

system to overcome the bad channel states. However, this gain will decrease as average SNR 

increases due to fact that the channel state is getting better and EC is not critically needed any 

more. 

 

Fig. 7 shows scenarios when a one-dimensional search is needed which corresponds to Case B3. 

In Fig. 7(a) and Fig. 7(b), optimum $12 happens to be outside the designated range which means 

that the system should search for a viable solution. The search will start from ‘start searching’ 

point and goes backward until it finds $12 that is in the range and can be supported by the first 

hop then stops searching. The dashed lines show the searched domain. 

 

In Fig. 7(c), even though the peak occurs within the designated range, the system must perform 

the search as optimum $12	couldn’t be supported by the first hop due to low value of �S. The 

search will start from the peak in two directions and stops at the point that can be supported by 

the first hop. 

 

Fig. 8 shows the percentage of occurrence of each case we mentioned earlier. This figure 

confirms that all possible scenarios have been covered. Moreover, as expected, this percentage 

depends on the energy level at each node. In Fig. 8(a), as �S is less than �R� and �R�, this means 

that first hop will be more likely the bottleneck. This is why in this figure Cases A1-A3 appears 

more frequently than other cases. On the other hand, in Fig. 8(b), �S is larger than �R�  and 

�R�which means that the first hop is less likely to be the bottleneck. This justifies why Cases B1-

B4 show up more frequently than other cases. 
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Fig. 7. Ctotal versus $12 for three different realizations drawn from �S~�(50mJ, 20mJ)	while 

�R� , �R�~�(100mJ, 50mJ). 
 

 
 

Fig. 8. Percentage of occurrence of each case when the relay energy levels and the channel gains are 

randomly generated. 

 

6. EXTENSION TO OUTAGE PROBABILITY 
 

In the ideal scenario, S transmits the two data streams to R1 and R2 and they decode the received 

data perfectly and then forward it to their destinations with no outage. However, this is not the 

situation in the real scenario, in which, the outage happens at R1, R2, D1 or D2. If 7�∗ and 7�∗	are 

the target rates at D1 and D2, respectively, then the optimum system energy will be as follows 

 

 
 

Now, we can articulate the possible scenarios of interest: 
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a) If �S ≥ �9�∗ + �9�∗ , �:�
∗ ≤ �R� , and �:�

∗ ≤ �R� , then no EC needed. However, if �:�
∗ >

�R�while �:�
∗ ≤ �R�, then $��∗ = �;�

∗ <=R�
>��  Joules of energy transfer will happen from R2 to R1 

under the condition that R2 can support this transfer. If �:�
∗ ≤ �R�and �:�

∗ > �R�, then 

$��∗ = �;�∗ <=R�
>��   of energy transfer will happen from R1 to R2 under the condition that R1 can 

support this transfer. Hence, all nodes are working and no outage will happen. 

 

b) If �S ≥ �9�∗ and �:�
∗ ≤ �R� , then no EC needed from R2. However, if �:�

∗ > �R�, then energy 

transfer will happen from R2 to R1 under the condition that R2 can support R1 with $��∗ =
�;�
∗ <=R�
>��  Joules. Hence, R2 and D2 are in outage. 

 

c) If �S ≥ �9�∗ and �:�
∗ ≤ �R� , then no EC needed from R1. However, if �:�

∗ > �R�, then energy 

transfer will happen from R1 to R2 under the condition that R1 can support R2 with $��∗ =
�;�
∗ <=R�
>��  Joules. Hence, R1 and D1 are in outage. 

 

d) If there is no enough energy to support the first and second hop, all nodes will be off during 

that transmission cycle. Hence, all nodes are in outage. 

 

For the outage probability, we set both target rates 7�∗ and 7�∗  at 1.5 bits/s/Hz. Fig. 9 shows 

outage probability as a function of the average SNR at the destinations for different values for EC 

and No EC scenarios with and without ESS. It can be easily observed that the outage probability 

will be decreased by adopting EC as the two relays exchanging energy which allows the two 

destinations to overcome the outage difficulties and to satisfy their requirements. Moreover, this 

figure shows the benefit of exploiting the idea of saving the extra energy to be used in the next 

cycle of the transmission cycle. 
 

 
 

Fig. 9. Outage probability when �R� , �R� , �S~�(100mJ, 50mJ). 
 

7. CONCLUSIONS 
 

In this paper, we studied a two-hop network that has two energy harvesting relays which can 

exchange energy through conferencing links. Via suitable choices of the source and relays 

transmission energy, and the amount of energy transfer between the two relay nodes, the system 

data rate is maximized while the system energy is conserved. The actual harvested energy level at 

the node and the channel state information decide the way how the optimal solutions can be 
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obtained. They can vary from a closed-form solution to one-dimensional searches. Moreover, 

system outage probability was investigated to show the performance improvement through 

energy cooperation. 
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