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ABSTRACT 
 

Providing seamless mobility and a uniform user experience, independent of location, is an important 

challenge for 5G wireless networks.  The combination of Coordinated Multipoint (CoMP) networks  and 

Virtual- Cells (VCs) are expected to play an important role in achieving high throughput independent of the 

mobile’s location by mitigating inter-cell interference and enhancing the cell-edge user throughput. User-

specific VCs will distinguish the physical cell from a broader area where the user can roam without the 

need for handoff, and may communicate with any Base Station (BS) in the VC area. However, this requires 

rapid decision making for the formation of VCs. In this paper, a novel algorithm based on a form of 

Recurrent Neural Networks (RNNs) called Gated Recurrent Units (GRUs) is used for predicting the 

triggering condition for forming VCs via enabling Coordinated Multipoint (CoMP) transmission. 

Simulation results, show that based on the sequences of Received Signal Strength (RSS) values of different 

mobile nodes used for training the RNN, the future RSS values from the closest three BSs can be accurately 

predicted using GRU, which is then used for making proactive decisions on enabling CoMP transmission 

and forming VCs. 
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1. INTRODUCTION 
 

The fifth generation (5G) of mobile networks using mmWave technology is anticipated to deliver 

a substantial increase in the rates of data traffic over the cellular network, as much as 10 Gbps 

compared to 100 Mbps in 4G networks [1]. For instance, such applications as streaming Ultra-

High Definition (UHD) video, Augmented Reality (AR) and Virtual Reality (VR), which have 

emerged under the 5G Enhanced Mobile Broadband (eMBB) use case, require very high 

throughput rates everywhere even at the cell edges (i.e., providing a uniform user experience) [1]. 

However, degradation in the throughput can be witnessed, particularly in cellular systems with a 

frequency reuse of unity, as the user equipment (UE) moves towards the cell edge due to several 

factors such as the path loss and the interference from neighboring cells. This degradation in the 

perceived throughput could greatly undermine the quality of a real- time applications that requires 

a very high throughput.  
 

Furthermore, in order to maintain the connectivity of a UE with the network, a handover (HO) 

process takes place by changing the association of the UE to another cell with a better signal 

quality. During the HO process, the UE might also experience a degradation in the quality of 

service as a result of the HO delay. Thus, providing seamless mobility and a reliable quality of  
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Figure 1. Enabling/ disabling Coordinate Multipoint (CoMP) transmission according to the UE’s trajectory. 

(a) Associating UE with the nearest base station (BS). (b) Forming a Virtual

according to the UE’s mobility. (d) Dissolving VC.
 

service anywhere in the network for mobile users is an important challenge in 5G cellular 

networks.  
 

Many solutions have been proposed in the 3GPP standards, such as using self

networks (SON) in order to enhance the cell

interference. For instance, an Inter

in Long Term Evolution (LTE), Release 8, and the enhanced ICIC (eICIC) technique 

[3] in LTE-Advanced (LTE-A), Releases 10 a

exchanged between adjacent cells via the X2 backhaul interface to improve the cell edge user’s 

throughput by adaptively muting resources that cause strong interference and assigning different 

frequencies and powers for the cell edge users. On the other hand

degradation in the overall system throughput due to restricting the usage of radio resources in 

time and frequency.  
 

Coordinated multipoint (CoMP) transmission [4] is another 

on cooperation among cells. 

communicates with only one base station, CoMP can allow cell edge users to communicate with 

multiple BSs (forming a CoMP cooperating set) 

users and the overall network. CoMP was first standardized in Long Term Evolution

(LTE-A), Releases 11 and 12.  
 

Moreover, 5G systems are envisioned to further leverage CoMP technology for providing a 

uniform user experience anywhere in the network. In contrast to the cell

traditional cellular networks with fixed cell coverage areas, a new trend of a user

approach, where the UE is associated with multiple BSs and creates

adapted according to the mobility of UEs. For instance, using joint transmission

CoMP) in formation of VCs in the downlink (DL) can help 

mobile users via improving the throug

handovers. However, to enable the formation of DL VCs, the UE’s data must always be available 

within BSs in the CoMP cooperating set, leading to a substantial cooperation cost due to

exchange of data and the control information among the cooperating BSs. On the other hand, 

waiting for CoMP transmission to be enabled can lead to degradation in throughput since the time 

required to form VCs is severely time 
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Enabling/ disabling Coordinate Multipoint (CoMP) transmission according to the UE’s trajectory. 

(a) Associating UE with the nearest base station (BS). (b) Forming a Virtual-Cell (VC).  (c) Adapting VC 

according to the UE’s mobility. (d) Dissolving VC. 

rvice anywhere in the network for mobile users is an important challenge in 5G cellular 

Many solutions have been proposed in the 3GPP standards, such as using self

networks (SON) in order to enhance the cell-edge user throughput via mitigating the inter

interference. For instance, an Inter-Cell Interference Coordination (ICIC) technique [2] proposed 

in Long Term Evolution (LTE), Release 8, and the enhanced ICIC (eICIC) technique 

A), Releases 10 and 11, exploit the interference information 

exchanged between adjacent cells via the X2 backhaul interface to improve the cell edge user’s 

throughput by adaptively muting resources that cause strong interference and assigning different 

rs for the cell edge users. On the other hand, these techniques can result 

degradation in the overall system throughput due to restricting the usage of radio resources in 

Coordinated multipoint (CoMP) transmission [4] is another proposed solution that is also based 

 However, unlike the previous techniques where the UE 

communicates with only one base station, CoMP can allow cell edge users to communicate with 

multiple BSs (forming a CoMP cooperating set) and hence improve the throughput of cell edge 

users and the overall network. CoMP was first standardized in Long Term Evolution

Moreover, 5G systems are envisioned to further leverage CoMP technology for providing a 

uniform user experience anywhere in the network. In contrast to the cell-centric approach used in 

traditional cellular networks with fixed cell coverage areas, a new trend of a user

approach, where the UE is associated with multiple BSs and creates a Virtual-Cell (VC) [5] that is 

adapted according to the mobility of UEs. For instance, using joint transmission

CoMP) in formation of VCs in the downlink (DL) can help to attain a uniform user experience for 

mobile users via improving the throughput of cell-edge users and minimizing the number of hard 

handovers. However, to enable the formation of DL VCs, the UE’s data must always be available 

within BSs in the CoMP cooperating set, leading to a substantial cooperation cost due to

of data and the control information among the cooperating BSs. On the other hand, 

waiting for CoMP transmission to be enabled can lead to degradation in throughput since the time 

required to form VCs is severely time constrained.  

International Journal of Wireless & Mobile Networks (IJWMN) Vol. 10, No. 4, August 2018 

2 

Enabling/ disabling Coordinate Multipoint (CoMP) transmission according to the UE’s trajectory. 

Cell (VC).  (c) Adapting VC 

rvice anywhere in the network for mobile users is an important challenge in 5G cellular 

Many solutions have been proposed in the 3GPP standards, such as using self-organizing 

mitigating the inter-cell 

technique [2] proposed 

in Long Term Evolution (LTE), Release 8, and the enhanced ICIC (eICIC) technique proposed 

nd 11, exploit the interference information 

exchanged between adjacent cells via the X2 backhaul interface to improve the cell edge user’s 

throughput by adaptively muting resources that cause strong interference and assigning different 

, these techniques can result of a 

degradation in the overall system throughput due to restricting the usage of radio resources in 

proposed solution that is also based 

However, unlike the previous techniques where the UE 

communicates with only one base station, CoMP can allow cell edge users to communicate with 

and hence improve the throughput of cell edge 

users and the overall network. CoMP was first standardized in Long Term Evolution-Advanced 

Moreover, 5G systems are envisioned to further leverage CoMP technology for providing a 

centric approach used in 

traditional cellular networks with fixed cell coverage areas, a new trend of a user-centric 

Cell (VC) [5] that is 

adapted according to the mobility of UEs. For instance, using joint transmission-CoMP (JT-

a uniform user experience for 

and minimizing the number of hard 

handovers. However, to enable the formation of DL VCs, the UE’s data must always be available 

within BSs in the CoMP cooperating set, leading to a substantial cooperation cost due to the 

of data and the control information among the cooperating BSs. On the other hand, 

waiting for CoMP transmission to be enabled can lead to degradation in throughput since the time 
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The main contribution of this paper is to propose a novel algorithm for proactively predicting the 

optimal triggering conditions that can be used to dynamically enable/disable CoMP transmission 

(or to form/dissolve VCs) (see Figure 1) instead of relying on passive approaches. The proposed 

algorithm is based on using Recurrent Neural Networks (RNNs) with a Gated Recurrent Units 

(GRUs) mechanism. Given the data about sequences of Received Signal Strength (RSS) values of 

different mobile nodes for training the GRU, simulation results show that the future RSS values 

can be rapidly predicted and that, based on user mobility, CoMP transmission can be 

enabled/disabled with a very high accuracy. One major challenge in order to make a reliable 

prediction is to collect a sufficient number of sequences in the target areas, so-called “big data”. 
 

The remainder of this paper is organized as follows. Section 2 gives an overview of about state-

of-the-art using Machine Learning (ML) in SONs. Section 3 represents the use of Recurrent 

Neural Networks (RNNs) based on a Gated Recurrent Unit (GRU) mechanism for CoMP-DL. 

Simulation results are discussed in Section 4. Finally, the paper is concluded within Section 5. 
 

2. PRIOR STATE-OF-ART ON USING MACHINE LEARNING IN 5G SELF-

ORGANIZED NETWORKS 
 

Machine learning has previously been proposed for SONs. ML for mobility prediction is utilized 

for making optimal HO decisions in wireless networks. In [6], Luo et al. used a Nonlinear 

Autoregressive Exogenous Model (NARX) based Neural Network (NN) for handover prediction. 

The RSS values and the delays between Access Points (APs) are fed to an NN with 12 hidden 

layers. The NN was able to predict a point which was close to the optimal HO location. Javed et 

al. [7] used signal strength variation, the past HO rate, number of cells with RSSI values above a 

certain threshold (active set) and active set update rate as features for the AdaBoost algorithm 

with Decision Stumps to predict the occurrence of HO. Liou and Huang [8] used the past three 

location coordinates as features for a Neural Location Indicator for predicting the node’s mobility 

and inferring HOs. Anagnostopoulos et al. [9] used the last four previous cell IDs a user had 

visited, in four-element features vectors, for predicting the user’s next cell ID. They have 

compared the performance of k-Nearest Neighbors (kNN), Naïve Bayes, Bagging and a vote of 

kNN, J48 Decision Trees, rule-based learner (JRip) and AdaBoost. In [10], Anagnostopoulos et 

al. incorporated transition time slots into feature vectors. However, the obtained accuracy on the 

next cell predictions was very similar to [9]. However, none of the above- proposed ML 

techniques consider a mobile node to be concurrently associated with multiple base stations (BSs) 

in creating VCs. In [11], Wickramasuriya et al. used sequences of Received Signal Strength 

(RSS) values as features for training a Recurrent Neural Network (RNN) classifier based on Long 

Short-Term Memory (LSTM) to predict the next base station (BS) a mobile node will be 

associated and the optimal VC topology according to the mobility of users. They did not consider 

predicting the optimal triggering conditions for enabling/disabling CoMP transmission based on 

the mobility of users - which is the goal of our work. 
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3. COORDINATED MULTIPOINT 

RECURRENT NEURAL NETWORKS
 

3.1. SYSTEM MODEL 
 

Figure 2. A road network with eight base stations (BSs) (crosses) and a mobile node (circle). The grid lines 

are the roads.  Each mobile node measures the received signal strength (RSS) from the three closest BSs.
 

A road network of dimensions 6 km × 6 km with a re

generated, as shown in Figure 2. Within this grid, Eight BSs are placed in arbitrary locations. A 

mobile node is randomly generated on a road with an initial speed drawn from a uniform 

distribution between 8-12 km/h for pedestrians and between 55

assumed that a mobile node continues to maintain a constant speed until leaving the road 

network. At any intersection a mobile node is assigned a probability of 0.5 for moving straight 

ahead, or an equal probability of 0.25 for turning either right or left. When a node is within the 

road network, it measures the RSS values from the closest three BSs. We chose this method to 

demonstrate the capability of RNNs to learn sequences in order to pred

proactively enable/disable CoMP transmission. The path loss model adopted in the system model, 

is suggested by 3GPP [12], with an additional term to account for 

Here, σ is normally distributed with mean zero an

kilometers. 

 

�����
 

3.2. DATASET  
 

An eight-element feature vector is created, where the positions correspond to BSs with their RSS 

values. The RSS values are recorded every 500 

The rest of the vector elements are set to zero. As the mobile node moves along the road network 

and the set of closest three BSs changes, the RSS values

consecutively in a queue data structure as follow.
 

sequence	�i� � ��RSS�, RSS�

Since the recorded RSS values from the distant past do not have a large predictive value 

regarding the direction the mobile node is heading to, the oldest elements are dropped from the 

queue when its size exceeds 150. With this method we simulated mobile nodes until we collected 

a total of 100,000 sequences.    
 

3.3. RECURRENT NEURAL N

(GRU)  
 

The RNN is used to discover patterns in sequential information (or temporal data). Unlike 

traditional neural networks where all input
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ULTIPOINT TRANSMISSION MANAGEMENT B

ETWORKS 

 
 

A road network with eight base stations (BSs) (crosses) and a mobile node (circle). The grid lines 

are the roads.  Each mobile node measures the received signal strength (RSS) from the three closest BSs.

A road network of dimensions 6 km × 6 km with a regularly spaced intersections of 1 km apart is 

2. Within this grid, Eight BSs are placed in arbitrary locations. A 

mobile node is randomly generated on a road with an initial speed drawn from a uniform 

km/h for pedestrians and between 55-65 km/h for vehicles. It is 

assumed that a mobile node continues to maintain a constant speed until leaving the road 

network. At any intersection a mobile node is assigned a probability of 0.5 for moving straight 

or an equal probability of 0.25 for turning either right or left. When a node is within the 

road network, it measures the RSS values from the closest three BSs. We chose this method to 

demonstrate the capability of RNNs to learn sequences in order to predict RSS values to 

proactively enable/disable CoMP transmission. The path loss model adopted in the system model, 

is suggested by 3GPP [12], with an additional term to account for large- scale shadow fading. 

 is normally distributed with mean zero and variance 9 dB and d is measured in 

� � � 128.1 � 37.6	 log��� �  ,             (1) 

feature vector is created, where the positions correspond to BSs with their RSS 

recorded every 500 ms from the closest three BSs to the mobile node. 

elements are set to zero. As the mobile node moves along the road network 

and the set of closest three BSs changes, the RSS values (feature vectors) are recorded and stored 

a queue data structure as follow. 

�, … , RSS"#, �RSS�, RSS�, … , RSS"#, … , �RSS�, RSS�, …

																																 
Since the recorded RSS values from the distant past do not have a large predictive value 

the mobile node is heading to, the oldest elements are dropped from the 

queue when its size exceeds 150. With this method we simulated mobile nodes until we collected 

NETWORKS (RNN) BASED ON GATED RECURRENT 

The RNN is used to discover patterns in sequential information (or temporal data). Unlike 

traditional neural networks where all inputs (and outputs) are assumed to be independent 
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BASED ON 

A road network with eight base stations (BSs) (crosses) and a mobile node (circle). The grid lines 

are the roads.  Each mobile node measures the received signal strength (RSS) from the three closest BSs. 

gularly spaced intersections of 1 km apart is 

2. Within this grid, Eight BSs are placed in arbitrary locations. A 

mobile node is randomly generated on a road with an initial speed drawn from a uniform 

65 km/h for vehicles. It is 

assumed that a mobile node continues to maintain a constant speed until leaving the road 

network. At any intersection a mobile node is assigned a probability of 0.5 for moving straight 

or an equal probability of 0.25 for turning either right or left. When a node is within the 

road network, it measures the RSS values from the closest three BSs. We chose this method to 

ict RSS values to 

proactively enable/disable CoMP transmission. The path loss model adopted in the system model, 

shadow fading. 

is measured in 

feature vector is created, where the positions correspond to BSs with their RSS 

ms from the closest three BSs to the mobile node. 

elements are set to zero. As the mobile node moves along the road network 

rded and stored 

… , RSS"##		

Since the recorded RSS values from the distant past do not have a large predictive value 

the mobile node is heading to, the oldest elements are dropped from the 

queue when its size exceeds 150. With this method we simulated mobile nodes until we collected 

ECURRENT UNIT 

The RNN is used to discover patterns in sequential information (or temporal data). Unlike 

e assumed to be independent of each 
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other, RNNs have a memory which captures informa

time steps to help learn a large range of dependencies. The GRU 

al. [13] as a modification to the hidden layer (H) RNN, to solve t

The RNN architecture tends to give priority for the most recent inputs and neglects the effects of 

inputs that are further away in the past
 

A GRU is made up of two gates, as shown in Figure 4

how much of the current cell content should be updated with the new candidate state. The second 

is the reset gate, which resets the memory of the cell if it is closed i.e. the   unit acts as if the next 

processed input was the first in the sequence. The state equations of the GRU are [13]. 

$%&%'	()'% ∶

current	state

candidate	state

update	gate ∶

new	state ∶ 1
 

where, g�. � is non-linear function usually implemented by a hyperbolic tangent, 

sigmoid, 232425are  rectangular weight matrices, that are applied to the input x[t] (RSS values 

from all eight BSs), 636465 

connections, 737475 are the bias vectors, and 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. (a) RNN structure. (b)  RNN structure unfolded in time.
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other, RNNs have a memory which captures information about what happened in all previous 

range of dependencies. The GRU was first introduc

al. [13] as a modification to the hidden layer (H) RNN, to solve the vanishing gradient 

The RNN architecture tends to give priority for the most recent inputs and neglects the effects of 

inputs that are further away in the past, as illustrated in Figure 3. 

, as shown in Figure 4. The first is the update gate, which controls 

how much of the current cell content should be updated with the new candidate state. The second 

is the reset gate, which resets the memory of the cell if it is closed i.e. the   unit acts as if the next 

input was the first in the sequence. The state equations of the GRU are [13]. 

 

∶ 8�'# � 	 �93:�' ; 1# � <3=�'# � 	>3�,        (2)  

 

state ∶ 1?�'# � 	1�' ; 1#⨀		A�'#,                              (3) 

 

state ∶ B�'# � 	(�241
?�' ; 1# � <4C�'# �	>4�, (4) 

 

∶ D�'# � 	 �251�' ; 1# � <5C�'# �	>5�,       (5) 

 

1�'# � �1 ; D�'#�⨀1�' ; 1# � 	D�'#⨀	B�'#,      (6) 

linear function usually implemented by a hyperbolic tangent,   

are  rectangular weight matrices, that are applied to the input x[t] (RSS values 

 are square matrices that define the weights of the recurrent 

are the bias vectors, and ⨀ is the Hadamard product. 

 

3. (a) RNN structure. (b)  RNN structure unfolded in time. 
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tion about what happened in all previous 

was first introduced by Cho et 

he vanishing gradient problem. 

The RNN architecture tends to give priority for the most recent inputs and neglects the effects of 

e first is the update gate, which controls 

how much of the current cell content should be updated with the new candidate state. The second 

is the reset gate, which resets the memory of the cell if it is closed i.e. the   unit acts as if the next 

input was the first in the sequence. The state equations of the GRU are [13].  

 is the logistic 

are  rectangular weight matrices, that are applied to the input x[t] (RSS values 

are square matrices that define the weights of the recurrent 
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Figure 4. Gated Recurrent Unit (GRU) architecture. Dark gray circles with a solid line are the variables 

whose content is exchanged with the input and output of the network. Dark gray circles with a dashed line 

represent the internal state variables, whose conte

circles with +, 1 and represent linear operations
 

4. SIMULATION RESULTS 

 

In our simulation, a Gated Recurrent Unit (GRU) mechanism with 512 units is used to predict the 

RSS values for making a 

enabling/disabling CoMP transmission (predict the optimal triggering conditions for 

enabling/disabling CoMP and forming VCs). A total of 70,000 sequences were used for training 

the GRU model and 30,000 were used for testing it. With 15 training epo

epoch, the testing error gradually converged. The performance of the GRU model in predicting 

the RSS values of two different UE from the closet three BSs is shown in Fig

that the GRU model can output predictions on the RSS values that are very close to the true 

values most of the time. Based on these predictions, the network can proactively make a decision 

on enabling the CoMP transmission for the goal of providing a unifo
 

Figure 5.True versus predicted Received Signal Strength (RSS) values for two different UE. (a) True and 

predicted RSS values measured from closet three BSs (4, 5 and 6). (b) True and predicted RSS values 

measured from closet 

5. CONCLUDING REMARKS 
 

In this paper, the use of deep machine learning for proactive mobility management in 5G wireless 

networks is proposed and evaluated in a particular scenario. In particular, proactively predicting 
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4. Gated Recurrent Unit (GRU) architecture. Dark gray circles with a solid line are the variables 

whose content is exchanged with the input and output of the network. Dark gray circles with a dashed line 

represent the internal state variables, whose content is exchanged within the cells of the hidden layer. White 

circles with +, 1 and represent linear operations. 

ESULTS  

In our simulation, a Gated Recurrent Unit (GRU) mechanism with 512 units is used to predict the 

RSS values for making a proactive decision on whether to form/dissolve VC via 

enabling/disabling CoMP transmission (predict the optimal triggering conditions for 

enabling/disabling CoMP and forming VCs). A total of 70,000 sequences were used for training 

were used for testing it. With 15 training epochs and 75

epoch, the testing error gradually converged. The performance of the GRU model in predicting 

the RSS values of two different UE from the closet three BSs is shown in Figure 5. It was shown 

that the GRU model can output predictions on the RSS values that are very close to the true 

values most of the time. Based on these predictions, the network can proactively make a decision 

on enabling the CoMP transmission for the goal of providing a uniform user experience.

5.True versus predicted Received Signal Strength (RSS) values for two different UE. (a) True and 

predicted RSS values measured from closet three BSs (4, 5 and 6). (b) True and predicted RSS values 

measured from closet three BSs (3, 4 and 5). 
 

EMARKS  

In this paper, the use of deep machine learning for proactive mobility management in 5G wireless 

networks is proposed and evaluated in a particular scenario. In particular, proactively predicting 
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4. Gated Recurrent Unit (GRU) architecture. Dark gray circles with a solid line are the variables 

whose content is exchanged with the input and output of the network. Dark gray circles with a dashed line 

nt is exchanged within the cells of the hidden layer. White 

In our simulation, a Gated Recurrent Unit (GRU) mechanism with 512 units is used to predict the 

proactive decision on whether to form/dissolve VC via 

enabling/disabling CoMP transmission (predict the optimal triggering conditions for 

enabling/disabling CoMP and forming VCs). A total of 70,000 sequences were used for training 

and 75 steps per 

epoch, the testing error gradually converged. The performance of the GRU model in predicting 

5. It was shown 

that the GRU model can output predictions on the RSS values that are very close to the true 

values most of the time. Based on these predictions, the network can proactively make a decision 

rm user experience. 

 
5.True versus predicted Received Signal Strength (RSS) values for two different UE. (a) True and 

predicted RSS values measured from closet three BSs (4, 5 and 6). (b) True and predicted RSS values 

In this paper, the use of deep machine learning for proactive mobility management in 5G wireless 

networks is proposed and evaluated in a particular scenario. In particular, proactively predicting 
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the triggering conditions to enable/disable CoMP transmission and Virtual-Cell (VC) selection is 

investigated. A RNN based on GRU mechanism is applied to eight element feature vectors of the 

RSS values from all the BSs in the network to make an accurate prediction about the RSS values 

in the future. The proposed algorithm is a promising approach to achieving the goal of providing 

a uniform user experience everywhere in the network via dynamic formation of VCs. Moreover, 

considering the very low-latency requirements of next-generation 5G networks, the proposed 

algorithm helps the mobility management function facilitate VC formations. 
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