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ABSTRACT 
 
Existing mobile networking systems lack the level of intelligence, scalability, and autonomous adaptability 

required to optimally enable next-generation networks like 5G and beyond, which are expected to be Self -

Organizing Networks (SONs). It is anticipated that machine learning (ML) will be instrumental in designing 

future “x”G SON networks with their demanding Quality of Experience (QoE) requirements. This paper 

evaluates a methodology that uses supervised machine learning to predict the QoE level of the end user 

experiences and uses this information to detect anomalous behavior of dysfunctional network nodes 

(eNodeBs/base stations) in self-organizing mobile networks. An end-to-end network scenario is created using 

the network simulator ns-3, where end users interact with a remote host that is accessed over the Internet to 

run the most commonly used applications like file downloads and uploads and the resulting output is used as 

a dataset to implement ML algorithms for QoE prediction and eNodeB (eNB) anomaly detection. Three ML 

algorithms were implemented and compared to study their effectiveness and the scalability of the 

methodology. In the test network, an accuracy score greater than 99% is achieved using the ML algorithms.  

As suggested by the ns-3 simulation the use of ML for QoE prediction will help network operators understand 

end-user needs and identify network elements that are failing and need attention and recovery. 

 

KEYWORDS 
 
Machine learning, ns-3, QoE, SON   

 

1. INTRODUCTION 

 
There is little doubt that machine learning (ML) will be a foundation technology for next-generation 

wireless networks, such as 5G and beyond. Future wireless networks will be highly integrative and 

will create a paradigm shift that includes very high carrier frequencies with massive bandwidths, 

extremely high base station and device densities, dynamic “cell-less” networks, and unprecedented 

numbers of antennas (Massive MIMO), and these networks will have to possess ground-breaking 

levels of flexibility and intelligence [1]. This paper is directed towards demonstrating that the level 

of intelligence, complexity and autonomous adaptability required to build such networks can be 

achieved by implementing machine learning in combination with self-organizing networks (SON). 

 

It is well-known that user experience is one of the most vital aspects of any industry or business 

domain. The occurrence of failures in a network element, such as a base station, may cause 

deterioration of this network element’s functions and/or service quality and will, in severe cases, 

lead to the complete unavailability of the respective network element [2]. Consequently, anomaly 

detection is crucial to minimize the effects of such failures on QoE of the network users.  Another 
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important aspect to consider in the dawn of 5G is energy efficiency or green communications. 

Energy-efficient network planning strategies include networks designed to meet peak-hour traffic 

such that energy can be saved by partially switching off base stations when they have no active 

users or simply very low traffic [1]. This makes anomaly detection even more critical and machine 

learning can play an indispensable role in achieving high accuracy in detecting and validating 

dysfunctional network elements and distinguishing from an energy saving mode. 

 

The authors in [3] use neighbor cell measurements and handover statistics to detect anomalies and 

outages that is based on the number of incoming handovers (inHO) measured on a per cell basis by 

neighboring cells. This approach monitors situations where the number of inHO becomes zero as a 

potential symptom of cell outage. The authors in [4] use a statistical-based anomaly detection 

scheme in 3G networks to find deviations between the collected traffic data and measured 

distribution. In [5] the k-nearest neighbor algorithm is used to detect and locate cell outages with 

key performance information that uses RSRP (reference signal received power) and SINR (signal 

to interference plus noise ratio) measurements collected during normal operations and radio link 

failures.  

 

In [6], the authors use a hidden Markov model (HMM) to determine if a base station is healthy, 

degraded, crippled or catatonic. The measurements used are serving cell’s reference signal received 

power (RSRP), reference signal received quality (RSRQ), and best neighbor cell’s RSRP and 

RSRQ. In [7] minimization of drive tests (MDT) reports are used to gather data from a fault-free 

operating scenario to profile the behavior of the network. This approach exploits multidimensional 

scaling (MDS) techniques to reduce the complexity of data processing while retaining pertinent 

information to develop training models to reliably apply anomaly detection techniques. The 

performance of k-nearest neighbor and local-outlier-factor based anomaly detection algorithms 

was compared and it was found that a global anomaly detection model using k-nearest neighbor 

performed better than the local-outlier-factor based anomaly detector which adopts a local 

approach for classifying abnormal measurement.  

 

The authors in [8] study the degradation produced by cell outages in the neighboring cells and 

propose three methods. One of the methods analyzes the degradation produced by the cell outage 

in the neighboring cells based on KPI correlation using historical records for cell outages. The other 

two methods proposed are online methods where the first method is a correlation-based approach. 

This method calculates the correlation between the observed signal and a reference signal. The 

other method used is delta detection where a threshold is determined as a function of the Key 

Performance Indicators (KPIs) under normal circumstances. A sample measured under the cell 

outage is compared to this threshold in order to determine if a KPI degradation occurred.  

While all of the above research approaches for anomaly detection have used different KPI’s and 

measurements such as handover statistics, RSRP, RSRQ, number of connection drops, and number 

of connection failures, they lack the knowledge of the quality of experience observed by end-users. 

Quality of Experience is of crucial importance to end-consumers, network operators and any 

stakeholders involved in the service provisioning chain and is a dominant metric to be considered 

as the wireless communications networks shift from conventional network-centric paradigms to 

more user-centric approaches [9]. 
 

The recently introduced methodology, QoE-driven anomaly detection in self-organizing mobile 

networks using machine learning [10], implemented machine learning to learn and predict the 

quality of end-user experience that is further used for anomaly detection in self-organizing mobile 

networks. The metric used to determine the quality of the end-user is Quality of Experience (QoE), 

which is the overall acceptability of an application or service as perceived by the end-user [11]. 

Unlike QoS, QoE incorporates user-centric network decision mechanisms and processes such that 

it takes into account not just the technical aspects regarding a service but also incorporates any kind 
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of human-related quality-affecting factors reflecting the impact that the technical factors have on 

the user’s quality perception [12]. The proposed system model [10] used a network simulator, a 

parametric QoE model and an optimized version of decision tree machine learning algorithm to 

demonstrate and evaluate the approach. This paper is an extension of that work where two other 

machine learning algorithms, support vector machine (SVM) and k-nearest neighbors (k-NN), are 

implemented for QoE prediction to study the effectiveness and scalability of the proposed system 

model. This study evaluates and compares the performance of all three ML algorithms and analyzes 

their impact on the system model. The output of the machine learning model is further used for 

detecting dysfunctional network nodes (eNBs).  

 

The structure of this paper is as follows: Section 2 briefly describes the system model [10]. In 

Section 3, SVM and k-NN algorithms implemented to train the machine learning model for QoE 

prediction are explained. Section 4 presents the results and observations obtained by studying the 

impact of both of these ML algorithms on the system model and also compares the performance of 

SVM, k-NN and decision tree for the dataset generated using the network simulator ns-3 [13]. The 

paper ends with the concluding remarks in Section 5. 

 

2. SYSTEM MODEL 

 
A machine learning algorithm is an algorithm that is able to learn from data and make predictions 

of new data instances [14]. The system model described in Figure 1 [10] uses the LTE-EPC 

Network Simulator model of ns-3 [13] to create a network scenario in order to generate 

representative data. 1The simulation represents an end-to-end network communication where users 

run File Transfer Protocol (FTP) applications by interacting with a remote host accessible over the 

internet. The data obtained from the simulation serves as the input dataset for the machine learning 

model where a parametric QoE model and ML algorithms are implemented to predict QoE scores 

of end users that are further used to identify dysfunctional eNodeBs. The parametric QoE model 

for FTP services to generate the QoE scores ranging from 0 to 5 for the training set of the machine 

learning model to be used is given by the mean opinion score (1) 

 

 

𝑀𝑂𝑆𝐹𝑇𝑃 = { 
  1                     𝑢 < 𝑢−

  𝑏1. log10(𝑏2. 𝑢)        𝑢− ≤  𝑢 < 𝑢+ 

  5                    𝑢+ ≤ 𝑢

                 (1) 

 

 

where u represents the data rate of the correctly received data and the values of  𝑏1and  𝑏2  

coefficients are obtained from the upper rate (𝑢+) and lower rate (𝑢−) expectations for the service 

[10], [12], [15], [16]. The model is trained using a machine learning algorithm and QoE scores for 

all the users are predicted. The eNodeBs (eNBs) connected to all the users with poor QoE scores 

are identified and the mode is determined for each of these eNodeBs to find the QoE score that 

occurs most often. If the mode of the QoE scores that are computed using (1) of all the users 

connected to an eNB is less than or equal to one, then the eNB is declared as dysfunctional i.e. if 

most of the users connected to an eNB have poor QoE scores, then such an eNB is declared to be 

dysfunctional.  

                                                 
1 The LTE-EPC simulation model of  the ns-3 simulator provides the interconnection of multiple UEs to the internet, 

via a radio access network of multiple eNodeBs connected to a single serving gateway-packet data network gateway 

node [13]. 
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Figure 1. Flowchart describing the system model. 

 

3. MACHINE LEARNING ALGORITHMS 

 
A machine learning algorithm learns from experience, E, with respect to some tasks, T, and 

performance measure, P, to determine if the performance at tasks T, as measured by P, improves 

with experience E [14]. The type of task used that is applicable to the system model described in 

Figure 1 is regression. In a regression task, the ML algorithm is asked to output a function 𝑓: ℝ𝑛 →
ℝ [14]. A performance measure is a quantitative measure used to evaluate the abilities of an ML 

algorithm. The performance measure used here is the accuracy of the model in producing the correct 

output. The types of machine learning algorithms implemented in this research are supervised 

machine learning algorithms. These types of algorithms utilize a dataset containing features, where 

each example or data point is associated with a target [14]. In our recent work [10], the machine 

learning algorithm implemented was an optimized version of decision tree. This paper analyzes the 

performance of two other machine learning algorithms, SVM and k-NN, to study their impact on 

the system model.  

 

3.1. Support Vector Machine Learning Algorithm 

 
The first algorithm implemented to train the machine learning model is a Support Vector Machine 

algorithm. A support vector machine (SVM) constructs a hyperplane or set of hyperplanes in a high 

or infinite dimensional space, which can be used for classification, regression or other tasks [17]. 

If sufficient separation is achieved by the hyperplane with the largest distance to the nearest training 
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samples of any class, the algorithm will generally be effective. The training samples that are the 

closest to the decision surface are called support vectors. The SVM algorithm finds the largest 

margin (i.e., “distance”) between the support vectors to obtain optimal decision regions. The type 

of SVM algorithm used in the proposed method is SVM regression which can be explained as 

follows [17], [18]: In SVM regression, the input vector 𝒙 is first mapped2 onto an 𝑚-dimensional 

feature space using some fixed (nonlinear) mapping i.e. by using kernel functions, and then a linear 

model is constructed in this feature space to separate the training data points. The linear model in 

the feature space 𝑓(𝒙, 𝜔) is given by 

 

𝑓(𝒙, 𝜔) = ∑ 𝜔𝑗𝑔𝑗 (𝒙) + b
𝑚

𝑗=1
     (2) 

 

where 𝑔𝑗 (𝒙), 𝑗 = 1, … . , 𝑚 denotes a set of nonlinear transformations and b is a bias term. A loss 

function [19] often used by an SVM to measure the quality of estimation is called the 𝜀 − insensitive 

loss function and is given below. 

 

ℒ 𝜀(𝑦, 𝑓(𝒙, 𝜔)) = {
0,                               𝑖𝑓  |𝑦 − 𝑓(𝒙, 𝜔)| ≤ 𝜀 
|𝑦 − 𝑓(𝒙, 𝜔)| − 𝜀,                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                (3)                            

 

The SVM performs linear regression in the high-dimension feature space using 𝜀 – insensitive loss 

and, at the same time, tries to reduce model complexity by minimizing ||𝜔||2. This can be described 

by introducing (non-negative) slack variables 𝜉i, 𝜉i
* where 𝑖 = 1, … . , 𝑛, to measure the deviation 

of training samples outside the 𝜀 – insensitive zone. Thus, SVM regression is formulated as the 

minimization of the following function: 

 

         min
1

2
||𝜔||2 + 𝐶 ∑ (𝜉𝑖 +

𝑛

𝑖=1
 𝜉i

*)   (4) 

            

                       

subject to {

𝒚𝒊 − 𝑓(𝒙𝒊, 𝜔)  ≤  𝜀 +  𝜉𝑖
∗

𝑓(𝒙𝒊, 𝜔) − 𝒚𝒊  ≤  𝜀 +  𝜉𝑖

𝜉𝑖 , 𝜉𝑖
∗  ≥  0, 𝑖 = 1, … . , 𝑛

 

 

where C is a regularization parameter that determines the tradeoff between the model complexity 

and the degree to which deviations larger than 𝜀 are tolerated in optimization formulation, 𝒙𝒊 

represents the input values, 𝜔 represents the weights, and 𝒚𝒊 represents the target values. This 

optimization problem can be transformed into the dual problem and its solution is given by 

 

𝑓(𝑥) = ∑ (𝛼𝑖 −
𝑛

𝑖=1
 𝛼i

*) K (𝒙𝒊, 𝒙)     (5) 

 

subject to 0 ≤ 𝛼i
* ≤ C, 0 ≤ 𝛼𝑖 ≤ C, where 𝑛 is the number of support vectors,  𝛼𝑖 is the dual variable, 

and the kernel function is given by 

K (𝒙, 𝒙𝒊)   = ∑ 𝑔𝑗(𝒙)𝑔𝑗(𝒙𝒊)
𝑚

𝑗=1
     (6) 

 

SVM performance (estimation accuracy) depends on the optimized setting of meta-parameters C, 𝜀 

and the kernel parameters. 

                                                 
2 In SVM, the input space is transformed into a new feature space using kernel functions where it becomes easier to 

process the data such that it is linearly separable. Hard margin SVM works when data is completely linearly separable. 

But when we have errors (noise/outliers), we use soft margin SVM which uses slack variables (ξ). 
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3.2. k-Nearest Neighbor Machine Learning Algorithm 

 
The second algorithm implemented to train the machine learning model is the k-nearest neighbor 

(k-NN) algorithm. The algorithm is explained as follows [17], [20]: The basic idea behind this 

algorithm is to base the estimation on a fixed number of observations k which are closest to the 

desired data point. A commonly used metric measure for distance is the Euclidean distance. Given 

𝛸 ∈ ℝ𝑞 and a set of samples {𝑋1, … . , 𝑋𝑛}, for any fixed point 𝑥 ∈ ℝ𝑞, it can be calculated how 

close each observation  𝑋𝑖  is to 𝑥 using the Euclidean distance ||𝑥|| =  (𝑥′𝑥)
1

2 where “ ′ ” denotes 

the vector transpose. This distance is given as 

 

𝐷𝑖 = ||𝑥 − 𝑋𝑖|| = ((𝑥 − 𝑋𝑖)′(𝑥 − 𝑋𝑖))
1

2    (7) 

 

The order statistics for the distances 𝐷𝑖 are 0 ≤ 𝐷(1) ≤ 𝐷(2) ≤ 𝐷(𝑛). The observations 

corresponding to these order statistics are the “nearest neighbors” of 𝑥. The observations ranked by 

the distances or “nearest neighbors”, are {𝑋(1), 𝑋(2), 𝑋(3), … . , 𝑋(𝑛)}. The kth nearest neighbor of 𝑥 is 

𝑋(𝑘). For a given k, let 

 

𝑅𝑥 = ||𝑋(𝑘) − 𝑥|| = 𝐷(𝑘)     (8) 

 

denote the Euclidean distance between 𝑥 and 𝑋(𝑘). 𝑅𝑥 is just the kth order statistic on the distances 

𝐷𝑖. In k-NN regression, the label3  assigned to a query point is computed based on the mean of the 

labels of its nearest neighbors. The weights used in the basic type of k-NN regression are uniform 

where each point in the local neighborhood contributes to the classification of a query point. In 

some cases, it can be beneficial to weigh points such that nearby points contribute more to the 

regression than points that are far away. The classic k-NN estimate is given as 

 

𝑔̃(𝑥) =
1

𝑘
∑ 1𝑛

𝑖=1 (||𝑥 − 𝑋𝑖|| ≤ 𝑅𝑥)𝑦𝑖     (9) 

 

This is the average value of 𝑦𝑖 among the observations that are the k nearest neighbors of 𝑥. A 

smooth k-NN estimator is a weighted average of the k nearest neighbors and is given as 

 

𝑔̃(𝑥) =
∑ 𝜔(

||𝑥−𝑋𝑖||

𝑅𝑥
)𝑦𝑖

𝑛
𝑖=1

∑ 𝜔(
||𝑥−𝑋𝑖||

𝑅𝑥
)𝑛

𝑖=1

     (10) 

 

4. SIMULATION RESULTS AND OBSERVATIONS 

 
The values of the primary parameters used to configure the network scenario created in the ns-3 

simulation are given in Table 1 [10]. 

 

 

 

                                                 
3 In supervised machine learning, the task of the ML model is to predict target values from labelled data. The input is 

referred to by terms such as independent variables or features. The output is referred to by terms such as dependent 

variables or target labels or target values. 
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Table 1. Network simulation configuration parameters 

 

Parameters 

  

Value  

Number of users 

  

50 

Number of eNodeBs 

  

5 

eNodeB Bandwidth 

  

20 MHz 

Transmit Power of 

functional eNB 

  

46 dBm 

Transmit Power of 

dysfunctional eNB 

  

30 dBm 

Application Type 

  

FTP 

 
The output obtained from the ns-3 simulation run is used as the input dataset for the machine 

learning model and the target values for the training set of the machine learning model are 

calculated using the parametric QoE model defined in (1). The SVM regression and k-NN regression 

algorithms are implemented using this dataset. The performance of SVM, k-NN, and decision tree 

[10] is evaluated to study their effectiveness and the scalability of the system model. 

 
As previously mentioned in section III, SVM performance generally depends on the setting of meta-

parameters C, 𝜀 and the kernel parameters. Two kernel functions linear and radial basis function 

(rbf) were used to test the performance. The training and testing accuracy for each of these kernel 

functions is given in Figure 2 that shows that the rbf function gives better accuracy for the dataset 

generated by the ns-3 simulation.  
 

 
Figure 2. Accuracy of the training and testing sets for SVM regression using linear and rbf kernel functions 

 
Three additional computational parameters that affect the performance of SVM are C, epsilon and 

gamma. C is a regularization parameter that determines the tradeoff between the model complexity 
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and the degree to which deviations larger than epsilon are tolerated, epsilon specifies the epsilon-

tube within which no penalty is associated in the training loss function with points predicted within 

a distance epsilon from the actual value, and gamma specifies how far the influence of a single 

training example reaches and is the inverse of the radius of influence of samples selected by the 

model as support vectors [17], [18]. Comparison done among these parameters to find the optimal 

value for each of these parameters for the dataset obtained in this work is illustrated in Figure 3. It 

is observed that the optimal values of these parameters for the dataset obtained from the ns-3 

simulation are C = 5, gamma = 0.001, and epsilon = 0.01. 
 

 
Figure 3. Accuracy scores for varying values of C, gamma and epsilon in SVM regression 

 

The training and testing accuracies for k-NN regression for varying values of k are shown in Figure 

4. It is observed that the most optimal value of k is 4 for the given dataset. 

 

 
Figure 4. Accuracy of the training and testing sets for k-NN regression for varying values of k 
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The training and testing accuracies obtained [10] for decision tree regression for MSE and MAE 

criteria at varying values of maximum allowable depth are shown in Figure 5. It is observed that 

MSE at maximum depth value 3 gives the most optimum performance. 

 

 

 
Figure 5. Accuracy of the training and testing sets for decision tree regression using MSE and MAE across 

varying values of maximum allowable depths 

 

It is observed that for the dataset used in this work, accuracy of up to 99.5% is achieved using SVM 

regression, 99.4% is achieved using k-NN regression, and 100% is achieved using decision tree 

regression as shown in Figure 6.  

 

 
Figure 6. ML algorithm performance comparison 

 
It is observed that while decision tree and k-NN models are easy to understand and implement, the 

complexity of SVM is higher. A limitation of k-NN is that it is sensitive to localized data where 

localized anomalies can affect outcomes significantly. Decision tree has a high probability of 

overfitting and needs pruning for larger datasets. Subsequent to QoE prediction, all the users with 

poor QoE are found and the set of eNBs that served these users are isolated. If the maximum number 

of users served by a particular eNB have a QoE score less than or equal to one, such an eNB is 
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declared to be dysfunctional but if the maximum number of users served by a particular eNB have 

a QoE score above 1, then the eNB is declared to be functional. 

 

5. CONCLUSIONS 

 
This paper evaluates the performance of three ML algorithms used in a system model that uses ML 

algorithms to learn and predict the end-user experience and is able to detect dysfunctional eNodeBs 

in the network. Three ML algorithms were implemented and compared to study their effectiveness 

and the scalability of the system model. The ML algorithms SVM regression, k-NN regression, and 

decision tree regression were implemented to train a machine learning model used for QoE 

prediction that is further used for anomaly detection in SON networks. It was observed that high 

accuracy (≥ 99%) can be achieved for QoE prediction and anomaly detection using all three ML 

algorithms for the dataset obtained from the ns-3 simulation performed. Decision tree regression 

performed slightly better than SVM and k-NN regression, since the training and testing accuracy for 

the decision tree regression was better than the other two algorithms. However, decision tree has a 

high probability of overfitting and needs pruning for larger datasets. Hence, in case of overfitting, 

SVM regression and k-NN regression can serve as good alternatives for the decision tree regression 

machine learning algorithm for QoE-driven anomaly detection in SON networks. This paper 

demonstrates the potential for incorporating machine learning in next-generation networks for 

anomaly detection and suggests that the observed effectiveness and scalability of the proposed 

system model should be evaluated in actual networks with physically built hardware and actual 

users in the real-world environment. 
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