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ABSTRACT 
 
As the telecommunication network components and functions are getting commoditized, the complexity in 

configuration and optimization increases.  Several automation techniques are evolving from traditional 

deterministic algorithms (pre-defined rulesets obtained from experience accumulated by humans) that were 

heuristic-based to more cognitive and stochastic-based algorithms. The aim of this paper is to introduce 

the seven layers in wireless telecommunication networks that uses stochastic or AI algorithms, explain the 

need for monitoring and possible potential biases in each layer of the stochastic algorithm stack and finally 

conclude with evaluation methods, techniques for detecting false positive and false negative proposals in 

autonomous network functions.  The main subject of the paper is to provide a background on the need of 

explainable AI for autonomous network functions.  The paper includes introduction of two models ANOBIA 

and INFEROBIA models that helps to achieve explainable AI for autonomous network functions in wireless 

and mobile networks. 
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1. INTRODUCTION 
 

Modern telecommunication networks are moving towards programmable network functions and 

adopting stochastic algorithms as part of the network autonomous functions [1].  Network 

operators could potentially buy several components of network equipment and assemble them as 

a full-stack network (e.g., baseband, radio unit, core network, transport network, and their sub-

networks – including physical, virtual or containerized network functions).  One of the key 

initiatives taken to fuel such programmable network functions is through the O-RAN alliance 

(Operator Defined Next Generation Radio Access Network Architecture and Interfaces) [2].  

Near Realtime and Non-Realtime Radio Access Network (RAN) intelligent controllers are part of 

the O-RAN architecture. 

 

Future network evolutions in 6G, are more focused on providing several deployment options in 

the core and radio by integrating virtual network functions as containerized network functions 

(CNFs). Such flexible deployment architecture helps network operators to provide services 

depending on the latency and throughput needs of the data or services.CNFs are more and more 

embracing stochastic algorithms as part of their autonomous functions.  Until 4G and current 5G 

such autonomous functions use deterministic rules (policies) that are derived from simulations 

and early technology-specific network trials.  As part of political, economic, social, 
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technological, legal and environmental (PESTLE) chart described in early 6G whitepapers [3] 

mentions that AI/ML stochastic algorithms is moving from medium to high impact in “To-be 6G” 

systems. 
 

This paper describes possible biases in such AI/ML stochastic algorithms and proposes two 

models that can help in mitigating biases or malicious proposals made by autonomous network 

functions that use stochastic algorithms. 

 

2. AI/ML/Deep Learning Software Stack and Trending Deployment 

Techniques 
 

Several layers are involved in developing a cognitive use case for the autonomous network, as 

shown in Figure1.  An autonomous network function is developed using frameworks, platforms, 

and software development kits (SDKs) specific to software and stochastic algorithms. 

 

 
 

Figure 1. Stochastic algorithm software stack highlighting the layers 

 

Layer 1) Network functions of core or radio network measures the performance of the network 

functions (e.g., downlink throughput, mobility).  

 

Layer 2) Data mediation components mediate with respective network devices and receive the 

data as per the use case needed for Layer 6 and Layer 7.  The data collected from the network are 

generally structured (respective schema defines the structure).  With older network equipment's 

the data received from the network are unstructured and schema-less.  (e.g., response to shell 

commands). 

 

Layer 3) Based on the use case need, statistical techniques and machine learning algorithms are 

chosen.  Generally, these algorithms require the right hyperparameters tuned, based on the data 

and the use case.  

 

Layer 4) To implement layer 3 algorithms frameworks with right application programmable 

interface (API) are chosen from this layer for implementing the selected algorithm, e.g., "scikit 

learn” provides the needed APIs to perform machine learning algorithms.   

 

Layer 5) Data engineering flows and machine learning platforms are from this layer.  Workflow 

engines, machine learning SDKs, ML pipeline configuration management, and Auto-ML are 

some of the examples of such platforms. 
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Layer 6) Autonomous network functions as defined in 3GPPforum such as Self-Organizing 

Networks functions, Open daylight forum’s Software defined networks, and O-RAN’sreal-time 

and non-real-time Radio Access Network (RAN) intelligent controller.  Autonomous network 

functions have their intents, goal, and implicit rules or algorithms to achieve a specific network 

function objective.  Generally, autonomous functions take care of avoiding conflicts with other 

network functions.  Alternatively, there are supervisory control algorithms or coordinators or 

orchestrators that filter the proposals between autonomous network functions.    

 

Layer 7) Applications and products developed to ease network operations are available as part of 

this layer.  Example of such applications include Cognitive NMS (with reinforcement learning 

support), Autonomous alarm resolution and root cause analysis products. 

 

Further, in the paper, these 7 layers are mentioned as "7 Layers of Deep learning stack," and 

respective layer numbers refer to the description of the layers. 

 

Note: In every layer, the respective trademarks and icons belong to respective companies.  The 

authors of this paper do not make any recommendations for their accuracy and applicability. 

They are used for illustration purposes only (based on the vendor website details and practical 

experiences of the authors in using them as part of their day to day work). 

 

3. REQUIREMENT FOR MONITORING AND MITIGATING BIAS IN 

AUTONOMOUS NETWORK FUNCTIONS 
 

Stochastic algorithms are essential for any machine learning, deep learning, and artificial 

intelligence systems.  All stochastic algorithms have hyperparameters to be correctly tuned, 

availability of input network data, underlying network function instantiation, and initial 

configuration based on “golden” parameter standards. 

 

Randomness is well embraced in ML, DL, and AI systems for the right bias and variance trade-

off.  Elegant measures are taken to fit the network data generally.  Such generalization drives to 

algorithm applicability for several data sets.  In the case of classification algorithms, "Precision 

and Recall” measure the success of prediction for imbalanced classes.  High Area Under Curve 

(AUC) denotes high recall and high precision.  High precision score indicates low false-positive 

rates, and high recall indicates low false-negative rates.  The area above the AUC curve indicates 

the potential proposals, which are either false positive or false negative.  Such proposals could 

potentially bring down the network or generally go against the norm or do not go towards an 

intent (e.g., make the cell more congested, reduce coverage and reduce throughput/capacity when 

it is needed). 

 

Randomness in algorithms and the possibility of non-reliability of data (due to technical and other 

external factors) could potentially lead to a malicious proposal that acts against the intended goal 

of the network. 
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Figure 2. Indication of Area above curve 

 

The proposal that falls in "ABC-Area," as shown in Figure 2. are generally malicious (“false 

positives or false negatives”).  Such proposals degrade the performance of the network.  

Similarly, Mean Squared Error (MSE) / Root Mean Squared Error (RMSE), Mean Absolute Error 

(MAE), Adjusted R Squared, Mean Absolute Percent Error (MAPE)/Mean Squared Percentage 

Error (MSPE) are few examples in Regression algorithms.  Accuracy and Log-loss is another 

example in case of “Classification” algorithms.  Within cluster sum of squares (WCSS)/ Between 

Cluster sum of squares (BCSS), Mutual Information, Silhouette Co-efficient are examples of 

unsupervised learning.  Bilingual Evaluation Understudy (BLEU) Score is an example of 

unsupervised learning.  Generally Cross validation (CV) error is applicable almost for all the ML 

algorithms that uses CV as validation step. 
 

Table 1. Possible biases to be mitigated in each layer 

 

 Possible biases to be mitigated 

Layer ID Description Possible biases 

Layer 1 The devices support different formats.  Data is sent 

from the node as streams or can be retrieved as 

files.  In any case, the node sends only the 

requested data. 

i. Sample bias 

ii. Latent or prejudice bias 

iii. Survivorship bias 

iv. Interaction bias 

v. Cobra effect (unwanted 

data) 

vi. Jevons paradox 

Layer 2 Operations such as extraction, transformation, and 

imputing of missing data are performed based on 

the use case and the algorithm need. 

i. Sample bias 

ii. Calculation accuracy 

iii. Cognitive reflection for 

calculation in decision 

making.  

iv. Statistical bias 

v. Delayed latency due to 

IT infrastructure issues 

Layer 3 The critical activity done by the majority of the 

stochastic algorithm is with bias, variance trade-off.  

Extreme caution and attention are needed in tuning 

the hyperparameters.   

i. Sample bias 

ii. Cognitive bias or 

algorithm bias 

iii. Concept drift 

iv. Inductive bias or 
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learning bias 

Layer 4 Specific machine learning languages, such as 

Python, are dynamically typed.  When enough 

attention is not paid, the type (e.g., string, integer) 

could change during the program execution.   

i. Calculation accuracy 

ii. Statistical bias 

iii. Bias/Variance  

trade-off 

Layer 5 Frameworks use several configurations to execute a 

flow.   

i. Calculation accuracy 

ii. Statistical bias 

Layer 6 Policies drive autonomous network functions (e.g., 

trade-off configurations).  A wrong configuration of 

such parameters could lead to biases. 

Cognitive bias or algorithm 

bias 

Layer 7 Application is use case driven, and different 

configurations are used for specific use cases.  A 

wrong configuration of such parameters could lead 

to biases. 

Cognitive bias or algorithm 

bias 

 

3.1. Sample Bias 
 

Also referred to as selection bias.  The problem with training data that does not accurately 

represent the environment is referred to as sample bias.  An algorithm cannot be trained virtually 

on the entire universe of data it could interact with.  The sampling techniques and methods 

involved in selecting the subset of that universe, both large enough and representative enough to 

mitigate sample bias is crucial and many times ignored for data feasibility reasons.  Example:  

Data collected only during busy hours and performing optimization. [11] 

 

3.2. Latent (or) prejudice Bias  
 

Training the model based on cultural prejudice in previous data will lead to high false positives or 

false negatives.  Example: KPI driven network optimization.  Always believing in throughput and 

physical resource block utilization than focusing on customer experience and quality of service. 

[11] 

 

3.3. Survivorship Bias  
 

Survivorship bias is the logical error made during the data selection process where critical data is 

overlooked.  Wald [12] during the second world war took survivorship bias into calculations 

when considering how to minimize bomber losses to enemy fire.  Based on the returning aircraft 

from mission, research concluded that they add extra armor for the areas where that showed the 

most damage.  Wald noted that the study only considered the aircraft that had survived their 

missions and the holes in returning aircraft, then represented areas where a bomber could take 

damage and still return home safely.  Wald proposed that the Navy reinforce areas where the 

returning aircraft were undamaged.  (e.g., Optimizing coverage areas based on signal 

measurements.  Low-quality signals increase coverage, and interfering signals decrease coverage.  

Spots with coverage hole will not have any measurements.  That is the critical area needed for 

focus to ensure 100% coverage and improve quality).[12] 

 

3.4. Interaction Bias  
 

When a model is generated based on a specific set of data and without a diverse set of human 

interaction could lead to wrong models in the algorithm.  Example: Collecting network 

performance data only from macrocells (large coverage area cells) and applying the algorithm for 

all the cell types (e.g., small, micro, indoor, and macrocells). 
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3.5. Cobra effect  
 

The “Cobra effect” occurs when an attempted solution to a problem makes the problem 

worse.Economist Siebert, Horst coined the term “Cobra effect” based on the following:  

 

During the British rule in India, bureaucrats in Delhi grew concerned about the proliferation of 

cobras in the city.  To get the problem under control, authorities offered a bounty on cobra skins.  

This economic incentive did not work well since some of the population in Delhi responded by 

farming cobras.  By noticing this unethical practice, bureaucrats decided to stop the bounty 

program, and the framing entrepreneurs left the cobra in the fields.  This led to an increase in the 

population of cobras.  e.g., Offering incentives or bonuses for keeping specific KPIs in the 

network above certain levels.  This leads to not exploring better optimization possibilities and 

increases unwanted network expansion or at time de-commissioning of networks. 

 

3.6. Jevons Paradox 

 
During the industrial revolution, there was a general belief that coal consumption can be reduced 

by improving technology.  Jevon's study pointed out that this view as incorrect since an increase 

in efficiency leads to higher productivity and market reach, in turn, an increase in usage of coal.  

e.g., Energy-saving devices could reduce energy consumption for the telecom network.  When 

customer consumption pattern increases due to cheap network running cost, more network could 

be rolled out. 

 

4. EVALUATION METHODS AND TECHNIQUES TO MITIGATE BIAS IN 

AUTONOMOUS NETWORK FUNCTIONS 
 

Two methods ANOBIA and INFEROBIA, are proposed as part of this paper to mitigate 

malicious proposals from autonomous network functions.   

 

4.1. ANOBIA Model  
 

The ANOBIA model is used for detecting anomalies or outliers that are close to false positive and 

false negative in an autonomous network function based on online (current network data) and 

historical network data. 

 

The ANOBIA model uses several anomaly detection algorithms from the literature (e.g., 

statistical-based models – online learning, labelled data-based models – supervised learning).  

The model picks the right combination of algorithm (ensemble model) from the ANOBIA 

algorithm leader board for detecting outliers in an autonomous network function proposal that is 

closer to false positive and false negative proposals (or the proposals that are above the AUC 

curve).  It also detects malicious proposals by identifying anomalies in the proposals.  Generally, 

anomaly models can identify anomalies in the series of data.  In this case, a series of data is the 

proposals made over time by the autonomous network functions. 

 

The ANOBIA method learns, over proposals.  This learning helps to mitigate malicious proposals 

over time. 
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Advantages:  

• The model does not need any attributes of autonomous network functions. (such as input 

parameters, hyperparameter settings). 

 

Disadvantages:  

• Cannotdetermine the reasons why the autonomous network function behaves maliciously. 

 

4.1.1.ANOBIA Model – Procedure 1 

 

An autonomous function proposal (v) is marked as a malicious proposal when the value of v is 

outside the Min or Max range (anomaly).     

 

 

Figure 3.Anomaly detection based on boundaries (autonomous function proposal) 

 

In Figure 3, minimum and maximum boundaries are detected using the following standard 

statistical measures (referred to as Min(v) and Max(v)): 

 

1. Standard Deviation (SD) 

 

; Where 𝑥 is the current proposal of autonomous function and �̅�is the 

mean of all the proposals. 

 

2. Mean Absolute Deviations 

 

Absolute value of (x – y)nth Percentile; Where “x” is the current proposal of autonomous function, 

and y is the mean of all the proposals (v). 

 

3. Average Absolute Deviation (AAD) 

 

Average of proposals with mean proposal value. 

For the actual proposal (v) made by the autonomous network function we derive Min(v) and 

Max(v) as follows: 

 

Min(v) = -1 x (n x SD) (or) -1 x (n x MAD) (or) -1 x (n x AAD); 

Max(v) = (n x SD) (or) (n x MAD) (or) (n x AAD);  

where “n” is a natural number (non-zero positive whole number). 
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On the series of autonomous function proposals, the Min and Max calculations can be applied to 

the mean or median or percentile of the proposals.  Choosing mean, median or percentile and 

applying SD or MAD or AAD to derive Min and Max purely depends on the type of data. For, 

e.g., Load balancing algorithms that proposes changes for cell offsets attributes are in dB’s, 

remote electrical tilt parameters are in degrees. 

 

4.1.2.ANOBIA Model – Procedure 2 

 

Alternative procedure for detecting malicious proposal using Local Outlier Factor (LOF) 

algorithm LOF [13] contends that for many scenarios, assigning a degree of being an outlier is 

more meaningful. 
 

 
 

Figure 4. Illustration of clusters and outliers 

 
For the objects deep inside a cluster, C1, or C2, as shown in Fig. 4., their LOF is close to 1 (LOF 

 1).  When LOF is close to 1, the object is not labeled as an outlier.  For the objects far from 

dense areas, these are outliers, and their LOF value is close to 0 (e.g., O1 and O2).  In this case 

potentially they are malicious proposals. 

 

The paper [13] introduces the following method to calculate LOF: 

 

1   k-distance – The distance of an object "p" to its kth neighbour.  If, for example, k was 5, then 

the k-distance would be the distance of an object "p" to the fifth closest point. 

 

2  Reachability distance – is calculated based on k-distance.   

reach-distk(p, o) = max { k-distance(o), d(p, o) }, if object p is away from o then    actual 

distance between p & o becomes reachability distance or else replaced by k-distance. 

 

3   Local reachability distance (lrd) – 

 
Where “p” and “o” are two objects, and N is the total number of nearby objects, lrd indicates 

how far one must travel to reach the next point or cluster of points.  Higher lrd indicates the 

cluster is denser and shorter to travel. 

 

4    LOF is calculated based on the average ratio of lrds of the neighbours of object p to the lrd of 

p.  LOF of the object indicates the density of the point compared to the density of its 

neighbours.  When the density of an object is much smaller than the density of its neighbours 
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(LOF close to 0), the object is far from dense areas, and hence we can detect the outlier 

(malicious proposal from autonomous functions). 

 

4.2. INFEROBIA Model  
 

The model is used for detecting potential bias in an autonomous network function based on input 

parameters, hyperparameters, and historical results of network function proposals. 

 

The INFEROBIA model adds labels to every proposal made by an autonomous network function 

as "good" or "bad" in the data set.  Labelling is done based on the historical effects on the 

network (e.g., through KPI measurements).  The effects on the network are evaluated based on 

the network KPI values.  When the KPI values are moving towards the intended goal, the effect 

of the proposal is marked as "good." 

 

The INFEROBIA model considers the following entities along with the good/bad label: 

• Autonomous network function input parameters (e.g., Network KPIs, events). 

• Algorithm hyperparameters (e.g., Algorithms specific thresholds, trade-off configurations). 

 

Based on these labels and input parameters, decision trees are generated to indicate specific input 

hyperparameters and input network values that influence the decision to be "bad" or "good" for 

an autonomous network function.  Based on these decision tree rules, the INFEROBIA model 

evaluates the input parameter values and predicts whether, or not, the autonomous network 

function proposal is "genuine" or "malicious."  

 

Advantages:  

 

Highly suitable for abstraction and reasoning of malicious proposals: 

 

• It can determine the reason why the autonomous network function is behaving maliciously 

either due to hyperparameter (e.g., range) or input network data (e.g., missing data). 

 

• The rules derived out of decision trees (e.g., the combination of hyperparameter and network 

data) helps to derive new meanings. 

 

Disadvantages: 

 

• It is mandatory to know the effect on the network for the action taken by an autonomous 

network function.  Without the effect on the network, it is not possible to label "good" and 

"bad." 

 

• Model fits only for autonomous network functions where input network data, 

hyperparameters of the algorithms, are known. 
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Table 2. Sample feature categories for the inference engine 

 
Classification 

feature category 

Description of parameters  

Algorithm Name Name of the stochastic algorithm. 

Algorithm 

Hyperparameters 

Stochastic algorithms have specific hyperparameters that helps the 

algorithm to balance between bias and variance. 

Example: “k” is a hyperparameter for k-nearest neighbor in 

clustering algorithms like K-Nearest Neighbours (KNN).   

Policy 

configuration 

Since coverage and capacity are mutually exclusive, autonomous 

network functions carry policy configurations such as mobility, 

coverage, and capacity.   

Algorithm input 

parameters 

General network configurations, current network performance 

metrics, alarms, events, and logs are some of the examples of 

autonomous network function algorithm inputs. 

Algorithm 

runtime 

infrastructure 

configurations 

Number of CPUs, memory, network speed, container, or other 

physical or virtual configurations to run the algorithms. 

Algorithm 

Framework, 

Programming 

language-related 

configurations 

Framework settings (e.g., port number, name), programming 

language runtime parameters (e.g., classpath), dependency jars used, 

are some of the examples of Layer 4 configurations. 

Layer 1 data 

selection 

configurations in 

the network 

Configurations specific to data collection decide what data to be 

collected and the duration of data. 

Layer 2 data 

wrangling, ETL 

techniques used 

and their settings 

or configurations 

As part of data wrangling, several techniques could be used to 

impute missing data (e.g., the average value of the feature in the 

place of missing data). 

Layer 5 tools used 

and their settings 

or configurations 

As part of the complete implementation of autonomous network 

functions, SDKs, workflow engines, and other data pipeline 

configuration management systems are used.  All their names, 

configuration, or settings used can vary from execution to 

execution. 

 
4.2.1. INFEROBIA Model – Procedure 1 

 

Classification is one of the existing techniques in data mining, and the tree classification 

algorithms such as C4.5 decision tree classification method [14] can provide the best insights into 

the algorithm. 
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Figure 5.Decision tree to infer reasons for malicious algorithm proposals 

 
A feature matrix is created as discussed in Table II. that includes the internal details of the 

algorithm, such as input network data, hyperparameters of the algorithms, Layer 1 to Layer 7 

settings, and configurations of the stochastic algorithm software stack as indicated in Figure 1. 

 

The algorithm proposals and their impact on the network can be monitored based on network 

assurance or analytical reports.  Analytics reports indicate whether the proposal made by 

autonomous network function is good or bad.  By adding respective impacts (good or bad) of the 

autonomous function to algorithm features as indicated in Fig. 5. (includes all 7 layers of the 

stochastic algorithm software stack), a detailed feature matrix is created for all the autonomous 

function proposals. 

 

Generate classification tree based on “Effect of algorithm proposal” as target. The split conditions 

from the root of the tree until the leaf node indicates the apparent reason indicating what 

algorithm features made the autonomous network function to fire malicious proposals. 

 

 
 

Figure 6.Decision tree to infer reasons for malicious algorithm proposal 
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4.2.2. INFEROBIA Model – Procedure 2 

 

Distance-based metric to infer the significant difference between genuine and malicious 

proposals made by autonomous network functions.  

 
Table 3.Data set with autonomous network function proposal and algorithm attributes (from every layer) 

 
Autonomous network 

function name 

Time of 

proposal 

Effect of 

Algorithm 

Proposal 

Layer1 Data 

Sampling 

Reliability 

Layer3 

Algorithm 

hyper 

parameter 

1 

… 

Coverage and 

Capacity Optimization 

(CCO) 

13:00 good Above 

Average (AA) 

k=7  

CCO 13:20 good AA k=12  

CCO 13:40 bad Below 

Average (BA) 

k=7  

CCO 14:00 good AA k=12  

CCO 14:20 good AA k=7  

CCO 14:40 bad BA k=12  

CCO 15:00 bad BA k=7  

CCO 15:20 good AA k=12  

CCO 15:40 good Average k=6  

CCO 16:00 bad Average k=3  

 

Distance between the elements, as shown in TABLE III in the set, can be achieved with the help 

of a distance function. 

 

Euclidean Distance:  One of the commonly used distance metrics to find distance between two 

data points in a plane. 

 

 
 

Where “a” and “b” are features, “i” is the index of features from “1” to “n." 

 

Using this distance formula, the feature difference between a bad proposal and its nearest good 

proposal can be calculated.   Nearest good proposals are the ones where most of the features 

match with the bad proposal’s feature.   

 

Based on the feature difference following attributes need attention: 

• “Layer1 Data Sampling Reliability” attribute with value ‘Below Average’ is responsible 

for bad proposals.  On the contrary, the value ‘Above Average’ is responsible for good 

proposals.  Hence it is essential to ensure data sampling is above average for the model to 

work effectively. 

• “Layer3 Algorithm hyper parameter 1” attribute with value ‘k=3’ is responsible for bad 

proposals.  On the contrary, the value ‘k=6’ is responsible for good proposals.  Hence it 

is important to ensure hyperparameter value should be 6 for the model to work 

effectively. 
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Similarly, KNN and K-means clustering techniques can be adopted to find whether the proposal 

is close to AUC centroids. 

 

4.3. Further Research 
 

ANOBIA and INFEROBIA can be extended with feature analysis using SHapley Additive 

explanation (SHAP) models [15].  Unified framework for interpreting predictions [16] can be 

extended with ANOBIA and INFEROBIA model for detailed insights not only restricted to 

feature analysis, but also to all the attributes and parameters of seven layers as described and 

introduced in this paper. 
 

5. CONCLUSIONS 
 

ANOBIA and INFEROBIA are machine learning models that can protect a telecommunication 

network from wrong decisions made by autonomous network functions.  Such models will help 

to validate the effectiveness of increasing autonomous network functions in the 

telecommunication network.  ANOBIA and INFEROBIA can potentially act as a red button 

before unintended effects are created in the network.  The phobia in adopting autonomous 

network functions can be minimized by adopting such models that perceive, learn, abstract, and 

reason the malicious behaviour of autonomous network functions.  Reasoning will help the area 

of “explainable AI” in the area of telecommunication. 
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