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ABSTRACT 
 
Wireless sensor network (WSN) has proliferated rapidly as a cost-effective solution for data aggregation 

and measurements under challenging environments. Sensors in WSNs are cheap, powerful, and consume 

limited energy. The energy consumption is considered to be the dominant concern because it has a direct 

and significant influence on the application’s lifetime. Recently, the availability of small and inexpensive 

components such as microphones has promoted the development of wireless acoustic sensor networks 

(WASNs). Examples of WASN applications are hearing aids, acoustic monitoring, and ambient 

intelligence. Monitoring animals, especially those that are becoming endangered, can assist with biology 

researchers’ preservation efforts. In this work, we first focus on exploring the existing methods used to 

monitor the animal by recognizing their sounds. Then we propose a new energy-efficient approach for 

identifying animal sounds based on the frequency features extracted from acoustic sensed data. This 

approach represents a suitable solution that can be implemented and used in various applications. 

However, the proposed system considers the balance between application efficiency and the sensor’s 

energy capabilities. The energy savings will be achieved through processing the recognition tasks in each 

sensor, and the recognition results will be sent to the base station. 
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1. INTRODUCTION 
 

WSNs have rapidly grown as a cost-effective solution for data collection and measurements. A 

significant advantage of WSN is the ease of deployment in challenging environments; because of 

the use of routing protocols that self-configures the network. But these sensors are powered by 

small batteries, which are typically limited power capabilities [1]. 

 

WASNs include a number of standard sensors nodes with integrated microphones. These 

microphones add more capabilities to the sensors by make sensors capable of acquiring and 

processing the audio signals from a region of interest [2], [3]. 

 

WASN can efficiently monitor the environment by a process the animal audio signals using 

sound recognition techniques. In general, the sound recognition process consists of first, 

recording the waveform using a microphone, second, pre-processing the audio signal, third, 

extracting features from the audio, fourth, classifying the extracted features, to determine the 

species/animal whose audio belongs to (Figure 1) [4], [5]. 

 

http://airccse.org/journal/jwmn_current20.html
https://doi.org/10.5121/ijwmn.2020.12402
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The paper aims to propose a new energy-efficient approach for recognizing animal sound based 

on the frequency features extracted from acoustic sensed data. The aim had achieved by 

developing a system with an acceptable recognition accuracy rate in conjunction with a low- 

power scheme in wireless acoustic sensor nodes. 

 
Figure 1. Animal sound recognition system: collecting data, pre-processing, feature extraction, and 

classification 

 

1.1. Problem Statement 
 

Although many acoustic monitoring applications had developed, the development of efficient 

acoustic monitoring, that deals with wireless acoustic sensor networks restrictions on computing 

and transmission power is still an open research issue. Until now, Most of the available 

researches depended on prerecorded animal sounds. A limited number of studies have been done 

in the field of animal sound recognition systems, using WASN, which is very helpful for 

bioacoustics and any audio analysis applications [3], [6]. 

 

Wireless sensors nodes are limited energy supply because they are not connected to any wired 

energy sources. They are powered by a battery that had a limited lifetime (several months). The 

data transmission requires much higher energy consummation compared to data processing. So, 

the amount of transmission data needs to be reduced; by such as avoid transmitting a large stream 

of data to the base station before processing these data locally in each sensor by using data 

compression, feature extraction, etc. [7]. 

 

This research worked on a significant goal to design an energy-efficient animal sound recognition 

scheme to be used in the context of WASNs. We explored and integrated knowledge from 

multiple disciplines, particularly on sound recognition, machine learning, and WASN, this 

knowledge had been used to optimize energy consumption to extend the network lifetime while 

guaranteed the acceptable rate of recognition accuracy [3], [6]. 

 

The scheme possessed the limited energy supply challenge that this work had address it by 

proposing a solution that significantly decreases the data stream required for transmission. The 

energy-saving will be achieved in the proposed solution through processed the recognition tasks 

in each sensor, in which only the recognition results will be sent to the sink. 
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1.2 Motivation 
 

Every animal within the biological community has a vital role on the planet. If one species of 

animal is extinct due to some imbalance, it can have significant cascading effects on the 

ecological balance, and cause critical danger to the global biodiversity. Monitoring animals, 

especially those that are becoming endangered, can assist biology researchers’ efforts and 

improve our understanding of their interactions and, therefore, their impact on the ecosystem [4], 

[8]. 

 

Developing surveillance techniques is becoming more important; to gain insights about animals. 

Acoustic monitoring in WASN is one of the best detection mechanisms that gave good results in 

the detection of the Red Palm Weevil threat early. Red Palm Weevil is one of the most dangerous 

threats; that cause critical losses to the palm growers in Saudi Arabia [9]. 

 

A few types of research in acoustic monitoring focused on finding an adequate solution for 

WASNs constraints, such as limited power supply [4], [8]. Our work had been focused on 

proposing a new energy-efficient schema for recognizing animal sound based on the features 

extracted from the frequency domain. This approach represents a suitable solution that can be 

applied and used in a wide range of different applications. However, the proposed method 

considers the balance between application efficiency and sensor energy capabilities. 

 

2. LITERATURE REVIEW 
 

Animal sound recognition is precious for biological research and environmental monitoring 

applications. Furthermore, most of the animal vocalizations have evolved to be species-specific. 

Therefore, using animal sounds to recognize the animal species automatically is an adequate 

method for ecological observation, environment monitoring, biodiversity assessment, etc. [7]. 

WASN with the machine learning algorithms have been provided a low-cost solution for long-

term monitoring, at difficult and vast areas, rather than traditional surveillance, which usually 

involves ecologists to visit locations to gather the environmental data physically, which is a time 

and cost consuming process. Over the past few years, a few studies have been focused on 

recognizing different types of animal sounds and finding an adequate solution by using WASN.  

 

2.1. Signal pre-processing 
 

For the animal sound classification, signal pre-processing is the first process after collected the 

acoustic data. Signal pre-processing includes signal processing, noise reduction, and syllable 

segmentation [4], [8]. 

 

2.1.1. Signal Processing 

 

Signal processing in the animal sound classification is the transformation of the sounds signals 

from the waveform representation (time-domain) to spectrogram representation (time-frequency 

domain) using such as Short-Time Fourier Transform (STFT) and Wavelet Transform (WT) 

techniques [10][11]–[13], or to spectrum representation (frequency domain) using Fast Fourier 

transform (FFT ) technique (Figure 2) [14], [15]. 

 

 Fast Fourier Transform had been used in this research to extract the frequency/spectral values in 

the signal source. In practice, they usually use a specific type of Fourier transform, which is DFT. 

But since WASN has an only limited lifetime, it had been inefficient to implement DFT directly 

on the sensor nodes. Instead, we applied FFT; an efficient algorithm used to calculate and reduces 

https://en.wikipedia.org/wiki/Fourier_transform
https://en.wikipedia.org/wiki/Fourier_transform
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the complexity of the DFT computations for N samples from O (N2) to O (NlogN). FFT can be 

expressed as below equation Where 𝑓(𝑘) is the frequency domain signal (spectrum) [3]. 

 

𝑓(𝑘)=∫ 𝑓(𝑡). 𝑒−2𝜋𝑖𝑘𝑡∞

−∞
.dτ                                       (1) 

 

 
 

Figure 2. Waveform, spectrum, and spectrogram for bird sound sample 

 

2.1.2. Noise Reduction 

 

Noise reduction is an optional step for the animal sound classification, used for extracting the 

pure signal [4], [10]. Huang et al. [13]  and [16]  have been applied a de-noise filter, which is a 

well-known technique to remove the noise from the recorded sound. Bedoya et al. [17] 

introduced the spectral noise gating methodology, which used for estimation and suppression of 

the noisy components in the selected spectrum of the signal. 

 
2.1.3. Syllable segmentation 

 

Continuous call, emitted by any animal, is composed of some syllables repeated along a specific 

period. A syllable is a basic unit for classification. In particular, a set of features are all obtained 

from syllables, so the accuracy of syllable segmentation directly affects the classification 

accuracy [4], [18]. Huang et al. presented [19] iterative time-domain algorithm that used a time-

domain feature amplitude for the segmentation of the audio signal. Also, authors in [13], [16], 

and [11] used an adaptive-end-point segmentation algorithm to extract syllables by measuring the 

positions of two endpoints of the waveforms. The peak amplitude will be in the middle of each 

syllable. Colonna et al. [18] proposed a new incremental segmentation approach that computes 

the Energy and the Zero Crossing Rate incrementally in the waveforms to extract syllables. 

 

2.2. Extracted Features 
 

Selecting proper acoustic features that show more considerable differences between species is the 

key to achieving effective classification performance. Several features can be used to describe the 

signal. For the animal’s sound classification, acoustic features can be classified based on their 

domain of computation into six categories: time features, energy features, frequency (spectral) 

features, cepstral features, Biologically/Perceptually driven and time-frequency features [4], [5], 

[20]. Acoustic features and their categories are listed in Table 1. 
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2.2.1. Frequency (spectral) features 
 

Spectral or Frequency features are extracted from the signal in the frequency domain. Frequency 

domain in the audio refers to the analysis of signals concerning the frequency, rather than time. 

The original signal can be converted from the time domain (waveform) to the frequency domain 

(spectrum) by transforming functions such as FFT, STFT, and WT.  Frequency features include 

but limited to, spectral centroid, spectral flatness, spectral rolloff, signal bandwidth, spectral flux, 

and fundamental frequency. These features have a high computational cost as they are obtained 

by applying transform functions to the original signal [5], [19], [20]. To achieve a better sound 

classification performance, the frequency features are usually combined with other features such 

as time features, energy features, etc.  

 

Time-based features performance is strongly influenced by environmental noises such as blowing 

wind [20]. To overcome this issue, many works have been proposed a combination of time and 

frequency features, because frequency-based features provide a robust solution to environmental 

noises. The spectral centroid is considered as one of the essential frequency features that have 

been widely used in many frog identification systems [11], [13], [16], [19], [21], [22]. 

 

Huang et al. [13], [16] [19] have been proposed different methods on automatic online frog sound 

identification system that provides the public with easily online consultation. Huang et al. in [16] 

introduced an intelligent frog call identification agent, by proposing a method with pre-noise and 

pre-emphasis filtering techniques that applied to the sound samples. An adaptive endpoint 

detection segmentation algorithm is used to detect the sound syllables. Spectral centroid, signal 

bandwidth, spectral roll-off, and threshold- crossing rate features are extracted and entered as 

input parameters for the three well-known classifiers kNN, SVM, and GMM classifiers. 

Experimental results demonstrated that the GMM classifier achieves up to the best accuracy.  

 

Another published paper by Huang et al. [19] extended the investigation on the automatic online 

frog sound identification system. Their proposed methods depend first on segmented the frog 

sound into syllables. Second, they extracted three features, which are spectral centroid, signal 

bandwidth, and threshold crossing rate, and used them as parameters for the frog sound 

classification process. Third, they used kNN and SVM classifiers. However, the experimental 

results showed that the proposed methods in both [19] and [16] are appropriate for the 

identification of the same frog species dataset, which includes five different classes of frogs, but 

some species such as Microhyla butleri and Microhyla ornate are needing more analysis.  

 

In a subsequent paper by Huang et al. [13], the authors proposed a system that segmented the 

sound samples using an adaptive endpoint detection segmentation algorithm that has been 

introduced in [16]. Then they classify the nine species of frogs by using neural networks 

classifiers. A combination of the spectral centroid, signal bandwidth, spectral rolls-off, threshold-

crossing rate, spectral flatness, and average energy features are used as input for the classification 

process. Results exhibited that the identification accuracy rate of the proposed system can 

achieve up to 93.4%. However, The NN classifier required a very high computational cost, and 

the nature of the frog sound dataset used in [13], [16], [19] is unclear since the datasets were 

proprietary.  
 

Dayou et al. [21] developed on automatic frog sounds identification. They aimed to study the 

differences between frogs’ sounds, by proposing two features Shannon and Rényi entropies. In 

their system, they first segmented the frog sound signal by using the Raven Lite tool into 

syllables. Then second, they used spectral centroid, Shannon entropy, and Rényi entropy as 

features for frog species classification in the kNN classifier. They demonstrated a total 

classification rate of 98.0% for the nine species of Microhylidae species frogs, on the case of 

https://en.wikipedia.org/wiki/Signal_(information_theory)
https://en.wikipedia.org/wiki/Frequency
https://en.wikipedia.org/wiki/Transform_(mathematics)
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using spectral centroid with the entropy features. However, the accuracy of the frog species 

classification is reduced significantly when the noise levels are higher than 20 dB.  
 

Xie et al. [11], [22]  have been proposed different methods on the frog sound recognition system . 

Xie et al. [22] proposed a multi-level classification for family, genus, and species of frogs calls. 

In their study, the calls were segmented with the Raven tool, which has been used in [21]. For the 

features extraction step, ten features were extracted from each syllable. They are including 

spectral centroid, spectral flatness, spectral roll-off, ZCR, Shannon entropy, spread, skewness, 

kurtosis, root mean square value, and averaged energy. After feature extraction, a DT classifier is 

used to evaluate the most critical features for classifying the family, genus, and species of frogs. 

Finally, the SVM classifier is used for the multi-level classification with the three most essential 

features. The average accuracy for selected acoustic features was up to 85.68%, 75.58%, and 

64.07% for family, genus, and species, respectively. However, the accuracy of classification is 

the lowest among other studies. 
 

Xie et al., in another work [11], introduced a recognition method based on an enhanced feature 

representation for frog call classification, which includes a fusion of time, energy, spectral, 

perceptually driven, and cepstral features, as an extension of their previous work [23]. In their 

system, they segmented the sound using an adaptive endpoint detection algorithm that has been 

proposed in [16]. Then a combination of syllable duration, Shannon entropy, Rényi entropy, 

ZCR, averaged energy, oscillation rate, spectral centroid, spectral flatness, spectral roll-off, signal 

bandwidth, spectral flux, fundamental frequency, MFCCs, and LPC features have been extracted 

and used in the classification process. LDA, kNN, SVM, Random forest, and ANN algorithms 

are used to classify the sounds. The method showed the best average accuracy achieved until 

now, 99.1 %, and had good anti-noise ability. In contrast, the technique consumed high 

computational resources due to the number of features that have been used. However, The dataset 

used in [11], [22] had the same source and quality. 
 

Camacho, Rodriguez, and Bolanos [24] used the loudness, timbre, and pitch to detect frogs calls 

with a multivariate ANOVA classifier. First, they calculated the loudness of the signal, to extract 

the sections of the frog vocalizations from the background noise. Second, they used timbre and 

pitch to recognize the calls and got a pure tone. The last step consists of performed a multivariate 

ANOVA on pitch and timbre to identify the calls. The performance of the method was evaluated 

based on the precision rate and recall rate measures. The precision rate was 99%, and the recall 

rate of 92 %. In general, almost all the prior works adopt achieved a good identification accuracy 

expect [25]. And all these works have dealt with the noisy audio records [11], [13], [16], [19], 

[24]. 
 

Gunasekaran and Revathy [25] have been developed a classification method tailored explicitly to 

animal vocalizations identification. In this paper, they proposed a technique to define and extract 

a set of acoustic features from a wild animal. Their work is similar to our proposed technique in 

the type of dataset, which consists of different classes of animals. The authors first used a fractal 

dimension segmentation method. Second, a group of temporal, spectral, perceptual, harmonic, 

and statistical features used to characterize the audio signals. Third, they used different feature 

selection methods to minimize the processing power required for the classifier and to improve the 

classification efficiency as well. Fourth, a fusion of two different classifiers was used: kNN and 

Multi-Layer Perceptron classifiers. However, the proposed method was able to achieve an overall 

accuracy classification rate of 70.3%. 
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Table 1. Features extraction categories 
 

 

 

 

 

Class Features References 

Frequency 

Spectral centroid 

Signal bandwidth 

Spectral roll-off 

Spectral flatness 

Fundamental frequency 

Spectral flux 

Spectral spread 

Spectral skewness 

Spectral  kurtosis 

Spread 

Variation 

Crest 

Pitch 

Timbre 

[11], [13], [16], [19], 

[21], [22], [24], [25] 

Time 

 

Threshold- Crossing Rate 

ZCR 

Syllable duration 

Root Mean Square (RMS) 

Log-attack time 

Loudness 

[11], [13], [15], [16], [19], 

[22], [24]–[26] 

Energy 

Average energy 

Shannon  entropy 

Rényi entropy 

Signal power 

Temporal centroid 

[11], [13], [15], [21], 

[22], [25] 

Cepstrum 
Mel Frequency Cepstral Coefficients 

(MFCC) 
[11], [14], [23], [25] 

Biologically/Perceptually 

driven 

Linear Prediction Coefficients (LPC) 

Perceptual spectral centroid 

Odd-to-Even ratio 

Tristimulus 

Slope 

[11], [25] 

Frequency –Time 

Spectral peak tracks 

Wavelet  coefficients 

Oscillation rate 

Dominant frequency 

The frequency difference between the 

lowest and dominant frequencies. 

The frequency difference between the 

highest and dominant frequencies. 

Time from the start to the peak volume of 

the sound. 

Time from the peak volume to the end of 

the sound. 

[14], [15], [23], [26], [27] 
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2.3. Classification 
 

The classification process is the last step in any identification system. Some pattern recognition 

methods have been used to create the classifier, which used to determine each species/animal 

whose syllables belong to, depending on the extracted features. Examples of these classifiers k-

Nearest Neighbors (kNN) [11], [14], [16], [19], [21], [23], [25], [26], [28] .The kNN classifier 

depends on the nearest neighbor rule, and it’s considered as the most commonly used classifier 

for its simplicity and easy implementation [4], [5], [28]. SVMs [11], [16], [19], [22] . GMM [16]. 

Neural networks (NN) [13]. Convolutional Neural Network [6]. One-way multivariate ANOVA 

[24]. And linear discriminant analysis (LDA) [11]. Besides classifiers, other methods for 

classifying the animal species include those based on similarity measures such as Euclidean 

distance [27], [29]. 

 

2.4. Dataset 
 

One major problem for animal sound identification is the lack of a global data set. The datasets 

used in prior work often be proprietary or related to specific geographical regions, because 

researchers from different countries focus on particular animal species in their particular area. 

Therefore, it is difficult to compare different animal sound classification methods. More data is 

needed to analyze the performance and to improve the quality of classification frameworks. 

 

3. SYSTEM DESIGN AND METHODOLOGY   

 
Based on the literature review, the selected method has been found to work well for audio 

processing. The proposed approach starts with the sound acquisition process, in which the system 

collects and selects a sound for processing using acoustic sensors. Then, the audio pre-processing 

techniques are applied to simplify and improve sound quality. In the pre-processing process, FFT 

had been implemented, to convert the recorded audio from the waveform to spectrum 

representation. Frequency features had been extracted from the spectrum representation. After 

that, the features of each sound will be passed on to the classifier to build the classification 

model.  
 

Figure  3 shows the basic operations that are part of the audio recognition system with a WSN, 

Note that the activities of object detection, feature extraction, and classification are performed on 

the sensor nodes. The recognition result with a few bits will be transmitted to the base station. 

 

 
 

Figure 3. General scheme for the object recognition process 
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3.1.  Object detection  

 
Object detection is based on detecting and receiving the audio signal. The purpose of detection is 

to determine whether the target object is present or not and to discriminate the object signal from 

the environmental noise. The sensor will acquire a new acoustic signal. Then, the received signal 

energy will be measured using the root mean square (RMS) feature. The RMS should be 

measured; if it is higher than the value of th threshold, then a new object is detected, and the 

acoustic signal will be moved to the next step for signal pre-processing and feature extraction. If 

the RMS is less than the threshold value, then the detected signal will be ignored. The detection 

function can be defined as follows: 

Detection function =  {
1            RMS > threshold
0           RMS ≤ threshold

                                             (2) 

3.2. Pre-processing 

 
3.2.1  Signal Segmentation 

 

Acoustic signals are generally pre-processed before features are extracted to enhance the feature 

extraction process and improve the classification accuracy. The significance of segmentation is to 

select the most representative parts of the signal because these signals usually contain long 

periods of silence, that consume large amounts of memory. The segmentation step is considered a 

foremost pre-processing step in any acoustic signal processing system [13], [18].  

 

Once the signal has been appropriately segmented into some frames, a set of features can be 

assembled to represent each frame. In this work, we divided the signal into frames using the 

Hamming window. Silent areas in the frame have been ignored, and the nonsilent regions have 

been processed to extract features (Figure 4). Frames overlap by 50 %, to prevent any loss of 

information at the end of the frames [30]. The acoustic signal is partitioned into equal-sized 

frames; each frame has 1024 sequential samples.  

 
  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Animal signal before, and after silence removal 

 

3.2.2  Signal transformation 

 

Frequency features are essential and robust. Therefore, to extract these features, we need to 

transform the audio signal from the time domain (waveform) to the frequency domain 

(spectrum). Fourier transform is used precisely for this purpose. In our solution, we use the FFT 
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that computes the frequency representation of 1024-sample windows at each frame. The output of 

FFT will be used to construct the desirable spectral features to represent the audio signal content 

[31]. 

 

3.3. Features extraction 
 

After performing the pre-processing step, feature extraction usually takes place to detect various 

features that describe the audio content. Selecting proper acoustic features is the key to achieving 

effective classification performance. Frequency-based features provide a robust solution against 

environmental noise. The spectral features are one of the essential frequency features that have 

been widely used in many identification systems [13], [16], [19], [21]. 

 

In our approach, we focused on two temporal features: Root Mean Square (RMS), and Zero 

Crossing Rate (ZCR), and on two frequency features: spectral roll-off (SR) and spectral centroid 

(SC). To construct the feature vector, a general feature vector will be obtained for the whole 

acoustic signal by computing the mean for each feature obtained from all the (k) frames {RMSi, 

ZCRi, SCi, SRi} where i = 1,2, k.  

 

3.3.1. Root Mean Square  

 

It is a time-domain feature that calculates the signal strength average along with the signal. The 

mathematical equation of ZCR can be defined as follows, where xi is the ith sample value of the 

frame, and N is the frame length [4], [11], [20]: 

 

RMS = √
1 

𝑁
∑ 𝑥2

𝑖
𝑁
𝑖=1                                                                                          (3) 

3.3.2. Zero-crossing rate 

 

It is a time-domain feature that measures the number of times the signal changes its sign per 

frame. The mathematical expression of ZCR can be defined as follows [7], [32] : 

 

                 ZCR=
1

2(𝑁−1)
∑ |𝑠𝑖𝑔𝑛𝑎𝑙[𝑥(𝑚 + 1)] − 𝑠𝑖𝑔𝑛𝑎𝑙[𝑥(𝑚)]|𝑁−1

𝑚=1                                     (4)   

Where 𝑥(𝑚) is the value of the mth sampled signal and signal[ ] is the sign function, which 

defined as: 

𝑆𝑖𝑔𝑛𝑎𝑙[𝑥(𝑚)]={
1         𝑥(𝑛) ≥ 0
−1      𝑥(𝑛) < 0

                                                                                      (5) 

 

3.3.3. Spectral roll-Off 

 

SR points to the spectral shape by estimate the spectral differences between a frame and the next 

one[11], [13], [25]. Spectral roll-off can be expressed by: 

 

S=max(𝑀 . ∑ |𝑋𝑛|2𝑀
𝑛=1  ≤ 𝐶. ∑ |𝑋𝑛|2𝑀

𝑛=1 )                                                                             (6) 

Where C is empirical,   is the DFT of the signal for the n-th sample, and M is half of the DFT 

[16]. 

 

3.3.4. Spectral Centroid 
 

The spectral centroid is the center point of the spectrum. It is often associated with the brightness 

of the sound [4], [33]. 
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3.4. Object Classification 
 

Several classification techniques can be used for acoustic recognition. These techniques can be 

categorized into two general categories: First, supervised machine learning, in which all data are 

labeled, and the algorithms learn to predict the output from the input data, e.g., DT, MMD, and k- 

NN [34]. Second, is unsupervised machine learning, in which all data are unlabeled, and the 

algorithms learn to inherit the structure from the input data, e.g., artificial neural network, and 

clustering algorithms.  

 

Once the features are extracted, the classification of the signal will take place. The feature vector 

will feed the classifier to build the model of the automated identification system. However, most 

of these classification methods cannot be directly applied in the WASNs because they 

significantly consume a large amount of energy and resources. To overcome these limitations, the 

used algorithm must be computationally low and consume limited storage space [11], [14]. 
 

Amongst the classification techniques used in recent studies, the kNN was widely used due to its 

simplicity; a kNN had been used in the proposed system. The kNN learns quickly from the input 

training instances because it does not require further processing tasks. In our solution, for the 

classification, the Euclidean distance function is applied, to determine the most similar k 

instances to the new unclassified instance. Then the k-NN uses the nearest k instances to 

determine the class with the majority vote and assigns that class to the new instance. The k value 

refers to the number of nearest neighbors used to help specify the class value to a given new 

instance [35].  
 

The Euclidean distance function is a distance (similarity) function. It is commonly used when the 

ranges of all input attributes are in the same width, and numeric. It can be computed using the 

below formula where a, and b refer to the two input vectors, and the number of attributes is 

defined with t. Thus, for a given input attribute, j, aj, and bj are its input values [35]. 

E(a,b)=√∑ (𝒂𝒋 − 𝒃𝒋)𝟐𝒕
𝒋=𝟏                                                                                                               (7) 

 

3.5. Notification 
 

Transmission of acoustic data over a long distance can significantly increase energy consumption 

in WSNs. Thus, the notification transmission aims to minimize energy consumption by sending 

only a few bits that represent the classification result (the object/animal).In each sensor node, if 

the target object was detected, a classification process will be applied. Then a notification packet 

with the classification result will be sent to the base station. 

 

4. EXPERIMENTAL RESULTS AND DISCUSSION 
 

4.1. Dataset description   

       
 

The proposed system and all experiments were tested on the publicly available dataset from ESC-

50 [36], [37]. The used dataset had 11 classes. The audio records were stored in WAV format 

with a sample rate of 44.1 kHz, mono channel, and encoding at 16 bits.  

 

Collected audio data have to pre-process before being used. Hence, the pre-processing data stage 

should be considered to enhance the quality and the format of data that is directly affecting the 

 quality of the accuracy. For the animal sound dataset, the pre-processing involves data filtering, 

audio segmentation, and audio transformation. The data filtering aims to correct the records that 
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have outliers, or extreme values, by normalizing their values into normal records range. Then, 

each audio record had been segmented into equal-sized of frames using a Hamming window; 

each frame has 1024 sequential samples. Frames are overlapped by 50 %, to prevent any loss of 

information at the end of the frames. Finally, in the audio transformation process, we used FFT; 

to extract the frequency features spectral centroid and spectral roll-off.  

 

4.2. Feature extraction in the proposed schema 

 
In this research, we investigated four different feature extraction methods, in which two of them 

are a time-domain feature RMS and ZCR, and the others are frequency domain features SC and 

SR. We tested the performance of these features using different subgroups of our dataset and the 

whole dataset. Four features are extracted for each animal, and the mean for each feature was 

computed, as shown in Figure 5. The results show that, in general, the SC follows the same mean 

distribution for a different set of animals so, it can’t distinguish different classes accurately. 

Therefore, we concluded that RMS, ZCR, and SR features are the most suitable set of features to 

describe the target animal while adding SC will not contribute to enhancing the recognition 

accuracy and will increase the complexity of the application. Thus, in this research, we had been 

adopted the RMS, ZCR, and SR features to generate a unique descriptor. 

 

So, in the features extraction process, we constructed the classification model depend on the 

RMS, ZCR, and SR. Different features’ vectors, had been extracted from all training sets. Where 

these three features and the class label were assigned to each record and saved them in CSV file 

as a feature reference vectors, this CSV file will be stored in the database to be used later in the 

similarity matching stage. These feature reference vectors are supposed to be loaded into the 

sensor memory during the set-up process. During the classification process, these vectors will be 

compared with the detected object feature vector (original test record) to identify the type of the 

detected animal. 

 

 
 

Figure 5. The mean distribution for four features using the full datasets 
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4.3. Performance Evaluation 
 

The main criterion used to evaluate the performance of the proposed scheme is the acceptable 

recognition rate. To measure the performance of the classification system, we used the accuracy 

measure, which can be calculated using the following formulas: 

 

Accuracy = (Number of corrected predication X 100) / (Total of all cases to be predicated) (8)                         

We studied the capability of three features (RMS, ZCR, and SR) to discriminate between 

different animals using k-NN, Decision Tree (DT), Support vector machine (SVM), and Naive 

Bayes (Figure 6).  We first used different subgroups, and combinations from our dataset classes 

depend on the classification confusion matrix. Then we split the dataset into 85% as the training 

set and the remaining as a testing set. 

 

Finally, the machine learning classifiers were tested to approve, the first assumption that the k-

NN classifier best suits to the animal sound classification in WSN. The results show that the 

proposed scheme was capable to correctly classify 32 out of 36 targets (accuracy of 88.88%). We 

also note from Figure 6 that the DT classifier got better accuracy than SVM and Naive Bayes. 

Nevertheless, the two remaining classifiers performed poorly for both accuracy and time needed 

to build a classification model.  
 

 
 

Figure 6. Accuracy of the proposed schema using different classification techniques 

 

4.4. Energy Efficiency of the Proposed Scheme for Sensor Node 

 
In our research, we investigated the energy efficiency performance of our proposed scheme. We 

measured the energy consumption of features extraction, classification, and notification tasks for 

one sound file on the sensor node. We compared the results when we send a whole audio file to 

the BS for classification tasks. The AVRORA [38], [39] simulator is used to evaluate the 

consumed energy. AVRORA is an instruction-level Sensor network that emulates the real 

implementation of different wireless sensor nodes. AVRORA simulator supports the most widely 

used sensor nodes such as (MICA2dot, MICA2, and MICAz). These sensors are equipped with 

low power (limited battery lifetime). The primary purpose of such a framework is to execute 

TinyOS applications before deployment in actual WSN nodes. The AVRORA helps to estimate 

the number of power consumption and processing time. 
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We focused mainly on measuring the performance of a sensor node (Mica2) during recognition 

and notification tasks. Table 2 presents the energy consumption of audio recognition and sends 

notification tasks. As shown in Table 1, the audio recognition process with the submitted 

notification task is less in energy and time-consuming than sending one sound file, Therefore, 

performing the classification step is essential to reduce the communication overhead by sending 

only useful information to the end-user and prolong the network lifetime.  

 
Table 2. Evaluation of the recognition cost and sending sound file on MICA2 

 

 

 

 

 

 

 

 

 

5. DISCUSSION  
 

The proposed recognition methods in the literature review didn’t address the complexity and the 

power consumption to prove algorithms’ efficiency. Most of the adopted features are either too 

complicated or requiring too much memory. Also, these approaches require extracting a large set 

of features, which consumes additional storage, processing, and communication resources. In 

such studies, authors focused on increasing the recognition accuracy and don’t take into 

consideration the energy and power consumption. Hence, these approaches are not suitable for 

real-time resource-constrained applications.  

 

Unlike previous works, in our proposed scheme, we guaranteed a good balance between 

recognition performance and sensor node resource restrictions. It is shown from the results 

obtained from the Avrora simulator that the selected set of feature extraction methods (RMS, 

ZCR, and SR) can easily fit on sensor nodes. Moreover, the recognition scheme was capable of 

identifying different objects with an acceptable level of accuracy. 

 

6. CONCLUSIONS 
 

In this paper, we presented the implementation of an animal sound recognition system in WASN. 

We can conclude that the results of applied RMS, ZCR, and SR feature using k-NN shown 

acceptable classification accuracy. Furthermore, we proved that sent notification tasks would 

reduce the energy consumption and prolong the network lifetime rather than transmitting a whole 

sound file to the BS, which hardly consumes the sensor energy. 
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