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ABSTRACT 
 
The spectral efficiency of three-dimensional (3D) massive MIMO is impaired due to the spatial correlation 

(SC) between closed-spaced elements of antenna arrays (AAs). This paper investigates the impacts of 
arbitrary Q-power variations of the Power Cosine distribution for a precise characterization of the SC. 

This is done by presenting mathematical expressions characterizing the SC of cylindrical antenna array 

(CAA) regarding Student’s -t, Von Mises and Cosine distributions, for the direction of arrival (DoA) of the 

electromagnetic waves impinging on the receiving antenna. Unlike the Student's -t and Von Mises 

distribution, our outcome recorded huge mismatch between theoretical and simulation correlation 

coefficients for arbitrary Q-power values above ten (10) which also reduced the downlink channel 

capacity. The practical relevance is that even though higher Q-power values are the key parameters for 

system performance, meticulous selection of arbitrary Q-power values above ten (10) is essential to 

minimize errors regarding channel modelling. 
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1. INTRODUCTION 

 
With the advent of the Fifth Generation (5G) wireless communication networks, the massive 

multiple-input multiple-output technology has been proposed as one of the key technologies to 
drive the 5G communication systems, along with Small Cell Networks (SCN) [1,2,3,4,5]. 

Massive MIMO has attracted a lot of attention in wireless communication as it offers significant 

data rates through spatial diversity by employing Antenna Arrays (AAs) [6,7,8,9]. Antenna arrays 
(AAs) have become increasingly popular because AAs decide the Spatial Correlation (SC), 

mutual coupling and channel characteristics, furthering the capacity of massive multiple-input 

multiple-output (MIMO) systems [10,11,12,13,14]. In this paper, we investigate the effect of 

arbitrary Q-power values of Cosine, Student's -t and Von Misses distribution on the SC of 
Cylindrical Antenna Array (CAA) for accurate massive MIMO modelling. We derive 

mathematical expressions for the SC of CAA using the Maximum Power of Arrival (MPA) 

concept regarding different distributions and study the variations in performance for different 
values of Q-power due to numerical evaluation of the distribution. The SC of AAs is widely 

investigated under different angular distributions of arrival. However, different angular 

distributions present distinct mathematical expressions for the SC [15].  With the progress in 

massive MIMO innovation, a precise generalization of the SC expressions regarding various 
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distributions using direct and exact techniques are vital. The MPA concept offers an efficient 
method of characterizing the SC and presents exact knowledge of modelling the SC of AAs under 

different distributions. This prevents the necessity for creating discrete SC expressions under 

various angular distributions. Until now, investigations of the SC of CAA for higher arbitrary Q-

power values of cosine distribution on the channel performance of massive MIMO has received 
less attention. Authors in [15] derived SC expressions for Q-power cosine distribution. However, 

no results were presented on the variations of correlation coefficients. With the deployment of 

massive MIMO, various large-scale antenna architectures have been proposed. The cylindrical 
antenna array (CAA) array is employed in this paper because the CAA permits the possibility to 

either generate directed beams in an arbitrary direction in the horizontal plane or to produce an 

omni-directional pattern and can be employed as a means of clutter suppression via scanning 
acceleration and space-time signal [16,17]. Also, the radiated massive MIMO signals from these 

arrays can be well regulated in the three-dimensional (3-D) space to improve the system capacity 

[18,19,20].  

 
For the objectives of this paper,   

 

1. First, we analyse the 3GPP standard which follows a GBSM approach proposed in 
[21,22,23,24] and present a new channel realization when the transmitter antenna is 

represented as CAA.  

 
2. Secondly, we derive expressions for the spatial correlation (SC) characterization of CAA 

regarding Student’s -t, Power Cosine, and Von Mises distributions using the concept of 

Maximum Power of Arrival (MPA) to investigate the downlink capacity of 3D massive 

MIMO.  
 

3. Finally, we demonstrate that even though higher Q-power values of the Cosine distribution 

enhances massive MIMO performance in GBSM, careful selection of Q-power values 
above ten (10) is vital to minimize errors, as it causes mismatch between theoretical and 

simulation correlation coefficients. This deteriorates the upper bound downlink channel 

capacity limits when the transmit antenna increases. 

 
The rest of this paper is organized as follows: Section two (2) presents the proposed 3D of CAA 

and introduces the concept of Maximum Power of Arrival. Section three (3) presents the system 

model and the 3D massive MIMO Channel model, which follows a geometry-based stochastic 
channel model approach. Section four (4) presents the numerical analysis and results of the paper. 

 

2. PROPOSED SC CHARACTERIZATION OF CAA BASED ON MAXIMUM 

POWER OF ARRIVAL 
 

2.1. 3D Sc of CAA using Steering Vectors 
 

According to [25], the steering vector (SV) for CAA is given as 

 
( ( ) )

( , ) njRsin cos z cos
e

      
a         (1) 

 

where R represents the radius of the circular array and nz  is the circular array in the z direction. 

 represents the angular position of the thn element of the CAA and is given by 

2 ( 1) / .n N   The azimuth and elevation angles are bounded between 0 2   and 0 .    
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According to [25], the angle of arrival,  is proportional to ( ) .ncos z cos      Following 

guidelines in [26], the SC of CAA between the real part and that of the imaginary part can be 

written as  
 

2
( ( ) ) ( ( ) )

( ) ( , ) ( ) ( , )n njRsin cos z cos jRsin cos z cos
cos e PAS d d j sin e PAS d d

       

   
           
       (2) 

 
where ( , )PAS   represents the joint angular distribution of the angle of arrival of both the 

azimuth and elevation regarding the Power Cosine, Student's -t and Von Mises distributions. 

 

2.2. Maximum Power of Arrival Concept 
 

Definition of Maximum Power of Arrival: If   is the phase angle of the incident wave and ( )p u  

is the true distribution of power as a function of sinu  , then the maximum power is relative to 

the distribution of true power and is expressed as [25] 

 

                                   ( )
u

MPA p u du        (3) 

 

Motivated by the above proposition, the general expression for the SC is obtain by replacing the 

joint pdf in eqn. (2) by the MPA of the distribution. Thus, the SC expression regarding the MPA 
following guidelines in [27] is expressed as 

 
2

( ( ) ) ( ( ) )
( ) ( )n njRsin cos z cos jRsin cos z cos

MPA cos e d d j sin e d d
       

   
       
        (4) 

 

Using guidelines from [16], eqn. (4) can be expressed as 

 

       

( ( ) ) ( ( ) )

2

2
( ( ) ) ( ( ) )

2

( ) ( )
1

( ) ( )
1

n n

n n

jRsin cos z cos jRsin cos z cos

jRsin cos z cos jRsin cos z cos

a
MPA cos e sin e d

a

a
j cos e d sin e d

a

       



       



 

 

   

   

 









  (5) 

 

This can be expressed in Bessel functions as [26,27] 
 

2
( ) ( )2

0,2
0

( )8
(2 .( ) ) (2 . ( ) )

21

jsin sin jsin sinm

k k

m

J Ra
MPA cos m e sin m e

ma

     


 



    


   (6) 

 

where (.)mJ represents the Bessel function of the first kind and thm  order. cN defines the number 

of clusters. 

 

2.3. MPA of Power Cosine, Student’s -t and Von Mises distributions 
 

The Power Cosine distribution is expressed [15] as  

 

                  ( ) / cos , / 2 / 2Q

c m m mp k                   (7) 
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where   and 
m  are the arrival and the mean arrival angles. Q controls the pdf shape and 

ck is 

used to adjust the pdf areas to a unity value. To discover the impacts of AS and ES at all stages of 

the SC expression, we assume Q is even as in [15]. The MPA regarding the Power Cosine 

distribution is given in eqn. (7) as 

 

                         
max

( ) / coscos

Q

c mMPA k d                   (8) 

 

and is evaluated as 

 

               
1

2 1

0

2 2
cos 1/ 2 1/ 2 ( ) sin(2 2 ) / 2 2

n
n n n

k

n n
vd v n k v n k

n k







 
     

 
    (9) 

 

According to [15], the Von Mises distribution is expressed as  
 

 

          cos( )

0( ) (1/ 2 ( )) ,m

m mp I e
         

           (10) 

 

 

where   is the accumulation of the distribution, 0I  is the modified Bessel function. The MPA 

regarding Von Mises distribution is expressed in eqn. (11) as 

 
cos( ) cos( )

0 0max
( ) (1/ 2 ( )) e (1/ 2 ( ) ( ))em m

von mMPA I d I sin
             

      (11) 

 

Likewise, from [15], the Student's -t distribution is given as 

 

                          
2

2 2 2 3/2

1
( )

2 ( ( ) )
stdP u

u u






  M
     (12) 

 

where   denotes the measure of angular spread and  is the angle of arrival. Applying the MPA 

concept, the MPA regarding the Student’s -t distribution is given in eqn. (13) as 
 

                            
2 2 3/2

1
( )

2 (1 )

std

max

cos
MPA d

m sin


 

 


      (13) 

 

3. SYSTEM MODEL 
 

3.1. General Format, Page Layout and Margins 
 

A downlink 3D massive MIMO system employing several transmit antennas ,M serving 

simultaneously K single-antenna users is considered [28,29]. The K terminals receive a 

1K  vector on the downlink where Time Division Duplex (TDD) is assumed as 

 

                        1/2

3,T

f f f f t DH H R H  x s w      (14) 

 

where fx  is the received signal at the UE, f  denotes the transmit SNR, [.]T represents matrix 

transpose and fs  defines an 1M precoded vector of data symbols. fw  represent a 1K  noise 



International Journal of Wireless & Mobile Networks (IJWMN) Vol. 12, No.5/6, December 2020 

5 
 

vector with an independent ( ) (0,1)iid CN noise vector. H represents the correlated channel and 

3DH  is the three-dimensional (3D) M K channel matrix. 
tR  is the 

TX TXN N  transmit SC matrix 

at the transmitter. 

 

3.2. 3D Massive MIMO Channel Model  
 

We examine the 3GPP standard which follows GBSM approach in [21,22,23,24] and present a 
new channel model when the BS antenna is characterized as CAA. The GBSM standard is 

supported by existing literature which asserts that the fact that propagation paths in the azimuth 

only does not enhance performance [30,31].  Again, the 3GPP standard under consideration 

present the elevation angle of the antenna boresight tilt  into the channel and permits dynamic 

adaptation of the downtilt angles.  This opens up several benefits for 3D beamforming which can 

lead to substantial system performance [30]. 

 

According to [30], the effective 3GPP channel between the BS antenna port, ths  and the MS 

antenna port thu  is expressed as  

 

1

3 ( , , ) ( , ) [ ( , )] [ ( , )]
N

n t n n tilt r n n t n n s r n n u

n

DH g g a a         


     (15) 

 

where n is defined as the complex random amplitude of the n  path. 1,..., MSu N  and 1,..., BSs N . 

( , )n n   represents the azimuth and elevation angles of departure (AoDs), respectively. ( , )n n   

denote the azimuth and elevation angles of arrival (AoAs), respectively of the thn path.  The gain 

of the antenna array at the BS is given in [31,32] as 

 

           ,( , , ) ( , ( , ))t n n tilt t H n t n tiltg g g V           (16) 

 

To demonstrate our idea, the vertical antenna patterns at the BS is approximated in dB as in [30], 

 

                 

2

,

3

( ) 12t H

dB

g dB





 
   

 
      (17) 

 

and the vertical antenna pattern at the BS is approximated in dB as in [30] as 

 

                       

2

,

3

( , ) 12 tilt

t v tilt

dB

g dB
 

 


 
   

 
     (18) 

 

The antenna array response at the transmitter is given by 

 

                  [ ( , )] ( ( 1) )t n n s ta exp ik s d sin         (19) 

 

and at the receiver, it is represented by 
 

                        [ ( , )] ( ( 1) )r n n u ra exp ik s d sin sin        (20) 
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Figure 1. Antenna Configuration of Cylindrical Antenna Array 

 

From Figure 1 above, the angular position of the thn element of the thm CAA on the ,x y  plane is 

expressed as 2 ( 1) /s n N   . The location vector can therefore be represented as 

. ( ) .t s sv x cos sin     Hence, the resultant channel realization between the BS antenna port, s and 

the MS antenna port, u is expressed as  

 

          
3

1

[ ] ( , , ) ( (4 ( 1) / )

( ) ) ( , ) ( ( 1) )

N

D CA n t n n tilt

n

n s n r n n

H g exp ik m M

cos sin g exp ik u drsin sin

     

      



 

   


   (21) 

 

where k represents the wave number and dr is the separation between the RX antenna ports. 

 

3.3. Proposed Downlink Channel Capacity 
 

For the downlink upper-bound capacity of the 3D massive MIMO channel, we examine the 

uncorrelated DL capacity proposed in [33] as  

 

2

2

2 | |
(1 ( ) )

DL

DL H UE H BSdata BS

t r UE

coher

T
C log K K I

T p


   

h
h hh D h     (22) 

 

Where h is the uncorrelated channel, 1[ ,..., ]T

Nh hh  and  2

2 2

1| |
(| | ,...,| | )Nh

diag h hD .  To 

investigate the effect of spatial correlation on channel capacity performance, we replace perfect 

CSI massive MIMO channel, h in eqn. (22) by the estimated vector, H in eqn. (13) and tR I for 

the case of the spatially uncorrelated scenario in [33]. I is the identity matrix. The proposed 

correlated downlink upper-bound capacity is expressed in eqn. (23) as 
 

2

2

1

2 | |
(1 ( ) )

DL

DL T UE T BSdata BS

t t UEH
coher

T
C log H K H H K D I H

T p

                 (23) 

 

where BSp is the DL transmit power, BS

tK and UE

tK are the impairment parameters at the BS and 

MS respectively. H  is the correlated channel in eqn. (14), 2

2 2

1| |
(| | ,...,| | )NH

D diag H H  and 

1[ ,..., ]T

NH H H . 
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4. NUMERICAL RESULTS 
 
For numerical validation, we substitute the MPA obtained in equations (8), (11) and (13) into the 

SC expression of CAA in equation (6) to generate the spatial correlation coefficients of the 

distributions. This is computed over one hundred (100) channel realizations for different values 

of Q . The accumulation of the distribution,   and the measure of the angular spread,    for the 

Von Mises and the Student’s -t distribution respectively are each varied for different values. We 
consider a sixty-four (64) element CAA, and set the mean azimuth-of arrival and mean elevation 

of arrival at 95  for all cases. The BS and MS height is considered as 20m and 1.7m, 

respectively. In spite of the numerical evaluation, results in Figs. 3 and 4 under Student's -t and 
Von Mises distribution, respectively show a perfect agreement between theoretical SC expression 

and simulation results for all the variations in the accumulation factor . However, under the 

Cosine distribution, we observe that higher arbitrary Q-power values above ten (10) presented 
errors in the numerical results as illustrated in Fig. 2. Moreover, it can be verified that the errors 

became insignificant at Q-power values under ten (10).  In the downlink capacity analysis of the 

massive MIMO channel, we observe that the Capacity increases as number of transmit antennas, 
M increases for the Student's -t and Von Mises distribution as shown in Fig. 5a. However, for Q-

power values above ten (10), the capacity deteriorates as transmit antennas increases as illustrated 

in Fig. 5b.  

 

 
 

Figure 2. SC for Q-power Cosine pdf; (a) for Q=4, (b) for Q=12 

 

 

 
 

Figure 3. SC for Von Mises pdf; (a)  =4, (b)  =12 
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Figure 4. SC for Student's -t pdf; (a) for  =4, (b) for  =12 

 

 
 

Figure 5. Comparing the Downlink Capacity for (a) Student's -t and Von Mises dist. and  

(b) arbitrary Q-Power Cosine dist. 

 

5. CONCLUSION 
 

We have presented the MPA as a precise rule of modelling the SC of antenna arrays regarding 

different distribution of arrival. We have shown that careful selection of arbitrary Q-power values 

above ten is necessary for precise characterization of the SC for effective massive MIMO 
modelling to minimize errors. On the account of the Student's -t and Von Mises distribution, our 

results support existing fact as perfect agreement was achieved between theoretical and 

simulation at different values of accumulation factors. Results further indicate that Q-Power 
values above ten (10) of the Cosine distributions deteriorates the downlink capacity of massive 

MIMO channels. This work can be further extended to include the effect of the SC of other 

antenna arrays such as the Spherical Array (SA) regarding various distributions of the angle of 

arrival. 
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