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ABSTRACT 

 
A smart grid based Advanced Metering Infrastructure (AMI), is a technology that enables the utilities to 

monitor and control the electricity consumption through a set of various smart meters (SMs) connected via 

a two way communication infrastructure. One of the key challenges for smart grids is how to connect a 

large number of devices. On the other hand, 4G Long Term Evolution (LTE), the latest standard for mobile 

communications, was developed to provide stable service performance and higher data rates for a large 

number of mobile users. Therefore, LTE is considered a promising solution for wide area connectivity for 

SMs. In this paper, a grouped hierarchal architecture for SMs communications over LTE is introduced.  

Then, an efficient grouped scheduling technique is proposed for SMs transmissions over LTE. The 

proposed architecture efficiently solves the overload problem due to AMI traffic and guarantees a full 

monitoring and control for energy consumption. The results of our suggested solution showed that LTE can 

serve better for smart grids based AMI with particular grouping and scheduling scheme. In addition, the 

presented technique can able to be used in urban areas having high density of SMs.  
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1. INTRODUCTION 
 
Nowadays, it is highly necessity to enable the electric utilities in all countries to fully monitor and 

control customer’s consumptions. Therefore, data collection, communication and management 

system with high temporal efficiency must be applied in order to optimize the energy efficiency. 

To realize this objective, the current power grid must be evolved to be smart one. Smart grid 

integrates the Information and Communication Technology (ICT) into the existing power grid to 

convert it to an intelligent power grid. As a result, it can monitor the grid status, power 

transmission, and customer’s consumptions through a system of sensors, communication network 

and software applications [1]. Consequently, smart grid is mainly depending on communication 

in order to coordinate the generation, distribution, and consumption of customer electricity usage 

[2]. Fully monitored and controlled power grid lead to enhance energy efficiency of the grid, 

adjusting the power consumption of household applications to save energy, control load drop in 

peak time, and reduce energy losses. 

 

Advanced Metering Infrastructure, one of the key components in smart grid, consists of 

Automatic Meter Reading (AMR), a set of actuator and a two-way communication system. Based 

on its capability of instantaneous data transmission and imposing consumptions of customers, 

AMI enables smart grid to manage consumption demands [1]. The data message of AMI contains 

the measurements of the consumption from customers including, meter reading, device ID, time 

stamps and other identification information about the AMI and the customer [3]. Several research 
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works in literature define the various measurements and communication requirements for 

different smart grid applications in terms of delay, reliability, bandwidth, and more generally 

quality of service (QoS) attributes [4], [5], [6]. The different communication technologies and 

infrastructures used for smart grids are deliberated in [7-11]. As regards the data rate of AMI, 

each consumption measurement is sent every 10 ~ 15 minutes, therefore AMI needs to report 

consumption status at a rate of 4 ~ 6 times per hour [3]. 

 

A number of key challenges are featured in smart grid to achieve the role required from it. One of 

these challenges is the real time data gathering, data transmission, and data processing which lead 

to real time trace and control. Another challenge is how to connect a large number of SMs, 

controllers, actuators and data collectors, concentrators and storages. Therefore, a high efficient 

and reliable communication network is needed to achieve the required real time monitor and 

control system for smart grids. Different wireless communication technologies used for smart 

grids are presented in [12-16]. Current cellular mobile networks can be employed to carry the 

large simultaneous data collected from AMI end points (smart meters) but with congestion and 

competition at the Radio Access Networks (RANs) [17]. This congestion will deteriorate the 

mobile network performance in form of increasing number of packet loss, unbearable delay 

which greatly affects the required services and QoS for the mobile users in the network. 

 

4G Long Term Evolution (LTE), defined by 3rd Generation Partnership Project (3GPP) is the 

latest cellular mobile network technology. It is promising to support mobile users’ demands with 

stable service performance and high data rates (300 Mbps in the downlink, and 75 Mbps in the 

uplink) [18]. LTE was developed as a standard for mobile communications such as voice, video, 

web browsing, and other applications which have different traffic type than those of the smart 

grid. Therefore, it seems that LTE networks are not suitable for smart grid data communications 

because it has not been designed for smart grid applications. Actually there are no Resource 

Blocks (RBs) are reserved for smart grid data at the evolved NodeB (eNodeB). However, LTE 

has become a promising candidate for the smart grid data communication network. Several LTE 

scheduler techniques for mobile User Equipments (UEs) are introduced in literatures [19-22]. 

Once more, these techniques do not take into account the smart grid traffic which has significant 

different requirements compared to the services developed to mobile users. Consequently, and 

according to the best of our knowledge, there is no a standard LTE scheduling technique designed 

to handle the traffic for mobile users services hand in hand with smart grid traffic maintaining the 

required QoS for these users services. 

 

In this paper, we introduce a grouped hierarchical architecture for SMs communications in smart 

grid over LTE infrastructure. Then a grouped scheduling technique in LTE supporting AMI 

communications for smart grids is presented. The key idea of our suggested solution is to enable 

LTE network to support a real time data transmission of the smart grid even in case of heavily 

loaded LTE network and high density smart grid areas with a huge number of SMs to be served. 

The rest of this paper is organized as follows. Section 2, introduces the suggested grouped 

network architecture design. In section 3, the system model is presented. The results and 

discussion is provided in section 4. Section 5, concludes the paper. 

 

2. THE SUGGESTED GROUPED SYSTEM ARCHITECTURE  
 
In this section, the overall architecture of the proposed solution is discussed. Then a brief 

comparison with the flat architecture will be presented to show the advantages of our technique 

over the flat scenario. The flat architecture in which the SMs in customers’ site are directly 

connected to the LTE network is depicted in Figure 1. In this scenario, an LTE communication 

module is used at each SM to communicate directly to the eNodeB covered his area. Actually the 

geographical area is divided into cells, each cell under control of eNodeB. Each eNodeB provides 
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the radio communication resources to SMs according to the available RBs.

eNodeB does not have the powers in terms of reserved RBs to serve that such large number of 

SMs, therefore there is an urgent need to find a solution to this growing problem. We demonstrate 

that our suggested solution, grouped system architecture and scheduling technique, 

in solving this problem. 

 

 

Figure

 
The suggested grouped system architecture is depicted in 
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that our suggested solution, grouped system architecture and scheduling technique, 

 
Figure 1. The flat network architecture. 

The suggested grouped system architecture is depicted in Figure 2. In this grouped architecture 

the total number of smart meters ��� which must be served with a single eNodeB will be divided 

groups. The SMs in each group are connected to its Data Concentrator (DC) through a 

local communication network. The DC, a key element in our solution, includes Data Collector 

and Management System (DCMS), and two types of communication networks; one for 

communication with the SMs in his group (Zigbee, as an example) and the other for 

communication with eNodeB in LTE network. Each DC, through its local network, will receive 

periodically the AMI messages from each SM in his group. These messages will be concentrated 

in one message, Total Consumption (TC message), which has the total consumption of all 

customers in this group. The DC will send the TC message using its LTE module to the 

concerned eNodeB with a specified DC reporting rate (DRR).   
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Figure 2. The suggested grouped system architecture.

In order to maintain the privacy for each customer, each DC will transmit also individually the 

AMI message of each SM (��
manner. In the proposed system, we will schedule each DC to send SMs readings in his group 

with a certain reporting rate that is presented as SM reporting rate (SRR). On the other hand, DC 

will send the TC message every time it is polled, i.e. it sends TC message with DRR. Each time 

the DC transmits TC message accomplished by a set of SM readings messages according to their 

role in the local group schedule. Consequently, the number of transmissions required 

to guarantee that the control center in the corresponding distributed substation receives one 

reading message from each SM in the group is equal to the DRR divided by SRR. The scheduled 

messages send by DC is shown in 
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Figure 3. Scheduled messages send by DC. 
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In order to maintain the privacy for each customer, each DC will transmit also individually the 
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manner. In the proposed system, we will schedule each DC to send SMs readings in his group 

with a certain reporting rate that is presented as SM reporting rate (SRR). On the other hand, DC 

message every time it is polled, i.e. it sends TC message with DRR. Each time 

the DC transmits TC message accomplished by a set of SM readings messages according to their 

role in the local group schedule. Consequently, the number of transmissions required by each DC 

to guarantee that the control center in the corresponding distributed substation receives one 

reading message from each SM in the group is equal to the DRR divided by SRR. The scheduled 

 



International Journal of Wireless & Mobile Networks (IJWMN) Vol. 7, No. 6, December 2015 

59 
 

 
 

Figure 4. The proposed grouped scheduling technique. 

 
In our solution, we propose that these scheduled messages will be send on the allocated RBs for 

uplink transmission. If the available number of free RBs equal to, or greater than, the required 

RBs to transmit the DC scheduled messages (#RBs), the eNodeB will allocate #RBs directly for 

them. Otherwise, if there is no enough free RBs, the eNodeB will choose a number of	���, ≤#���, that are already assigned to mobile users to share their data with the DC data. The 

flowchart of the whole proposed grouped architecture and scheduling technique is showed in 

Figure 4. 
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Each eNodeB will send the received messages from the DC to the Distributed Data Management 

System (DDMS), which act as the control center of the distributed substation, through the LTE 

network. According to the total consumption collected from all sites, DDMS can take the right 

decision in a real time manner. The DDMS will send back its decision in form of a control signal 

through the LTE network to the concerned eNodeB which in turn forward this decision command 

to the involved DC. According to the type of the control signal, the DC determine if it must take a 

certain action in its area or forward the received control signal to the required SM to apply this 

command in that building.    

 

Finally and as a preliminary results, the proposed architecture is practically much better than that 

the flat one. It dramatically reduces the required numbers of LTE modules (from � to	�/�) that 

used to connect the total number of SMs to the LTE network. The presented system also open the 

door to practically accept the idea of employing the LTE network as a communication 

infrastructure for smart grid application without fear of the impact of such recruitment on the 

performance of the LTE network. Furthermore, the suggested solution ensures a real time monitor 

and control for both individual customers as well as the grouped devices.  
 

3. SYSTEM MODEL  
 
The basic transmission scheme in LTE is based on Orthogonal Frequency Division Multiplexing 

(OFDM) in which Orthogonal Frequency Division Multiple Access (OFDMA) is used for the 

downlink transmission direction while Single Carrier-FDMA (SC-FDMA) is used for uplink 

transmission. In the time domain, LTE transmissions are organized into frames of length 10msec 

each. Each frame is divided into ten equally sized subframes of length 1msec which it called 

transmission time interval (TTI). Each subframe is divided into two equally sized slots of length 

0.5msec, with each slot consisting of a number of OFDM symbols including cyclic prefix as 

illustrated in Figure 5. 

 

 
 

Figure 5. LTE time domain frame structure. 

 

A resource element, consisting of one subcarrier during one OFDM symbol, is the smallest 

physical resource in LTE. Furthermore, as illustrated in Figure 6, resource elements are grouped 

into RBs, where each RB consists of 12 consecutive subcarriers in the frequency domain and one 

0.5msec slot in the time domain. 
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Figure 6. LTE physical time–frequency resource [23]. 

 

The number of RBs available for eNodeB is varied according to the transmission bandwidth for 

an eNodeB. The largest transmission bandwidth for an eNodeB is 20 MHz, which provides 100 

RBs while the smallest transmission bandwidth for is 1.4 MHz, which provides 6 RBs [24]. 
 

In the following subsections, an analytical model is introduced to calculate the amount of 

bandwidth consumed in uplink transmission for both flat and proposed grouped system 

architectures. 
 

3.1 Flat Architecture 
 

Let,	�������� indicates the total number of SMs in a given area. In flat architecture, each SM is 

assumed to be enabled by LTE interface and configured to transmit its AMI reading data directly 

to the eNodeB every	��� second who forwards it to the control center. Let ��� represents the 

length of AMI reading message send by each SM indicating the amount of energy consumption 

for appliances connected to it. If the number of TTIs required by each SM to transmit their data to 

eNodeB is	������ . So, the number of RBs that are allocated for each SM in uplink transmission ���, !��  should be selected to satisfy the following inequality. 
 

�"#�$�, ���, !�� % ≥ ��������� ∗ 	��# ∗	������ 	 																																																									�1� 
 

Where �"#�$�, ���, !�� % is the data rates (bps) carried by the ���, !�� 	resource blocks which it 

depends on the chosen modulation code scheme index	#�$� and ������ indicates the number of 

time slots per TTI. Given the system configuration parameters in terms of AMI reading message 

length and the required number of TTI, the minimum number of RBs needed by each SM to 

transmit their data to eNodeB can be determined from the transport block size table [25] to 

achieve the inequality in (1). 

 

In order to evaluate effect of SMs AMI traffic on the cellular User Equipment’s (UEs), the 

amount of bandwidth consumed by the total number of SMs to send their AMI reading messages 

relative to the total available bandwidth by the LTE eNodeB is calculated. Let TB indicates the 

transmission bandwidth used by eNodeB and ����� is the number of RBs available per each 

transmission bandwidth. 
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Let η ! = ���+ ! ��++,�-.�⁄  represents the percentage of bandwidth allocated for uplink 

transmission in LTE-TDD network where, ��+ ! indicates the total number of subframes allocated 

for uplink transmission in each LTE frame, and ��++,�-. represents the total number of subframes 

per each LTE frame. The value of η ! can be determined according to the chosen uplink-

downlink configuration set in LTE-TDD network. Define the total number of smart meters that 

will share the same resource blocks during one T
SM

 as	����� =	 �01�0234562,   where ��.,789. is the 

maximum latency required to transmit the smart meter readings.   Therefore, the amount of 

bandwidth consumed by the total number of SMs in flat architecture relative to the total available 

bandwidth by eNodeB for uplink transmission is represented by Г+��� and can be calculated as 

follows. 

 

Г+��� = "��������%; ∗ ���, !�� ∗ 	���.,789.�;����� ∗	 �����; ∗	η ! 																																																						�2� 
 

Where ����� can be determined according to LTE standard [24] using (3). 

  

����� =
=>
?
>@
6, #B	�� = 1.4	�EF15, #B	�� = 3	�EF	25, #B	�� = 5	�EF50, #B	�� = 10	�EF75, #B	�� = 15	�EF100, #B	�� = 20	�EF

K 																																																														�3� 

 

3.2 Grouped Architecture 
 
In grouped architecture, the readings for each group of SMs are transmitted and collected by a 

specific DC. Each DC is assumed to be enabled by LTE interface and configured to transmit its 

AMI reading data directly to the eNodeB every	�L$ = �1 M���⁄  seconds who forwards it to the 

control center. The DC and its associated group of SMs are assumed to be connected through 

short distance communication technology like Zigbee. The AMI data readings collected by each 

DC from its group of SMs are used to calculate the total energy consumption related to that group 

of meters.   

 

Let �L$����� represents the total number of DCs. Then the number of SMs served by each data 

concentrator ���L$ can be calculated as	���L$ = �������� �L$�����⁄ . In each time the DC is polled, a set 

of AMI messages are sent to the control center. One of these set is an AMI message with length 

of ��� bits indicating the total energy consumption for the group of meters served by that DC. 

The remaining set are AMI reading messages for a selected number of SMs from the group. This 

number of SMs is determined in such a way that the control center receives one reading message 

from each SM in the group in a sequential scheduled manner every �N �� == �1 ����⁄  seconds. 

Therefore, the number of SMs per DC needs to send their AMI reading messages every time the 

DC is polled can be calculated using (4)   

 

�O��L$ =	���L$ ∗ 	�L$ 	�N�� 																																																																																												�4� 
 

Therefore, the amount of data bits �L$ needs to be transmitted by each DC every time is polled 

can be written as follows. 
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�L$ = ��� P1 + ���L$ ∗	�L$ 	�N�� R																																																																									�5� 
 

 

�L$ = ��� ∗ 	�L$����� ∗ 	�N �� +	��� ∗ 	�������� ∗ 	�L$ 	�L$����� ∗	�N�� 																																		�6� 
 

Let ����L$  represents the number of TTIs required for each DC to transmit their data to eNodeB. 

So, the number of RBs that allocated for each DC in uplink transmission ���L$  should be selected 

to satisfy the following inequality. 

 

�"#�$�, ���, !L$ % ≥ �L$����L$ ∗ 	��# ∗	������ 	 																																																									�7� 
 

 

�"#�$�, ���, !L$ % ≥ ��� ∗ 	�L$����� ∗ 	�N �� +	��� ∗ �������� ∗ �L$�L$����� ∗ 	�N�� ∗ 	����L$ ∗ 	��# ∗ 	������ 	 														�8� 
 

Where �"#�$�, ���, !L$ % is the data rates (bps) carried by the ���, !L$ 	resource blocks. Given the 

total number of SMs, the total number of DCs, and the system configuration parameters, the 

minimum number of RBs needed by each smart meter to transmit their data to eNodeB can be 

determined from the transport block size table [23] to achieve the inequality in (8). 

 

Assume that the total number of data concentrators that will share the same resource blocks 

during one T
DC

 is �L$�� =	 �TU�0234562  where in this case TService is the maximum latency required to 

transmit the DC data. Hence, the amount of bandwidth consumed by the total number of SMs to 

send their AMI reading messages in grouped architecture relative to the total available bandwidth 

by eNodeB is represented by ГV,�WX.Y and can be calculated as follows. 

 

ГV,�WX.Y = "�L$�����%; ∗ 	���, !L$ ∗ 	 ���.,789.�;����� ∗ 	��L$�; ∗	η ! 																																														�9� 
 

In order to evaluate the enhancement in the consumed bandwidth reduction due to the grouped 

architecture; ��� is defined as the bandwidth reduction ratio and calculated as follows. 

 

��� =	ГV,�WX.YГ+��� =	 "�L$�����%; ∗ ���, !L$ ∗ 	 �����;
	"��������%; ∗ 	���, !�� ∗ 	 ��L$�; 																																�10� 

 

 

��� = 	 ���, !L$ ∗ 	�����;����L$�; ∗ 	���, !�� ∗ 	��L$�; 																																																													�11� 
 

In order to make the comparison fair, the number of TTIs required by each SM and each DC are 

set with equal values (������ = ����L$ � as well as the periodic polling time for each SM and each 

DC (��� = �L$�. In this case, (11) is reduced as follows. 
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��� = 	 ���, !L$
����L$�; ∗ 	���, !�� 																																																																															�12� 

 

It is obvious from (12) that the number of SMs per DC is a crucial parameter with high influence 

on the performance of the grouped architecture. It is also important to note that ���L$ and ���, !L$  

are dependent variables as the change in the number of SMs per DC will lead to change on the 

amount of data need to be send by each DC and so different number of RBs are required by each 

DC. 

 

4. RESULTS AND DISCUSSION 
 
In this section, the analytical model presented in section III is used to evaluate the performance of 

the proposed system. The percentage of bandwidth consumed that needed to send the AMI 

reading data for all SMs to eNodeB is evaluated and compared in both flat and grouped system 

architectures. Also the effect of different system parameters such as the total number of SMs need 

to be served and the number of SMs per DC on the system performance is investigated.  

 

 
 

Figure 7. Uplink-downlink Configuration. 

 

      Table 1. System configuration parameters and assumptions. 

 

Parameter Value Parameter Value [\] 100 byte TB 1.4, 3, 5, 10, 15, and 20 

MHz ^\] 15 minutes _`a^a  6, 15, 25, 50, 75, and 100 ^bc 15 minutes _\ddefgh 10 Ô\] 60 minutes _\di[ 4 ^\hejklh 1 Second m]c\ QPSK, 16QAM, and 

64QAM _^^m\]  8 _^^mbc  8 n\]^opfq Variable 

_^\^^m 2 nbc^opfq Variable ^^m 1 msec n\]bc  Variable 

 
We assume that time division duplexing (TDD) is used in LTE network with uplink-downlink 

configuration on eNodeB is set as 1; that is 4 TTIs for uplink (U), 4 TTIs for downlink (D) 

subframe, and 2 TTIs for special subframe (S) as shown in Figure.7. Quadrature phase shift 

keying (QPSK) modulation scheme is chosen for SM data transmission since it has the lowest bit 

error rate (BER) compared with 16 QAM, or 64 QAM modulation schemes especially that SMs 

do not need to send high-speed data. Therefore, the modulation code scheme index #�$� = 9 is 

selected. Table 1 summarizes the system configuration parameters and assumptions. 
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Let the coverage area for one eNodeB is 10 square kilometer. As the number of SMs in a given 

service area is depends on the nature of this area (urban, suburban, and rural) and the density of 

buildings on it as well as the nature of buildings (single flat or multi-flat). So, we assumed that 

the number of SMs in one square kilometer ranges from 800 to 18000 SMs. This allows us to 

evaluate the performance of the proposed system in both low and high density service areas. 

Figure 8, shows the percentage of bandwidth consumed in both flat and grouped architecture for 

different number of SMs. As can be seen, in the flat scenario the consumed bandwidth is 

increased dramatically as the number of SMs increased to the extent that 4500 SMs consume all 

the available bandwidth of the LTE which means if this is acceptable no more than this value can 

be served by the flat architecture. On the other hand, the proposed system using grouped 

architecture outperforms the flat architecture and consumes less amount of bandwidth. While we 

can get a percentage of only 0.3 % from the total available bandwidth for uplink transmission to 

serve 4500 SMs using 30 SMs/DC or more, the maximum BW consumption percentage does not 

exceed 2 % for 10 SMs/DC. The previous case (up to 4500 SMs) can be considered as an 

example for the low density areas meaning that the flat architecture is not applicable for high 

density areas. 
 

 
 

 
 

Figure 8. Percentage of bandwidth consumed at different number of SMs (Low density case). 
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In contrast, in the high density areas the proposed grouped architecture will consumes less than  6 

% for 40 SMs/DC and 33 % in the worst case of 10 SMs/DC to serve a total of 18000 SMs as 

shown in Figure 9. 

 

It is also important to note that the number of SMs per DC is a significant parameter that effect on 

the performance of the proposed system especially as the density of SMs increased. This results 

also shows that in the worst when the number of SMs per DC equal 10, the percentage of the 

bandwidth consumed is ranges from 0.0035% in case of low density (800 SMs) to 0.16%  in case 

of high density (18000 SMs) which are very small percentages. This shows that the presented 

grouped system can able to be used in areas having high density of SMs with little effect on the 

required QoS levels for various traffic types of mobile users in the LTE network. 

 

 
 

Figure 9. Percentage of bandwidth consumed at different number of SMs (High density case). 

 
As a figure of merit to investigate the enhancement that can be achieved by using the grouped 

architecture, we will compute the Bandwidth Reduction Ratio (BRR) as the ratio between the 

consumed bandwidth in grouped architecture and in flat one. Figure 10, shows the effect of the 

number of SMs per DC on BRR.  As we can see BRR is highly improved as the number of SMs 

per DC increased from 4 to 40 where BRR is dropped greatly from 0.062 to 0.012. This can be 

explained by two reasons; the first one is that the increase in the number of SMs per DC will lead 

to reduction in the number of required DCs. The other reason is that the increase ratio in the 

required bandwidth per DC due to the increase in the number of SMs per DC is smaller than the 

reduction ratio in the required number of DCs. This because a large number of SMs readings data 

are grouped together and sent in one AMI reading message with the total energy consumption. 

 

 
 

Figure 10. BRR Vs. number of SMs per DC. 
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It is also important to note that for a given number of SMs per DC, the BBR is not affected by 

changing the total number of SMs. This because the increase in the total number of SMs 

corresponding to flat architecture is compensated by the increase in the total number of required 

DCs corresponding to the grouped architecture. In addition, we can conclude that there is no 

benefit to increase number of SMs/DC than 20 because the improvement in BRR after this value 

is minimal and actually we have already achieved what is required. 

 

The previous results lead us to study the effect of the total number of DCs on the performance of 

the proposed system where for a fixed number of SMs/DC (e.g. 20) the number of DCs will be 

increased as the number of SMs increased. The relation between BBR and the total number of 

SMs for a given value of the total number of DCs can be plotted as shown in Figure.11. As seen, 

the BRR reduces as the total number of SMs increases for a fixed number of DCs. This means 

that the amount of bandwidth consumed by the grouped architecture relative to the bandwidth 

consumed by the flat architecture is decreased as the number of SMs increased. This indicates 

that the proposed grouped architecture system works more efficiently in service areas having high 

density of SMs compared to the flat architecture system. It is also shown that the BBR is 

decreased as the total number of DCs decreased for a given number of SMs. This is because the 

number of SMs served by each DC is increased and so a larger number of AMI reading data can 

be grouped together in one reading message which consumes less bandwidth compared to the flat 

architecture case. 

 

 
 

Figure 11. BRR Vs. number of SMs for different number of DCs. 

 

Tables 2 and 3 show the percentage of bandwidth consumed at different system bandwidth using 

various modulation techniques in both low and high density cases. For the lowest available 

bandwidth of one eNodeB in LTE (1.4 MHz), the maximum number of SMs that can be served is 

1550 which will almost consume the total bandwidth which is considered a low density case. In 

this case, the consumption in flat architecture is almost independent on the modulation technique 

whatever the system bandwidth. This is because a minimum number of RBs (One RB) using 

QPSK modulation is quietly sufficient to transmit the smart meter reading message and using 

higher order modulation techniques can’t provide any reduction on the required number of RBs. 

On the other hand, the modulation technique has significant effect on the bandwidth consumption 

in case of grouped architecture where the bandwidth consumption of 64 QAM is almost quarter 

of the value of 16 QAM.  
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For high density case (18000 SMs), the bandwidth consumption of flat architecture is 

overestimated even for the highest system bandwidth offered by LTE. In contrast, for the worst 

channel condition where QPSK modulation is used, the grouped architecture almost consumes 

one third of the system bandwidth for 1.4 MHz and only 2% for 20 MHz. Finally and as the best 

case we can reach the percentage of 0.5% for 64 QAM and 20 MHz. 

 
Table 2. Percentage of bandwidth consumed (low density case: No. of SMs=1550). 

 

 
 

Table 3. Percentage of bandwidth consumed (High density case: No. of SMs=18000). 

 

 
 

5. CONCLUSION 
 
Smart grids, created to optimize the energy efficiency of power grids, have a number of 

challenges. One of these challenges is the requirement of high efficient and reliable 

communication networks to achieve the real time monitoring and control on both generation and 

customer sides. 4G LTE, a standard by 3GPP, is capable of supporting mobile user services with 

high data rates as well as high speed mobility. Resounding and rapid success of LTE leads to an 

increased concern to use it for different applications domain including smart grids. In this paper 

we proposed a grouped hierarchal architecture for smart grid communications in LTE network. 

We also presented an efficient grouped scheduling technique for SMs communications over LTE 

infrastructure. The results we have obtained emphasize that our suggested system increases the 

opportunities for using LTE network as the communication infrastructure for smart grid traffic. 

The results show that the bandwidth consumed by the proposed grouped system is almost 33 % 

from that required by the flat architecture in low density areas. This value reduced to 20% in case 

of high density areas, which lead to using our solution in areas having high density of SMs with 

little effect on the required QoS for various traffic types in the LTE network. 

 

As a future work, we are currently investigating how the RBs required for SG traffic can be 

dynamically allocated in a shared manner with the assigned RBs for mobile services that has 

minimum required QoS. 
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