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ABSTRACT 

 
In this paper, we consider the optimization of wireless capacity-limited backhaul links in future 

heterogeneous networks (HetNets). We assume that the HetNet is formed with one macro-cell base station 

(MBS), which is associated with multiple small-cell base stations (SBSs). It is also assumed both the MBS 

and the SBSs are equipped with massive arrays, while all mobiles users (macro-cell and small-cell users) 

have single antenna. For the backhaul links, we propose to use a capacity-aware beamforming scheme at 

the SBSs and MRC at the MBS.  Using particle swarm optimization (PSO), each SBS seeks the optimal 

transmit weight vectors that maximize the backhaul uplink capacity and the access uplinks signal-to-

interference plus noise ratio (SINR). The performance evaluation in terms of the symbol error rate (SER) 

and the ergodic system capacity shows that the proposed capacity-aware backhaul link scheme achieves 

similar or better performance than traditional wireless backhaul links and requires considerably less 

computational complexity. 
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1. INTRODUCTION 
 

Recently, deploying small cell networks over existing macro-cellular networks, also known as 

heterogeneous networks (HetNets), has emerged as a promising solution to deal with the 

increasing wireless traffic demands in next generation 5G cellular networks [1]-[6]. The users in 

these HetNets are offloaded from the congested macro-cell base stations (MBSs) to the small-cell 

base stations (SBSs), which enhanced their quality of service (QoS) and increase the overall 

system capacity. These HetNets are supported by Gigahertz bandwidth backhaul links that 

connect MBSs and the associated SBSs. Such Gigahertz bandwidth can be achieved by 

conventional optical fiber or millimeter-waves (mmWaves) based wireless backhauls. Optical 

fiber backhauls wile reliable, they might be expensive and difficult to deploy in HetNets where 

several small cells are unplanned and installed quite arbitrarily. Wireless backhauls, on the other 

hand, are more attractive to overcome the restriction of deployment and installation and can 

provide a cheap and scalable solution. However, to achieve high spectral efficiency in HetNets 

with wireless backhauling, frequency reuse across the coexisting network tiers (backhaul and 

access links) is essential and interference management is critical. Cognitive radio based HetNets 

(CR-HetNets) has emerged as a promising solution that provides a more energy efficient and 

dynamic way to use the spectrum by enabling small-cell to share licensed bands in opportunistic 

manner [5]-[6].  In CR-HetNets, macro-cell users, which are considered as primary users (PUs) 

take the priority to access the channels, whereas small-cell users, which are considered as 

secondary users (SUs), can access the channels as long as the corresponding PUs do not use them. 

However, most of these proposed CR-HetNets have assumed opportunistic spectrum sharing 

which may not be reliable and may limit the system capacity since it suffers from the 
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interruptions imposed by the primary network (PN) on the SUs who must leave the licensed 

channel when PUs emerge. Also, with opportunistic spectrum sharing, SUs can still cause 

interference to PUs due to their imperfect spectrum sensing. In cellular systems, one way to 

overcome these limitations is to incorporate multiuser multi-input multi-output (MU-MIMO) 

approach into cognitive radio networks (CRNs) to achieve higher spectral efficiency by 

multiplexing multiple SUs on the same time-frequency resources and protecting PNs from SUs’ 

interferences. MU-MIMO techniques have been successfully deployed in 4G cellular systems for 

traditional fixed spectrum assignment (FSA) approaches [7]-[15] and a vast number of multiuser 

detection algorithms are presently being tailored towards solving the MU-MIMO processing in 

cognitive networks by imposing additional constraints to protect licensed users’ QoS ]16[-]22[ . 

More specifically, capacity-aware MU-MIMO schemes have been proposed for both FSA [13]-

[15] and CR networks [16]-[17] using different multiuser detections schemes such as maximum 

ratio combining (MRC) and minimum mean-squared error (MMSE), and have shown the 

potential to exhibit better system capacity and provide better SER enhancement than traditional 

singular value decomposition (SVD)-based MU-MIMO systems. On the other hand, it was shown 

that the use of large-scale antenna arrays (also called massive MIMO) could achieve tremendous 

boost of MU-MIMO systems system performance [23]-[26].  In this paper, therefore, we will be 

applying the concept of MU massive MIMO and CR in HetNets. We assume that the MBSs and 

SBSs are equipped with massive arrays, while all mobiles users have single antenna. We deploy 

two MU-MIMO schemes, namely, MRC at the access link (SUs to SBSs) and capacity-

aware/MRC at the backhaul link (SBSs to MBS). Such a system can significantly improve the 

system performance in terms of link reliability, spectral efficiency, and energy efficiency. It can 

also achieve optimal performances with the simplest forms of user detection techniques, i.e., 

MRC [12]. On the other hand, most of the proposed capacity-aware MU-MIMO schemes require 

the use of gradient search algorithms in order to solve the constrained optimization problem in 

CRNs [16]-[17]. These techniques become very computationally expensive in large-scale MIMO 

systems because of the vast amounts of baseband data that are generated and require the 

constrained optimization problem to be differentiable. Thus, in our capacity-aware backhaul link 

scheme we will be exploring free-derivative population-based training algorithms such as the 

particle swarm optimization (PSO) that are well known by their simple/fast hardware 

implementation. PSO was initially introduced by Kennedy and Eberhart in [27] and has received 

a lot of attention in recent years. It is an evolutionary computation technique inspired by swarm 

intelligence such as fish schooling and bird flocking looking for the best food spot (exploring the 

optimal solution) in the search space where a quality measure, fitness, can be evaluated without 

any a priori knowledge. The PSO algorithm in this paper will be used at the backhaul link to seek 

iteratively the transmit beamforming weights of each SBS that maximize the uplink (UL) MIMO 

backhaul channel capacity. Under the assumption of very large number of antennas at the SBSs 

and the MBS, we derive semi-analytic expressions for the symbol error rate (SER) and the 

ergodic channel capacity, which quantify the reliability and spectral efficiency of the MU-MIMO 

based HetNet. The derived expressions are then validated with Monte-Carlo simulation and used 

to evaluate the performance of the proposed PSO-based capacity-aware (PSO-CA) backhaul link. 

The contribution of this paper includes the extension of the cognitive capacity-aware massive 

MU-MIMO schemes to wireless backhaul links and the development of semi-analytical model for 

the SER and channel capacity analyses in HetNets. 

 

2. SYSTEM MODEL 
 
We consider the UL access scenario shown in Fig. 1 of a HetNet with � small cells and one 

macro cell that share the same frequency band. Each small cell includes one SBS equipped with 

massive N-element antenna array and �� single-antenna secondary users (SUs). Each SBS and its 

users act as a cognitive networkthatcoexist, via concurrent spectrum access, with �� macro-cell 

primary users (PUs) and their primary MBS, which is also equipped with massive M-element 
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antenna array. It is also assumed that both the SBS and the MBS detect independent OFDM data 

streams from their mobile users simultaneously on the same time

 

Figure 1. System Model: HetNet consisting of one macro
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antenna array. It is also assumed that both the SBS and the MBS detect independent OFDM data 

streams from their mobile users simultaneously on the same time-frequency resources. 

 
 

Figure 1. System Model: HetNet consisting of one macro-cell and K small-cells and their 

corresponding users. 
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antenna array. It is also assumed that both the SBS and the MBS detect independent OFDM data 

frequency resources.  
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For the uplink access link, we consider MRC detection scheme at each SBS. The +,- SBS 

receive beamforming weight 
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 7�,6�( �� 
 ���7�,6�( ��,���� � 7�,6�( ��,��� � 7�,6�( � �,���                                    (4) 

 

Where 5�,6�  is the *� th element of )� and  7�,6�  is the *� th column of'� .  

 

2.2. Backhaul link 

 
For the backhaul link, the expression for the array output of the MBS in Fig. 1 can be written for 

each subcarrier as   

 

89:; 
 ∑ =�,>��?
�@ A�)� � B>�� � � �,>��,                                                  (5) 

 

where 89:; is the C	 $ 1 vector containing the outputs of the  C −element array at the MBS, 

=�,>�� is the C $2 frequency-domain channel matrix representing the transfer functions from 

the 2 −element antenna array of the k
th
 SBS  to the C−element antenna array of the MBS, 

A� 
 EF , F� … , FH I
J
 is the 2	 $ 1complex transmit weight vector of the +,- SBS,   B>�� 

is the receivedC	 $ 1 complex additive white Gaussian noise vector at the MBS, and � �,>���k	 
represents the interference introduced by PUs to SUs at the MBS and is given by  

 

� �,>�� 
 ���= �,>����                                                    (6) 

Where = �,>�� is the C $ �L channel matrix from the �� PUs to the MBS’s C− element 

antenna array.  

 

The MBS detects the +,- SBS data by multiplying the output of the array 89:; with the C	 $
1receiving weight vector, MN(as follows  

 

�O� 
 MN(8PQR 
 ;N � ;S� � SS& � T                                                               (7) 

 

Where 

;N 
 MN(=�A� )�    is the signal detected from the k
th
SBS, 

;UV 
 MW( ∑ =�?
�@,�X� A� )� is the multiple-access interference (MAI) from the � − 1 other SBSs, 

SS& 
 ���MN(= �,>����  is the MAI from L� PUs, and T 
 MN(B>��is the noise signal at the 

array output of the MBS,  

For the backhaul link, it is assumed that each SBS is transmitting with a capacity-aware 

beamforming scheme that will be discussed in Section 4 and that the MBS is detecting SBSs’ 

signals using MRC scheme. 

 

3. SYMBOL ERROR RATE AND ERGODIC CHANNEL CAPACITY  
 

The symbol error rate, YZ[�,6� , associated with  *�\] user of the +,- SBS can be expressed as 

YZ[�,6� 
 Zγ^,_�E`ab�2be�,6�fI,                                                                  (8) 

 

WhereE [.] denotes the expectation operator, Q(.) denotes the Gaussian Q-function, e�,6� is the 

signal-to-interference-plus-noise ratio (SINR) associated with the*�,- user of the +,-SBS , and a 

and b, are modulation-specific constants. For binary phase shift keying (BPSK),  ` 
 	1	and	F	 

	1, for binary frequency shift keying (BFSK) with orthogonal signaling a = 1 and b = 0.5, while 

for M-ary phase shift keying (M-PSK) a = 2 and b = sin�	(m/C). 
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Using (7), the signal detected from the*�,- user of the +,- SBS can be expressed by (9) and the 

signal detected by the MBS from the*�\] user of the +\] SBS can be expressed by (10). 

;N,6� 
 MN(=�,>��A�5�,6� 
 MN(=�,>��A�7�,6�( ��
							
 MN(=�,>��A�7�,6�( ��,�����MN(=�,>��A�7�,6�( ��,��� � MNq=�,>��A�7�,6�( � �,���

          (9) 

�r�,6� 
 MN(8PQR 
 ;N,6� � ;S� � SS& �T                                                             (10) 

 

The SINR at the MBS for user *� of the kth SBS can thus be depicted as 

 

γ�,6� 

MN(=�,>����7�,6�( ��,����,��( 7�,6�A�(=�,>��( s�

MN(:�s� 																																																																					(11) 
Where:�  is the covariance matrix of the interference-plus-noise, and is given by 

 :� = :��� + : �,>�� + : �,��� + :t,                                                                        (12) 

 

Where 

:RQR =u =�,>��?
�@,�X� A�)�)�(A�(=�,>��(  

:vw,PQR = ��=>��,6&=>��,6&x  

:vw,RQR = ��=�,>��A�7�,6�( ��, ���, �( 7�,6�A�(=�,>��(  

:y = MN(MN + =�,>��A�7�,6�( 7�,6�A�(=�,>��(  

 

We observe that in general, the off diagonal elements of :� are non-zero, reflecting the color of 

the interference. However, in the asymptotic case of largeC−element array, and given equal 

power transmitted by all users, the central limit theorem (CLT) can be invoked to show that [13],  

:� = z(� − 1)�� + ����
{t� + 1|{t��>	.																																																																																														(13) 

Also, for a large-scale MIMO, the channel vectors are nearly-orthogonal and hence ��,����,��(  

and =�,>��=�,>��(  can be approximated by 

 

��,����,��( = ~
� U�                                                                                                              (14) 

=�,>��=�,>��( = �
� U�                                                                                       (15) 

 

Where	5 ≜ min	(L�, N),  ξ 
 ∑ λ�,6���@ , with  λ�,6�  representing the eigenvalues of ��,����,��(  , 

� ≜ min	(M, N)and  η = ∑ λ�,N��@ , with  λ�,N representing the eigenvalues of =�,>��=�,>��( . 

Thus the SINR γ�,6�can be expressed as 

γ�,6� = �
5
�
� z

7�,6�( 7�,6�A�A�((� − 1)�� + ���� + {t�|																																																																																																		(16) 
 

The ergodic channel capacity, per subcarrier, for each SBS + is given by [13] 

 

Cb=�,>��, A�f = Z z*��� �� + ��2
=�,>��A�7�,6�( ��,����,��( 7�,6�A�(=�,>��(

:� �|																										(17) 
WhereE [.] denotes the expectation operator. 

 

By noticing that for asymptotically large 2,  

H��,����,��( ⟶ UH  almost surely, and using (13) 

and (15) we can express the channel capacity asymptotically as 
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Cb=�,>��, A�f = Z z*��� �� + �� �� z
7�,6�( 7�,6�A�A�((� − 1)�� + ���� + {t�|�|																																														(18) 

 

4. CAPACITY-AWAREBACKHAUL LINK 
 

In the proposed capacity-aware backhaul link, the weight vector for the +,- SBS is updated at 

each iteration n until it reaches the optimal beamforming vector, (A�)��\, that maximizes the 

ergodic backhaul channel capacity for each SBS+ofthe HetNet. This channel capacity can be 

expressed, at each iteration n, by: 

 

C(n) = Z z*��� �� + �� �� z
7�,6�( 7�,6�A�(�)A�((�)(� − 1)�� + ���� + {t�|�|																																																																(19) 

 

To maximize the backhaul link capacity we propose to employ particle swarm optimization 

algorithm where particles are mapped to the transmit beamforming and fly in the search space, 

aiming to maximize the fitness function given by the channel capacity of (19). First, the PSO 

generates Z random particles for each SBS (i.e., random weight vectorAN(�), z = 1, . . . ,Z of length 2	 × 1  ) to form an initial population set S (swarm). The algorithm computes the channel 

capacity according to (14) for all particles AN(�) and then finds the particle that provides the global 

optimal channel capacity for this iteration, denotedAN(�,����\). In addition, each particle z 

memorizes the position of its previous best performance, denotedAN(�,����\). After finding these 

two best values, PSO updates its velocity �N(�)  and its particle positions �N(�)  at each iteration n  

using (20) and (21), respectively, where � and �� are acceleration coefficients towards the 

personal best position (�F ¡¢) and/or global best position (gF ¡¢), respectively,  £ and £� are 

two random positive numbers in the range of [0, 1],  and ¤ is the inertia weight which is 

employed to control the exploration abilities of the swarm. 

 

�N(�)(� + 1) = ¥�N(�)(�) + s�¦� §AN(�,����\)(�) − AN(�)(�)¨ + s©¦© §AN(�,����\)(�) − AN(�)(�)¨                           

(20) 

 

AN(�)(� + 1) = AN(�)(�) + �N(�)(� + 1)                                                 (21) 

 

Large inertia weights will allow the algorithm to explore the design space globally. Similarly, 

small inertia values will force the algorithms to concentrate in the nearby regions of the design 

space. This procedure is repeated until convergence (i.e., channel capacity remains constant for a 

several number of iterations or reaching maximum number of iterations). An optimum number of 

iterations is tuned and refined iteratively by evaluating the average number of iterations required 

for PSO convergence as a function of the target MSE for algorithm termination and as a function 

of the population size. Since random initialization does not guarantee a fast convergence, in our 

optimization procedure we consider that the initial value of AN(�)(�) at iteration index n = 0 is 

given by the eigen-beamforming (EBF) weight, i.e.,  AN(�)(0)= �«¬®7�,¯, where °±²,³V  denotes 

the eigenvector corresponding to ´°±²,�, the maximum eigenvalue of =�,PQR( =�,PQR. This initial 

guess enables the algorithm to reach a more refined solution iteratively by ensuring fast 

convergence and allows to compute the initial value of the received beamforming vector at 

iteration index n=0. In our case we assume MRC at the receiving MBS, i.e.: 

 MN((0) = (:�)µ�=�,>��A�(0)                                                                           (22) 
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5. SIMULATION RESULTS 
 
In our simulation setups, we consider a HetNet organized into K SBSs (K=20) and one macro-

cell. The number of antennas at the SBSs and at the MBS is the same, 2 = C, and is varying 

from 25 to 200. Each SBS is serving �� = 10 users and the macro-cell is serving �� = 10 users, 

each transmitting with a single antenna. We assume QPSK modulation. For the OFDM 

configurations, we assume the 256-OFDM system (Nc = 256), which is widely deployed in 

broadband wireless access services. For the backhaul link we assume an MU-MIMO system with 

capacity-aware beamforming at each SBS and MRC detection at the MBS. For the access link, we 

assume MRC detection at each SBS. For the PSO parameters, the swarm size is 30, the maximum 

iteration number is 25 and the acceleration coefficients are � = �� = 2.The inertia weight¤ 

ranges from 0.9 to 0.4 and varies as the iteration goes on. 

 

Fig. 2shows the the system capacity of the proposed PSO-CA using Monte-Carlo and semi-

analytic methods for different number of antenna at the SBS and MBS. We observe that there is a 

gap between the Monte-Carlo and the semi-analytical results for M=N=50, especially at high 

SNR. This difference is due to (19), which was derived in the asymptotic case of largenumber of 

antenna. For M=N=200, however, we noticed that the gap has almost disappeared, which 

indicated we have approached the asymptotic case. 

 

Fig. 3 shows the system capacity of the proposed PSO-CA and the traditional Eigen-beamforming 

schemes forM = 2 = 25, and	200. It is observed that for both cases PSO-CA is outperforming 

Eigen-beamforming. It is also noted that as we increase the number of antennas the performance 

gap between the two schemes is reduced. This means that when the number of base station 

antennas becomes large, PSO-CA can achieve the same level or better performance than Eigen-

beamforming with less computational complexity. Fig. 4, on the other hand, compares the SER 

performance of both schemes for the same scenario as in Fig. 3.  It is observed PSO-CA is 

outperforming Eigen-beamforming in both cases. 

 

 
Figure 2.Ergodic channel capacityof HetNet using PSO-CA for K=20 SBSs and   M=N=50 and 200 

antennas: Monte-Carlo vs semi-analytic. 
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Figure 3.Ergodic channel capacityof HetNet using PSO-CA and Eigen-beamforming schemes for K=20 

SBSs and M=N=25 and 100 antennas. 

 

 
Figure 4.SER performance of HetNet using PSO-CA and Eigen-beamforming schemes for K=20 SBSs 

and M=N=25 and 100 antennas. 

 

6. CONCLUSION 
 
This paper proposes a capacity-aware wireless backhaul link where cognitive small cells 

communicate with a MBS using a PSO-based large-scale multiple-input multiple-output (LS-

MIMO) beamforming scheme. The proposed algorithm iteratively seeks the optimal transmit 

weight vectors that maximize the channel capacity of each SBS in the HetNet. It was shown that 

the proposed system is able to achieve a low computational complexity (without requiring an 

inverse of the covariance matrix) with the same level or better performance than the convectional 

eigen-beamforming. 
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