
Machine Learning and Applications: An International Journal (MLAIJ) Vol.4, No.4, December 2017

DOI:10.5121/mlaij.2017.4401 1

REINFORCEMENT LEARNING: MDP APPLIED TO

AUTONOMOUS NAVIGATION

Mark A. Mueller

Georgia Institute of Technology, Computer Science, Atlanta, GA USA

ABSTRACT

The problem of autonomous vehicle navigation between lanes, around obstacles and towards a short term

goal can be solved using Reinforcement Learning. The multi-lane road ahead of a vehicle may be

represented by a Markov Decision Process (MDP) grid-world containing positive and negative rewards,

allowing for practical computation of an optimal path using either value iteration (VI) or policy iteration

(PI).

KEYWORDS

Reinforcement learning, MDP, value iteration, policy iteration, autonomous navigation, self-driving car

1. INTRODUCTION

Markov Decision Process (MDP) “worlds” are usually small rectangular environments composed

of squares or cells which contain states which are connected by actions. The ideas presented

herein extend the MDP “small world” to one which may be large or even infinite. In particular,

MDP's and Reinforcement Learning (RL) can model a self-driving car in an environment

comprised of a road with obstacles (negative rewards) and desired goals (positive rewards). We

can thus allow a self-driving car to make decisions by modeling the road ahead of a car as a grid

world. Different roads and road conditions in front of a moving car may be represented by

different reward matrices.

2. MODELING THE ROAD AHEAD: TO FINITE AND BEYOND

If a driver were to embark on a coast to coast drive from San Francisco to New York City, the

planning and the driving would require different levels of decision-making. For example,

mapping a route (shortest or best path) requires a “big picture” view of roads and traffic, which

we routinely do using smartphones' navigation apps. Another level of planning may involve

where to stay overnight, where to purchase gas and eat, etc. Finally, at another level, a driver

looks out at the road ahead. This view provides information required for subsecond decisions

such as obstacle avoidance and staying in a lane versus changing lanes. This paper focuses on

this aspect of autonomous driving and planning.

The road ahead can be represented by a grid-world. It's not necessary to model the road beyond

the horizon for the purposes of short-term navigation. It may be possible to represent the road

ahead as a 15x15 grid, where each square forward represents the next second of travel, and the

squares to the left and right represent lane positions and the edges of the road. Three highway

lanes in one direction can thus be represented as the row E|333|222|111|E, where “|” lines separate

the three lanes denoted by numbers 1 to 3, each lane has 3 positions within that lane (left, center,

right), and “E” represents the edge of the road. A segment of highway may be represented by

multiple rows as described. If a car is moving 100kph (36 meters per second), and each square

forward represents one second of travel, 15 squares represents about 0.5km in the direction of

travel.

Machine Learning and Applications: An International Journal (MLAIJ) Vol.4, No.4, December 2017

2

Furthermore, as the car advances to the next square, it is possible to move the “world” forward so

that the end square is never reached! This contrasts with standard MDP in which cumulative

rewards are optimized for a path through a gridworld from a starting state to a termination state.

MDP can be employed to respond to a reward, which can be appropriately set up to move down

the road and avoid obstacles. The reward matrix may be stated most simply as a “blank slate” of

zeros with a reward at the forward end of the gridworld, so that the policy is to move forward.

More complex rewards may be used to model lanes, so an autonomous car is rewarded for staying

off lane dividers and away from the edges of roads. Different obstacles may be modeled with

negative rewards: A bump in the road may be represented by a small negative number, while a

pedestrian or a car should be represented by a very large negative reward.

3. SMALL AND SIMPLE: 3X3 WORLD

This work utilizes Python 2.7.10, equipped with Anaconda packages, and mdptoolbox

(downloaded from pymdptoolbox.com). A simple 3x3 gridworld illustrates the size of R (reward

matrix) and P (transition matrix) required for mdptoolbox and MDP type calculations in general.

This illustration serves as the model for larger gridworlds discussed below.

The “world” is thus defined by R, P, and gamma, the discounting factor for future rewards. The

3x3 gridworld contains 10 states, where the tenth state is a terminal state which provides zero

reward, and for which actions keep it in this terminal state. Figure 1 shows two different worlds'

R (represented in code as vectors but displayed below as grids), and the resulting values and

policies computed for gamma=0.9. 3 actions which can be described as motions: up (^), up-right

(/), and up-left (\). Illustrations shown make use of Excel to add color to results which have been

cut and pasted from python output.

Figure 1: 3x3 World.

Figure 1 Upper Left shows 2 different rewards for open road and center obstacle (shown

commented from code). Right: P requires 300 elements and shows impracticality of hand-typing

P for worlds larger than 3x3. Figure 1 Lower Left: Results from value iteration, policy iteration

and Q-learning (same results). The “Goal” square is denoted with green, obstacles with red.

Machine Learning and Applications: An International Journal (MLAIJ) Vol.4, No.4, December 2017

3

P (policy) is also shown. For this 3x3 case, the author has hand-typed P containing 300 elements.

Most are zeros; the 1's represent transitions to the next state for each motion (up is the 0
th
 or top

matrix, up+right is the next square matrix, and up+left is the last square matrix). Border locations

do not permit a motion “off the grid”, and the world does not wrap around (as in some video

games where the top wraps around to the bottom, and left wraps around to the right). Specifying

a left-up move from the left boundary simply transitions upards (and the right boundary is

symmetrically similar). The top “world” row simply points to a zero-reward terminal state that

points to itself for all actions. For larger worlds such as 5x5, P is not shown but is similar in

structure. Stochastic P's are not described here, but their matrices are similar in structure

containing nonzero probabilities centered around the 1's as shown above in Figure 1.

Values and policies are computed three different ways: Value iteration, policy iteration and Q-

Learning. Other methods of computing are also available with the mdptoolbox package (not used

here) include: finite horizon, relative value iteration, value iteration GS (Gauss-Seidel) and

policy iteration modified. The values and policies shown in Figure 1 were computed these three

ways which agree. Q-learning is considerably slower, even for a low number of iterations, so

MDP computing for the remainder of this paper focuses on value iteration (VI) and policy

iteration (PI).

Figure 2: Computing times comparing VI, PI and Qlearning. Value iteration is 3X faster than Policy

Iteration; Q-Learning is magnitudes slower than either of these.

4. 5X5 WORLD

We can similarly create examples using a 5x5 world. At this point it is not practical to show the P

matrix, which is similar to that shown in Figure 1 but already large enough to fill an entire page.

However, one P matrix can be used with a number of R matrices to demonstrate obstacle

avoidance and “road edge” examples. Four different reward vectors (shown in matrix form for

illustration) and the resulting P and V are shown in Figure 3. These include “Empty Road”,

“Obstacle” and “Obstacle and Edge”. Code for 5x5: A4_mdp_5x5.py. “Empty Road” reward is

simply 50, 100, 50 rewarding reaching the center of the top of the gridworld. “Obstacle” is adds

two negative reward squares of -100, denoted in red in Fig. 3. Finally, “Obstacle and Edge”

provides a -10 reward (punishment) for driving on the edge of the gridworld or road, denoted in

yellow in Fig. 3. Unless noted, gamma=0.9.

Machine Learning and Applications: An International Journal (MLAIJ) Vol.4, No.4, December 2017

4

Figure 3: Three different 5x5 rewards result in different policies.

In Figure 3, the policies for center and right cases show how the obstacle is avoided. Note,

however, that a vehicle at the bottom row does not act proactively. Some lateral motions are “last

second” maneuvers, which can be changed with different R.

We can observe in Fig. 3 that the choice of rewards “forces” the vehicle to avoid the obstacle

(red). This model incentivizes ending in the center of the lane (or road/world), but the rightmost

model also punishes with -10 for driving on the edge of the road. In Figure 4, driving decisions

are illustrated with a focus on improving the model for “Obstacle & Edge”. In particular, the

optimal center-starting path on the left, shown in blue, could be placed away from the obstacle by

moving left sooner. This would provide more margin for avoiding the obstacle. Similarly, the

right path, which starts from the right 2nd square from the bottom shown in blue, swerves in front

of the obstacle, then turns back to the edge of the road.

Figure 4: Obstacle and Edge moves critiqued.

In Figure 4, blue drawn lines indicate paths which move over late or unnecessarily swerve in

front of the obstacle.

Machine Learning and Applications: An International Journal (MLAIJ) Vol.4, No.4, December 2017

5

By modifying the reward matrices, “driving behavior” or policy can be modified to one which

suits the modeler. In this case, we can punish occupation of a square in front of an obstacle in

order to create a driving behavior with greater safety margin: we can place -20 rewards in the

squares below the obstacle squares, and expect different paths. Results are shown in Figure 5

(right, blue paths). Figure 5 shows earlier turning in front of the obstacle compared to the paths

described in Figure 4.

Figure 5: Changing the obstacle model slightly shows improved driving behavior.

Different discount values (or gamma) are considered for the another 5x5 case; results are shown

in Figure 6. Only gamma values between 0.0 and 1.0 may be chosen, as required by mdptoolbox.

We can see from the table that policy results are robust. Policies are compared to those computed

for gamma=0.9 (shown in Figures 5 above). Thus, the model is fairly robust to gamma changes.

Figure 6: Policies computed for VI and PI (value iteration and policy iteration).

In Figure 6, results for different gammas are mostly the same as for gamma=0.9, except for

gamma <=0.2 where we see one state's policy (indicated in cyan, circled in red) changes from

left-up to right-up.

Computing times for these 5x5 models: 0.003 sec for VI, 0.008sec for PI. VI required 9

iterations, while PI required 4 iterations to reach zero change.

5. 5X5: TO FINITE AND BEYOND

The 5x5 grid world model can be used in a much larger world by continuously updating, or

moving forward, the world with each move. As the vehicle moves forward, the world moves

forward and the car is placed in the “moved-to” column but kept in the last row, while the

features of the road move towards the car in the 5x5 world and roll off the back of the world.

In this manner, the 5x5 world can be used to drive in a larger or even infinite world. This is

similar to video games which show a finite-screen world, updated as the screen boundaries cross

into “new” space. Such perception of finite space within a much larger world also mimics

Machine Learning and Applications: An International Journal (MLAIJ) Vol.4, No.4, December 2017

6

human driving and other human tasks. A human will process what he/she can observe within a

horizon of observability or relevance, with a higher weighting for objects/situations which are

closer. The models presented here similarly allow for an artificially intelligent (AI) agent to

“think” in terms of “closer is more relevant” versus “far away planning” by tuning gamma, and

and AI agent can more efficiently compute by limiting the horizon to the nearby world. A

sequence for a vehicle moving step by step is illustrated in Figure 7.

Fig. 7, left shows a series of grids in order of time steps 1 to 12. At each step, a reward vector is

processed to form a Value vector (not shown, but similar to those shown previously) and a Policy

vector. The vector can be presented as a matrix in the shape of the 5x5 world for showing the

path of a vehicle. In each succeeding time, the “world” is moved forward so the vehicle stays in

the bottom row.

The vehicle position at the bottom of the 5x5 grids is shown in dark blue, the “next position” is

shown in cyan (light blue). As before, edge of the road is yellow, obstacles are red, and pre-

obstacle squares are orange. Goal squares with positive reward are colored green. Separate files

(with R for each grid) are generated as a function of time. In a real-world application of self-

driving vehicle, R would be generated by a vision system or by other sensors.

Figure 7, right shows the resulting “map” of the vehicle driving through obstacles. Value and

Policy iteration both produce the same Value and Policy results, in 0.002 and 0.006 seconds,

respectively. The algorithms are not too computationally intensive for real-world application.

In summary, this example illustrates how an autonomous vehicle can effectively utilize an MDP

representation and use either Value Iteration or Policy Iteration to update state and choose actions.

It is worth pointing out that the MDP models described in this paper are more appropriately

applied to a motorcycle (narrow width) rather than a car, since the grid positions shown occupy

one square even with increasing resolution. However, models could be extended to vehicles with

greater width simply by summing the cumulative rewards for several squares across as the car

with corresponding width moves forward. In this manner, larger vehicles may be modeled. A

progressively complex model could even model the tire-touching portions of road separately from

the other parts of a car, in order that a car could avoid tire-puncturing objects such as glass which

could otherwise be driven over with a tire path which avoids such objects.

Machine Learning and Applications: An International Journal (MLAIJ) Vol.4, No.4, December 2017

7

Figure 7: Car (blue) maneuvering around obstacles (red). Self Driving Vehicle time sequence of

rewards and resulting policies (left) and resulting map showing the path traveled (right).

6. LARGE: 15X15 WORLD REPRESENTING A 3-LANE HIGHWAY

With a 15x15 grid, we can represent a 3 lane (in one direction) highway. The center median

occupies two squares, the edge of the road occupies 2 squares, each of three lanes occupy three

squares as before, and each pair of lanes is separated by one-square lane dividers. The “end of

the world” goals are rewards shown in green; road edges and lane dividers are -10 rewards shown

in yellow. Figure 8 shows the R, Value and Policy for the open road (gamma=0.9 discount factor

used for calculation). Figure 9 also demonstrates that anything larger than 15x15 is difficult to

represent in this format.

Machine Learning and Applications: An International Journal (MLAIJ) Vol.4, No.4, December 2017

8

Figure 8: 15x15 grid representation of 3 lane highway “open road”.

Top: reward, Middle: Value, and Bottom: Policy.

Computing times for VI and PI are 0.029 sec and 0.031 sec, respectively. VI ran through 16

iterations to reach zero changes; PI ran through 3 iterations to zero change. Q-Learning is not

utilized for this model.

Figure 9 shows another model of the 15x15 highway, in which 2 lanes are blocked and one lane is

open. This is similar to Figure 8, but with obstacles added. These obstacles are shown in

red/orange. A blue line, drawn badly, shows how the policy points towards the largest reward

(100) at the top center; the others are either blocked or replaced with (red) negative rewards. The

policy is consistent with the rewards and values shown.

Machine Learning and Applications: An International Journal (MLAIJ) Vol.4, No.4, December 2017

9

Figure 9: Three lane highway with obstacles represented by 15x15 grid. Reward is given (top); Value

(middle) and Policy (bottom) are computed. Obstacles are red/orange. Lane boundaries and road edges are

yellow.

7. COMPUTING SPEEDS FOR LARGER WORLDS

Computing speeds were measured for worlds between 20x20 and 50x50. Adding random values

to R (to eliminate zeros) did not alter computing speeds. Summary: VI is always faster than PI,

and the difference in computing speed grows with world size. Results for times and number of

iterations are shown in Figure 10. Summary: VI is always faster than PI for the gridworld

models considered here.

Figure 10: Computing times and iterations vs world size, comparing VI and PI. VI is always faster.

For value iteration, a comparison of 25x25 and 50x50 computing times shows a factor of nearly

20 difference. The PI difference is even more pronounced. As the gridworld model size becomes

larger, VI is progressively faster.

grid size time (sec) iterations time (sec) iterations

20x20 0.015 21 0.047 8

25x25 0.047 26 0.203 14

30x30 0.079 31 0.724 22

40x40 0.283 41 3.956 29

50x50 0.703 51 9.366 37

Value Iter Value Iter Policy Iter Policy Iter

Machine Learning and Applications: An International Journal (MLAIJ) Vol.4, No.4, December 2017

10

The computing speed results show that is reasonable, especially for autonomous vehicles with

distributed processing, to compute local grids and communicate goals to neighboring

grids/vehicles, and use a smaller moving world model rather than computing for a too-large

world.

8. CONCLUSIONS

The python package for mdptoolbox is useful for performing value iteration (VI) and policy

iteration (PI) calculations. We introduced this package with 3x3 grid-worlds with 3 possible

forward motions. These were further applied to 5x5 worlds representing a road. For all of the

computations in this paper, PI and VI consistently produce the same results in terms of Value and

Policy, even for a wide range of gamma (discount factor) considered.

Modeling of the road ahead was was accomplished by moving the world ahead along with the

movement of a vehicle. MDP grids were utilized to model a real road containing obstacles, edges

and lanes. Both VI and PI can be used for relatively fast computation for moving a vehicle to

avoid an obstacle and reach the designated goal, which moves forward with the vehicle.

However, VI is consistently faster than PI, and progressively faster for larger gridworlds.

Finally, models of a 3-lane 15x15 gridworld highway were generated. This size of world is

sufficient for representing lane boundaries, road edges, obstacles and goals. Larger grids are

possible; these require different visual representations than those presented here. VI Computing

times for larger grids were shown to be practical for autonomous cars.

REFERENCES

[1] pymdptoolbox http://pymdptoolbox.readthedocs.org/en/latest/api/mdp.html

[2] R package mdptoolbox https://cran.r-project.org/web/packages/MDPtoolbox/MDPtoolbox.pdf

[3] matlab http://www7.inra.fr/mia/T/MDPtoolbox/index_category.html

[4] pymdptoolbox info http://www7.inra.fr/mia/T/MDPtoolbox/index_category.html

[5] pymdptoolbox info https://github.com/sawcordwell/pymdptoolbox

[6] http://mnemstudio.org/path-finding-q-learning-tutorial.htm

