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ABSTRACT 

 
This paper proposes a framework for human action recognition (HAR) by using skeletal features from depth 

video sequences. HAR has become a basis for applications such as health care, fall detection, human position 

tracking, video analysis, security applications, etc. We have used joint angle quaternion and absolute joint 

position to recognition human action. We also mapped joint position on 𝑆𝐸(3) Lie algebra and fuse it with 

other features. This approach comprised of three steps namely (i) an automatic skeletal feature (absolute 

joint position and joint angle) extraction (ii) HAR by using multi-class Support Vector Machine and (iii) 

HAR by features fusion and decision fusion classification outcomes. The HAR methods are evaluated on two 

publicly available challenging datasets UTKinect-Action and Florence3D- Action datasets. The 

experimental results show that the absolute joint position feature is the best than other features and the 

proposed framework being highly promising compared to others existing methods. 
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1. INTRODUCTION 

Human Action Recognition (HAR) is one of the most important and challenging research areas of 

computer vision today. HAR is used widely for the purpose of real life applications, including 

intelligent video surveillance, to detect dangerous events, monitor people living alone, video 

analysis, assistive living, robotics, telemedicine, health care, content-based video search, video- 

game, human-computer interaction [1-2]. The goal of this work is to recognize human actions by 

using the human skeleton feature in realistic videos, such as movies, videos on the internet and 

surveillance videos. By using depth sensors, like Microsoft Kinect (Figure 1) or other similar 

devices nowadays, it is possible to design action recognition systems exploiting depth maps. 

Microsoft Kinect is also a good source of information because depth maps are not affected by 

environment light variations, provide body shape, and simplify the problem of human detection 

and segmentation. Again, research on human action recognition has initially focused on learning 

and recognizing activities from video sequences which is captured by conservative RGB cameras. 

On the other hand, the recent publication of cost-effective 3D depth cameras using structured light 

or time-of-flight sensors, there has been great interest in solving the problem of human action 

recognition by using 3D data. Here, it is noted that compared with traditional color 
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images, depth images (Figure 2 shows action sequences of depth images) are unaffected in lighting 

conditions. According to Yang et al.[3], color and texture is unacceptable in the depth images 

which make the tasks of human detection and segmentation easier than the other process. However, 

according to Shotton et al.[4], human skeleton information can be extracted from depth images 

which provide additional information for action recognition. The Kinect sensor is a motion sensing 

device and its name is a combination of kinetic and connects. It is originally designed as a natural 

user interface (NUI) for the Microsoft Xbox 360. Two users can be  detected by Microsoft at the 

same time and their skeletons in 3D with 20 joints representing body junctions like the feet, knees, 

hips, shoulders, elbows, wrists, head, etc., are computed. In this work, we will use these skeletal 

features (such as absolute joint position, joint angle), by the Microsoft Kinect sensor. There are a 

lot of datasets available such as MSR-Action 3D dataset in Li et al.[5], UTKinect-Action dataset 

in Xia et al.[6], Florence3D-Action dataset in Seidenari et al.[7] etc. Our job is specific to the 

actions being performed by the human participants. 
 

Figure 1. Microsoft Kinect camera. 
 

 

Figure 2. Example of a depth video sequence for Tennis Serve action. 

 

Recognizing actions from videos though, has been extensively researched upon over the past few 

decades but still, it is way behind the actual deployment to real applications. Since, human 

activities in videos are not constrained, and there is an abundance of noise like unstable motion, 

varied range of background, pose diversity etc., human action recognition is a tricky problem. 

There are numerous reasons to why HAR still remains an open problem. One of the key problems 

in action recognition is camera motion. Since for recognizing actions, capturing of motion has been 

the most important cue, any noisy motion may impose a hindrance. In realistic settings, a camera 

keeps on moving, which in turn results in non-constant background and even the subject of action 

changing forms in the same scenario. Even with minimalistic camera motion, categorizing actions 

undergoes severe other challenges, like large inter class variability. Apart from all these, visual 

appearance of a human subject may differ to a large extent. There may be differences in poses, 

locations, camera orientations, and light settings. And in certain cases, either the human subjects 

or the objects may be occluded, which makes it difficult for actions to be detected. There are some 

other challenges in classification of videos. Among of these one type of problem is intra-class 

variability, and inter-class similarity. The rest of the sections in this work are organized as: in 

section 2, we are briefly go through all the primary work in the field of action recognition that has 

led us here, where we will discuss all the state-of- the-art techniques, their strengths and 

weaknesses. In section 3, we will explain about the human action recognition and categorization. 

Skeletal feature extraction methods and classification methods are also discussed in this section. 

In section 4, the result of our work is discussed in this section. Also action classification from 

different dataset and the experimental result are also presented in this section. Finally, in section 5 

concludes the work. 
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2. RELATED WORK 

Various types of sensor data have been used for human action recognition. Early work on action 

recognition was done with RGB image and video data. Aggarwal et al.[8] took a comprehensive 

survey focused on human action recognition in images and videos, and described and compared 

the most widely used approaches. Action recognition and monitoring using inertial sensor data was 

explored by Maurer et al.[9]. However, these sensors are more intrusive and expensive than RGB 

cameras, and also can’t be set up and accessed as easily as them. Going beyond RGB images and 

videos, the recent advent of inexpensive RGB-D sensors such as the Microsoft Kinect that directly 

provide depth information has triggered an increasing interest in using depth images for pose 

estimation in Ganapathi et al.[10]. Various types of depth image data approaches have been used 

for HAR. A method based on depth images and temporal ordering of unique poses was presented 

by Sheikh et al.[11]. Depth images coupled with RGB images have more information available to 

discriminate different poses and actions, compared to RGB images. Bulbul et al.[12] proposed a 

method where three different kinds of discriminative features were fused for depth video sequences 

to tackle with the action recognition problem. They computed three feature descriptors employing 

DMMs, CT-HOG, LBP and EOH. DMMs were utilized to capture specific appearances and shapes 

in a depth video sequence. In another work [13], a novel feature descriptor based on Depth Motion 

Maps (DMMs), Contourlet Transform (CT), and Histogram of Oriented Gradients(HOGs) was 

proposed to classify human actions from depth video sequences. Firstly, CT was implemented on 

DMMs, then HOGs were computed for each contourlet sub-band. Finally, for the depth video 

sequence HOG features used as feature descriptor. Again in [14], they proposed another feature 

extraction scheme for the real-time human action recognition from depth video sequences was 

taken by using Local Binary Patterns (LBPs), and Edge Oriented Histograms (EOHs) in another 

work. Here, LBPs were calculated within overlapping blocks to capture the local texture 

information, and the Edge Oriented Histograms (EOHs) were computed within non-overlapping 

blocks to extract dense shape features. Li et al. [5] used a sampling method to sample from 3D 

points in depth images to recognize actions. Wang et al. [15] extracted Random Occupancy 

Patterns from depth sequences, used sparse coding to encode these features, and classified actions. 

Chen et al. [16] summarized research on pose estimation and action recognition using depth 

images. A filtering method to extract STIPs from depth videos (called DSTIP) was discussed by 

Xia et al. [17] which was effectively suppressing the noisy measurements. Moreover, to describe 

the local 3D depth cuboid around the DSTIPs with an adaptable supporting size, a novel depth 

cuboid similarity feature (DCSF) was built in that work. Another, HAR method via coupled hidden 

conditional random field’s model was expressed by Liu et al.[18]. Also, both RGB and depth 

sequential information were fused in that work. Wang et al.[19] used dense trajectories 

representation to represent interest points in each frame and tracked them based on the information 

from a dense optical wield. They also develop a novel descriptor which is robust to camera motion 

and can be used in more realistic environments. Liu et al.[20] presented another approach based 

on key-frame selection and pyramidal motion feature representation. They used this representation 

to select the most informative frames from a large pool of action sequences. Ding et al.[21] 

proposed a method to learn the low dimensional embedding with a manifold functional variant of 

principal component analysis (mfPCA). Fletcher et al.[22] developed a method of principal 

geodesic analysis, a generalization of principal component analysis to the manifold setting. 

 

Skeleton-based human action recognition can be classified into two main categories: joint-based 

approaches and body part-based approaches. Joint-based approaches consider human skeleton as 

a set of points, whereas body part-based approaches consider human skeleton as a connected set 

of rigid segments. Since joint angles measure the geometry between connected pairs of body parts 

of human skeleton so joint angles can be classified as part-based approaches. Hussein et al.[23] 

represented human skeletons by using the 3D joint locations, and the joint trajectories were 
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modeled using a temporal hierarchy of covariance descriptors. A similar representation used by Lv et 

al.[24] with Hidden Markov Models (HMMs). Sheikh et al.[11] used a set of 13 joint trajectories in a 

4-D XYZT to represent a human action, and affine projections were compared using a subspace 

angles-based view-invariant similarity measure. A human skeleton was represented using pairwise 

relative positions of the joints by Wang et al.[25], and the temporal evolutions of this representation 

were modeled using a hierarchy of Fourier coefficients. Furthermore, an actionlet based approach used 

by Oreifej et al.[26], where discriminative joint combinations were selected using a multiple kernel 

learning approach. Body parts and joint coordinates extracted from depth images in that work. After 

that they had used the histogram of oriented 4D normal of body parts and joint coordinates to recognize 

actions. Sunj et al.[27] combined both the 3D skeleton information and depth images to detect and 

recognize human actions. Their feature set for a static pose has about 700 elements, including joint 

positions and Histogram of Oriented Gradients (HOG) of RGB and depth images. Ellis et al.[28] 

presented algorithms to reduce latency at the time of recognizing actions. Theodorakopoulos et al.[29] 

proposed a method for action recognition. To obtain robust and invariant pose representations, skeletal 

data were initially processed. Devanne et al.[30] proposed a framework to extract human action 

captured through a depth sensor. This proposed solution was capable to capture both the shape and the 

dynamics of the human body simultaneously. In this work, final classification was completed by 

using𝑘𝑁𝑁. Since spatio-temporal features and skeleton joints features are complementary to each 

other, Zhu et al.[31] discussed another feature-level fusion of these two features in by using random 

forests method. To represent skeletal motion in a geometric, a process was presented by Salma et 

al.[32] whose observability matrix was characterized as an element of a Grassmann manifold. A robust 

informative joints based HAR method was proposed by Jiang et al.[33] (2015). They also analyzed 

the mean contributions of human joints for each action class via differential entropy of the joint 

locations. After extracting the 3D skeletal joint locations from depth images, Gan et al.[34] computed 

APJ3D from the action depth image sequences by employing the 3D joint position features and the 

3D joint angle features. They recognized actions by using random forests with employing improved 

Fourier Temporal Pyramid. 

 

3. INTRODUCE RECOGNITION METHOD 

In this section, we firstly take a look at the Support Vector Machine (SVM) shortly. We firstly take a 

look at the data acquisition by Microsoft Kinect, special Euclidean Group 𝑆𝐸(3), and Support Vector 

Machine shortly. Then, the proposed framework will be discussed comprehensively. A framework of 

this action recognition process is showed in Figure 3. 
  

 
Figure 3.A framework of our human action recognition process. 
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A number of classification techniques have been successfully applied to recognized actions e.g. 

HMMs, k-NN, ANNs, DTW, CNNs, Boosting, and SVMs. Over the last years, SVMs is the most 

popular classification technique used in action recognition in videos. 

 

3.1 Data acquisition by Microsoft Kinect 
 

One of the major components of the Kinect sensor is its ability to infer human motion by extracting 

human silhouettes in skeletal structures. It extracts the skeletal joints of a human body as 3D points 

using the Microsoft SDK. It provides a skeleton model with 20 joints as shown in Figure 4. To detect 

human subjects, the availability of depth information helps researchers to implement simpler 

identification procedures. The advantages of this technology, with respect to classical video-based 

ones in Chen et al.[16]: 

 

a) Being less sensitive to variations in light intensity and texture changes 

b) Providing 3D information by a single camera 

c) Maintaining privacy, it is not possible to recognize the facial details of the people captured 

by the depth camera. This feature helps to keep identity confidential. 
 

Figure 4. Skeleton joints detected by Microsoft SDK according as Sheikh et al.[11]. 

 

This Kinect camera can produce a skeletal data over an image frame with 20 important joints in 

the model of human body as shown in Figure 4. These joints are bone parts, in which the basic 

fixation bones are points of “hip center” joint (node 1), “spine” joint (node 2), “shoulder center” 

joint (node 3) and “head” joint (node 4); the positions of the flexible bones are “wrist left” joint 

(node 7), “hand left” joint (node 8), “wrist right” joint (node 11), “hand right” joint (node 12), 

“ankle left” joint (node 15), “foot left” joint (node 16), “ankle right” joint (node 19) and “foot 

right” joint (node 20); the joints of the moving bones are the positions of “shoulder left” joint (node 

5), “elbow left” joint (node 6), “shoulder right” joint (node 9), “elbow right” joint (node 10), “hip 

left” joint (node 13), “knee left” joint (node 14), “hip right” joint (node 17) and “knee right” joint 

(node 18). In particular, each 3D data of human bone joints obtained from the camera denotes with 

three coordinates (𝑥, 𝑦, 𝑧)called (Horizontal, Vertical, and Depth) for a joint position. In this work, 

each joint position 𝐼 is described as the transpose matrix with three values in a coordinate 
(𝑥, 𝑦, 𝑧) and expressed as follows: 

 

 𝐼1 = [𝑥1    𝑦1    𝑧1]
𝑇

𝐼2 = [𝑥2    𝑦2    𝑧2]
𝑇

𝐼3 = [𝑥3    𝑦3    𝑧3]
𝑇

   ………
   ………
   ………

𝐼𝑛 = [𝑥𝑛    𝑦𝑛    𝑧𝑛]
𝑇}
 
 
 

 
 
 

                                                                                                        (1), 
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where 𝑛 describes the number of the joint points, 𝑛 = 1, 2, 3, ……… , 20. In building 3D data, each image 

frame is determined to be 20 bone joints and each joint is in the 3D coordinate(𝑥, 𝑦, 𝑧). Therefore, this 

frame can be described as a column vector 𝐼𝑛 of 60 variables. This vector is arranged from matrices in 

equation (1) and each frame is expressed as follows: 

 𝑃1 = [𝐼1    𝐼2  ……………  𝐼𝑛]
𝑇                                                                                             (2), 

Assume that one video clip has k frames, 𝑘 = 1, 2, 3, . .,  with human activities is defined as the following 

matrix, 𝑷: 

 𝑷 = [𝑃1    𝑃2    𝑃3……   𝑃𝑘]                                                                                                   (3), 

This matrix P can is also expressed another way as follows: 

   𝑷 =

[
 
 
 
 
 
 
𝑃1,1 𝑃1,2………… 𝑃1,𝑘

        
𝑃2,1 𝑃2,2………… 𝑃2,𝑘
𝑃3,1 𝑃3,2………… 𝑃3,𝑘

……………………
……………………

𝑃𝑛,1 𝑃𝑛,2………… 𝑃𝑛,𝑘]
 
 
 
 
 
 

                                                                                       (4), 

 

3.2 Special Euclidean group 𝑺𝑬(𝟑) 
 
Rigid body rotations and translations in 3D space are members of the special Euclidean group 𝑆𝐸(3) 

which is a matrix Lie group. Hence, we have represented the relative geometry between a pair of body 

parts as a point in 𝑆𝐸(3). The entire human skeleton as a point in the Lie group 𝑆𝐸(3) × ………× 𝑆𝐸(3). 

Here, direct product between Lie groups was shown by the notation ×. We will refer to the readers Hall 

et al. [35] for a general introduction to Lie groups and Murray et al. [36] (1994) for further details on 

𝑆𝐸(3) and rigid body kinematics. The special Euclidean group, denoted by 𝑆𝐸(3), is the set of all 4 by 

4 matrices of the form 

𝑃(𝑅, 𝑑 ) = [𝑅 𝑑
0 1

 ]                                                                                                             (5), 

where 𝑑 ∈ 𝑅3, and 𝑅 ∈ 𝑅3×3 is a rotation matrix. Members of 𝑆𝐸(3) act on points 𝑧 ∈ 𝑅3  by rotating 

and translating them, we get: 

 [𝑅 𝑑
0 1

 ] [
𝑧
1
] = [

𝑅𝑧 + 𝑑
1

]                                                                                                    (6), 

By the usual matrix multiplication, elements of this set interact. This can be smoothly organized to form 

a curved 6 dimensional manifold from a geometrical point of view, giving them the structure of a Lie 

group. The 4 by 4 identity matrix 𝐼4 is a member of 𝑆𝐸(3)  and is referred to as the identity element of 

this group. The tangent plane to 𝑆𝐸(3)  at the identity element 𝐼4 is known as the Lie algebra of 𝑆𝐸(3), 

and is denoted by se(3). It is a 6 dimensional vector space formed by all 4 by 4 matrices of the 

form[𝑈 �⃗⃗⃗�
0 0

 ], where �⃗⃗⃗� ∈ 𝑅3 and 𝑈 is a 3 by 3 skew-symmetric matrix. For any element 

             𝐵 = [𝑈 �⃗⃗⃗�
0 0

 ] = [
 
0     −𝑢3           𝑢2          𝑤1
   𝑢3        0    − 𝑢1             𝑤2
−𝑢2    −𝑢1           0           𝑤3
0       0          0            0

] ∈ 𝑠𝑒(3)                                                      (7), 
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And its vector representation 𝑣𝑒𝑐(𝐵) is given by 

 𝑣𝑒𝑐(𝐵) = [𝑢1, 𝑢2, 𝑢3, 𝑤1, 𝑤2, 𝑤3]                                                                                   (8), 

3.3 Support vector machine 
 

Support vector machines (SVMs) are supervised learning algorithms which are also known as support 

vector networks. Vladimir N. Vapnik and Alexey Ya. Chervonenk were invented the original SVM 

algorithm in 1963. SVMs are the most prominent machine learning algorithms that analyze data and recognize 

patterns. This algorithm is also one of the most robust and accurate Machine Learning methods which has a 

sound theoretical foundation and efficient training algorithms. Depending on the nature of the data, such a 

separation might be linear or non-linear. Let us consider a linear classifier (or, hyperplane)   

𝑓(𝑋) = 𝑤𝑇𝑥 + 𝑏                                                                                                         (10), 

where 𝑤 represents a weight vector, 𝑥 is the input feature vector and 𝑏 represents the position of the 

hyperplane. Here, 

(a) if the input vector is 2-dimensional, the linear equation will represent a straight line. 

(b) if the input vector is 3-dimensional, the linear equation will represent a plane. 

(c) if input vector more than 3D, the linear equation will represent a hyperplane. 

That is, if 𝑥1is a unknown vector (Figure 6) which we want to classify, then 

 𝑐𝑙𝑎𝑠𝑠(𝑥1) = {
𝐶1   𝑖𝑓 𝑤

𝑇𝑥1 + 𝑏 > 0

𝐶2    𝑖𝑓 𝑤
𝑇𝑥1 + 𝑏 < 0

                                                                                    (11), 

And  𝑥1 lies on the hyperplane when  𝑤𝑇𝑥1 + 𝑏 = 0.  

 

Figure 5. Two classes are separated by a hyperplane. 

 According to Nguyen et al. [37], the SVM algorithm, the linear hyperplane is an area to divide the data set into 

two subsets collection according to the linear hyperplane. Assume that pattern elements are expressed as follows:  

(𝑥1,   𝑦1), (𝑥2,   𝑦2), (𝑥3,   𝑦3)……… . . , (𝑥𝑚,   𝑦𝑚)                                                                 (12), 

where 𝑥𝑖 ∈ 𝑅𝑛 while 𝑦𝑖 ∈ {−1,+1} is subclass of 𝑥𝑖. Therefore, one needs to find a plane making 

Euclidean distance between two layers if we want to identify the hyperplane. In particular, a  
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vector with the distance values close to the plane is called the support vector, in which, the positive value 

is 𝑦 = +1 or H1 and the negative one is in the region of 𝑦 = −1 or H2. The SVM algorithm is to find 

an optimal hyperplane for classification of two classes and expressed as follows: 

 𝑓(𝑥) = 𝑤𝑇𝑥 + 𝑏                                                                                                               (13), 

Assume that the equation of hyperplane is 𝑤𝑇𝑥 + 𝑏 = 0 , where w is the vector with perpendicular points 

to the separating hyperplane and with 𝑤 ∈ 𝑅𝑛  and 
|𝑏|

||𝑤||
 is distance from this hyperplane to the origin, 

and ||𝑤|| is the magnitude of 𝑤. Moreover, 𝑑+ (𝑑−) is the shortest distance from the hyper-boundary to 

positive (negative) samples. Also, the region bounded by these two hyperplanes is called the margin of 

this hyperplane. The distance between 𝑤. 𝑥 + 𝑏 = +1 and 𝑤. 𝑥 + 𝑏 = −1 is the margin of this 

hyperplane (Figure 6). By applying the distance rule between two straight lines, we get the margin,  𝑚 =
2

||𝑊||
 . Suppose that all training data satisfy the following constraints: 

 𝑤. 𝑥𝑖+ 𝑏 ≥ +1, in which 𝑦𝑖 = +1                                                                                  (14), 

𝑤. 𝑥𝑖+𝑏 ≥ −1, in which 𝑦𝑖 = −1                                                                                   (15), 

 

Figure 6. Classification of an unknown feature vector with the help of hyperplane. 

From two equations (12) and (13), one has: 

                             𝑦𝑖(𝑤. 𝑥𝑖 + 𝑏) ≥ +1                                                                                                      (16𝑎), 

and     𝑦𝑖(𝑤. 𝑥𝑖 + 𝑏)  = 1                                                                                                         (16𝑏), 

where 𝑥𝑖 is a support vector where support vector is the input vectors that just touch the boundary of the 

margin. Simply, support vectors are the data points that lie closest to the decision surface (or hyperplane).  

4. EXPERIMENTAL RESULTS  
 

There are different types of datasets available to use action recognition process such as MSR-Action3D 

datasets, UTKinect-Action Dataset, Florence3D-Action Dataset, KTH Dataset, WEIZMANN Dataset, 

Hollywood Dataset, Multi-camera Human Action Video Data etc. In this work we have used UTKinect-

Action and Florence3D-Action datasets. Action and Florence3D-Action datasets. 
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4.1 UTKinect-Action and Florence3D-Action datasets setup 

The UTKinect-Action dataset was collected as part of research work on action recognition from depth 

sequence.  This dataset was captured by using a stationary Kinect sensor with Kinect for Windows SDK. It 

consists of 10 actions performed by 10 different subjects. Where each subject performed every action in two 

times. Altogether, there are 199 action sequences. The 3D locations of 20 joints are provided in this dataset. 

The dataset collected at the University of Texas’s. These 10 actions of UTKinect-Action Dataset are: walk, 

stand up, sit down, pick up, carry, throw, push, pull, wave hands, clap hands. Three channels were 

recorded: RGB, depth and skeleton joint locations. Again, the Florence3D-Action dataset was collected at the 

University of Florence during 2012. This dataset was captured by using a stationary Kinect sensor. It consists 

of 9 actions by performing 10 different subjects. Each subject performed every action two or three times. 

Altogether, there are 215 action sequences. Its 9 actions are: wave, drink from bottle, answer phone, clap, 

tight lace, sit down, stand up, read watch, bow. Only 15 joints are provided in Florence3D-Action dataset 

on 3D. Due to high intra-class variations, this dataset is challenging than UTKinect-Action dataset. 

4.2  Experimental Results and Comparison of UTKinect-Action Dataset 

In this section we will evaluate the experimental results based on joint angle quaternion,  𝑆𝐸(3) Lie Algebra 

Absolute Pair, and absolute joint position of UTKinect-Action datasets. Our proposed method’s performance 

will be compared with other competitive methods. Again, after completing our experiment based on joint 

angle quaternions feature, we get 94.95% recognition accuracy. A comparison of results with other previous 

methods is given in Table 1.  

Table 1: Recognition results comparison of various skeletal representations with joint angle quaternions 

feature of UTKinect-Action dataset. 

Author Method Accuracy Rates 

Zhu et al. (2013) [31] RF 91.9% 

Xia et al. (2013) [17] DCSF 90.1% 

Xia et al. (2013) [17] HMMS 90.92% 

Devanne et al. (2014) [30] kNN 91.5% 

Joint Angle Quaternions MSVM 94.95% 

 

If we notice [Table 2] the class wise accuracy of these 10 actions of UTKinect-Action dataset, we 

will get a few misclassifications. 

Table 2: Class wise accuracy of UTKinect-Action dataset by using joint angle quaternions. 

Actions Walk Sit 

down 

Stand 

up 

Pick 

up 

Carry Throw Push Pull Wave 

hand 

Clap 

hand 

Classifications 

Rates 

90 100 100 90 88.89 90 90 100 100 100 

 

From the confusion matrix in Figure 8 (a confusion matrix, also known as an error matrix is a specific 

table layout that allows visualization of the performance of an algorithm) we notice that the ‘Sit-down’ 

action classification rate is 100% that means this classification method can classify this action 

accurately. 
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Figure 7: Confusion matrix of joint angle quaternion 

feature. 
Figure 8: Confusion matrix of 𝑆𝐸(3) Lie algebra 

absolute joint pair feature. 

Figure 9: Confusion matrix of absolute joint 

positions feature. 

 

Figure 10: Result comparison between joint angle 

quaternion, SE (3) Lie algebra absolute pair, and 

absolute joint position features. 

  

Also, many other actions such as ‘Stand-up’, ‘Pull’, ‘Wave hand’, and ‘Clap hands’ are accurately 

classify by this classification method. But rest of the action of UTKinect-Action dataset can’t fully 

classify. 
 

Table 3: Recognition rates comparison for various skeletal representation with 𝑆𝐸(3) Lie algebra absolute 

pair feature. 

 
Authors Method Accuracy Rates 

Fletcher et al. (2012) [22] LARP+PGA 91.26% 

Gan et al. (2013) [34] APJ3D and RF 92% 

Theodorakopoulos et al. (2014) [29] Boost Performance 90.95% 

Jiang et al. (2015) [33] Linear CRFs 91.5% 

𝑆𝐸(3) Lie Algebra Absolute Pair MSVM 95.96% 

 

We also notice that due to inter-class similarity there are a number of misclassifications that means 

some actions are confused with other action in this data set. For example, due to inter class 

similarity for carry action there is 11.11% misclassification that means the action carry is 

confused with the action walk. Similarly, due to inter class similarity for push action there is 10% 
misclassification that means the action ‘Push’ is confused with the action ‘Throw’.That means, the 

feature joint angle quaternions is not as stronger as we need for this UTKinect-Action 
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dataset. To improve the accuracy rate we may apply feature fusion process. After completing our 

second experiment by using 𝑆𝐸(3)  Lie algebra absolute pair we get the recognition rate (Table3) 

95.96%.Moreover, if we notice [Table 4] the class wise accuracy of these 10 actions of UTKinect-

Action dataset by using 𝑆𝐸(3) Lie algebra absolute pair feature, we will get also a few 

misclassifications. 

 
Table 4: Class wise accuracy of UTKinect-Action dataset by using 𝑆𝐸(3)  Lie algebra absolute pair 

feature. 

 

Actions Walk Sit 

down 

Stand 

up 

Pick 

up 

Carry Throw Push Pull Wave 

hand 

Clap 

hand 

Classifications 

Rates 

100 100 100 100 88.89 90 100 100 80 100 

 

Again, if we observe Figure 8, we will notice the minimization of misclassification rate. ‘Walk’ 

and ‘Pick-up’ actions were misclassified by joint angle quaternion feature but by using 𝑆𝐸(3) Lie 

algebra absolute pair feature these misclassifications are removed. Furthermore, another feature 

called absolute joint position is applied on UTKinect-Action dataset in our work. At this time, 

recognition accuracy rate is increased than the previous two features which is 98.99%. 

 
Table 5: Recognition rates comparison for various skeletal representation with absolute joint positions 

feature on UTKinect-Action dataset. 

 

Authors Method Accuracy Rates 

Liu et al. (2012) [20] Coupled hidden conditional RF 92% 

Ding et al. (2015) [21] STFC 91.5% 

Salma et al. (2015) [32] Linear SVM 88.5% 

Absolute Joint Position MSVM 98.99% 

 

From Figure 9, we notice that most of the actions are accurately classified except the action 

‘Throw’. So, it is clear that the raw feature absolute joint positions are suitable for UTKinect- 

Action datasets. In Figure 10, a comparison of class wise action accuracy between joint angle 

quaternion, 𝑆𝐸(3) Lie algebra absolute joint pair, and absolute joint position features is given. 

From this comparison we can say that absolute joint position feature shows the better performance 

than the previous two features. 

 

4.3 Experimental Results and Comparison of Florence3D-Action Dataset 

 

In similar manner, when we complete our experiment by using joint angle quaternions, absolute 

joint positions, and 𝑆𝐸(3) Lie algebra absolute joint pair features on Florence3D-Action dataset, 

we get another type of results (Table 9). Due to inter-class similarity among these actions, 

recognition rate is quite less than the previous dataset. 

 

Table 6: Results comparison for our three skeletal features on Florence3D-Action datasets. 

 
Authors Method Accuracy Rates 

Fletcher et al. (2004) [22] LARP+PGA 79.01% 

Seidenari et al. (2013) [7] NBNN 82% 

Ellis et al. (2013) [28] CRF 65.7% 

𝑆𝐸(3) Lie Algebra Absolute Pair MSVM 75.45% 

Joint Angle Quaternions MSVM 84.55% 

Absolute Joint Position MSVM 81.82% 
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From the confusion matrix (Figure 12) of 𝑆𝐸(3) Lie algebra absolute joint pair feature based 
classifications, a number of misclassifications are observed. Only two actions are accurately 

classified. 
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Figure 11: Confusion matrix of joint angle 

quaternion feature. 
Figure 12: Confusion matrix of 𝑆𝐸(3) Lie algebra 

absolute joint pair feature. 
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Figure 13: Confusion matrix of absolute joint 

position feature. Figure 14: Result comparison between joint angle 

quaternion, SE (3) Lie algebra absolute joint pair, 

and absolute joint position features. 

 

From Table 6, we notice that the action classification accuracy by the derived feature 𝑆𝐸(3) Lie 

algebra absolute pair is 75.45% but this feature can’t classify all action properly except the actions 

‘Bow’, and ‘Stand Up’ (Figure 12). Again, if we notice Table 6, it will be clear that these actions 

accuracy is better than the 𝑆𝐸 (3) Lie algebra absolute joint pair feature. Also another action ‘Clap’ 

among these actions is fully classified (Figure 13). A comparison of accuracy results is given in 

Figure 14.So, by applying feature fusion strategy of 𝑆𝐸(3) Lie algebra absolute joint pair with 

absolute joint positions, we will be able to minimize the misclassification of these actions. After 

feature fusion (Figure 15) of absolute joint position and 𝑆𝐸(3) Lie algebra absolute pair features 

we will get accuracy rate be 81.82% and the number of misclassifications will be reduced. 
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Figure 15. Absolute joint position (AJP) and 𝑆𝐸(3) Lie algebra absolute joint pair (𝑆𝐸(3) LAAP) features 

fusion framework. 
 

5.  CONCLUSIONS 

Human action recognition is one of the main areas of research nowadays. In this work, we have 

shown skeleton based techniques for HAR. This approach is done with the help of skeletal data. 

Skeleton joint positions and skeletal joint angle from the Kinect sensor are collected from the 

inertial sensor. In our first experiment, we have evaluated the action recognition results by using 

joint angle quaternions of human skeleton. But there appear a few misclassifications of some 

actions. Then to develop our accuracy rate, we have introduced another two skeletal feature 

known as 𝑆𝐸(3) Lie algebra absolute joint pair and absolute joint positions. After that, we have 

applied a feature fusion method on absolute joint positions features with 𝑆𝐸(3)  Lie algebra 

absolute joint positions features. Finally, we get a better result than the first approach and 

compare with different skeletal features based classifications. The proposed system have 

recognized action via multi-class support vector machine (MSVM). Experiments carried out on 

two datasets: UTKinect-Action dataset and Florence3D-Action dataset. When we compare with 

other skeletal-based solution our approach show competitive performance than others previous 

methods. Finally, we have observed that our proposed features are more appropriate on 

UTKinect-Action dataset than Florence-3D Action dataset. 
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