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ABSTRACT 
 

We modeled an SVM radial classification machine learning algorithm to determine the ruptured and 

unruptured risk of saccular cerebral aneurysms using 60 samples with 6 predictors as the gender, the age, 

the Womersley number, the Time-Averaged Wall Shear Stress (TAWSS), the Aspect Ratio (AR) and the 

bottleneck of the aneurysms, considering real cases of patients. We reconstructed computationally each 

geometry from an angiography image to realize a CFD simulations, where the TAWSS was computed by 

CFD analysis. A cross validation method was used in the training sample to validate the classification 

model, getting an accuracy of 92.86% in the test sample. This result may be used to help in medical 

decisions to avoid a complicated operation when the probability of rupture is low. 
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1. INTRODUCTION 

 
Millions of data are generated every day, and machine learning algorithms are used more 

frequently in many areas. In biology science is essential may be able to predict and reduce risk 

factors when a phenomenon (that may cause death[1]) is difficult to measure. An intracranial 

cerebral aneurysm is an abnormal dilation of an artery caused by a weakness in the wall (a 

reduction in the tunica media, i.e., muscular middle layer of the artery wall due to certain 

hemodynamic factors [2]), and it is located in the subarachnoid space at the base of the brain [3]. 

These are typically classified based on its form and position in the main artery into terminal, 

lateral, or bifurcation aneurysm [4]. High-blood pressure, smoking, family history, stress out and 

a previous aneurysm are main factors that may increase the risk of an aneurysm or its rupture. 

Clinical studies regarding the behavior of hemodynamic parameters such as wall shear stress 

(WSS) or the interior velocity field within the aneurysm may be occasionally difficult to measure, 

and indeed be able to predict whether its rupture. In contrast, a complete aneurysm hemodynamic 

[5]and prediction studies are possible via Computational Fluid Dynamics (CFD) reconstructing 

cerebral aneurysm models, and then implementing Machine Learning algorithms[6]using data 

generated for each simulation and the geometrical parameters. Hemodynamic stresses are 

considered as important factors affecting the development of aneurysms because they are directly 

related with aneurysm rupture risks [7][8]. Similarly, geometrical parameters (combinations 
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between neck, width and height of the aneurysms) may be good factors in the behavior of the 

aneurysm ruptures as well [9][10]. 

 

Relevant studies in machine learning techniques to predict the rupture risk of aneurysms have 

been developed as computing capacity increases. Judy Shum et al. [11] found in a machine 

learning for the assessment of AAA rupture risk study that the null hypothesis is rejected when 

geometrical factors are considered predictors in a classify model. Qian et al. [12] also studied the 

risk analysis of unruptured aneurysms using CFD and Energy Loss techniques, founding a useful 

tool for the prediction. An important work was developed by Bisbal et al.[13] applying a data 

mining approach to predict the rupture risk of aneurysms using hemodynamic, morphologic and 

clinical features, however, the validation of the models was not presented. Monsalve-Torra et al. 

[14] used a neural network algorithm to predict in hospital mortality in patients with abdominal 

aortic aneurysm. In addition, there are recent studies that have proposed a complete methodology 

to predict the risk of intracranial aneurysm ruptures using machine learning and image processing 

techniques, taking clinical, demographical, environmental and medical data [15]. On the other 

hand, a study found a first machine learning approach to establish the relationship between shape 

features and ascending aortic aneurysm risk predicted from FE analysis using SSM, SVM and 

SVR algorithms[9].Muluk et al. [16] predicted the aortic aneurysm rupture using only geometry 

modeling considering 15 variables. In the same way, Mocco et al. [10] used the aneurysm 

morphology to demonstrate and predict that these ones can be good predictors. Finally, recent 

studies of Liu et al. [17]and Lee et al. [18]predicted the rupture risk using morphological 

parameters and healthy behaviors with feed-forward artificial neural network and SVR, 

respectively. The objective of this investigation is carried out a supervised machine learning 

algorithm (SVM) using the least amount of statistic significant morphologic and hemodynamic 

variables, simplifying the model and the compute-time of each iteration. This work is organized 

as follow: Sect. 2 explain the simulation procedure and the tools to carry out all analysis. Sect. 3 

presents and discusses the results. Sect. 4 draws conclusions.   

 

2. METHODOLOGY 
 

2.1. RECONSTRUCTION OF GEOMETRIES AND PROPERTIES 

 
The models were generated by first performing aneurysm surgeries of the patients of Instituto de 

Neurocirugía Asenjo (INCA), and then reconstructing 60 three-dimensional angiography images 

on a 1:1 scale to obtain adequate geometries for the simulation software, ANSYS (see Figure 1). 

In this investigation, 30 aneurysms were previously ruptured and other 30 were previously 

unruptured.   

 



Machine Learning and Applications: An International Journal (MLAIJ) Vol.5, No.4, December 2018 

3 

 

 
Figure 1. (a) Three-dimensional angiography image from a patient of INCA (b) Reconstruction from the 

three-dimensional angiography with boundary conditions (inlet and outlets) and the aneurysm geometrical 

measurement (Neck, Width, and Height). 

 

The geometrical dimensions of three aneurysms are shown in Figure 1. The AR (neck-to-dome 

length/neck-width) was calculated for the entire cerebral aneurysm geometries, wherein AR 

values from 0.63 to 5.28 were considered. 

 

A laminar and incompressible fluid flow was considered using 𝜌 = 1065 𝑘𝑔/𝑚3 [19], [20] and 

modeled by the conservation of mass and momentum or the Navier–Stokes equations. Blood was 

considered as a non-Newtonian fluid, and the Carreau model was used to model the shear 

thinning behavior of blood, as follows [21]: 

 

𝜇𝑒𝑓𝑓(�̇�) = 𝜇𝑖𝑛𝑓 + (𝜇0 − 𝜇𝑖𝑛𝑓)(1 + (𝜆�̇�)2)
𝑛−1

2     (1) 

where 𝜇𝑖𝑛𝑓 = 0.00345 𝑘𝑔/𝑚 ∙ 𝑠 (viscosity at infinite shear rate), 𝜇0 = 0.056 𝑘𝑔/𝑚 ∙ 𝑠 (viscosity 

at zero shear rate), 𝜆 = 3.313 𝑠 (relaxation time), and 𝑛 = 0.3568 (power index) are the material 

coefficients.  

 

Respect to the mechanic behavior of the artery walls, we considered the simplification of the rigid 

artery in all cases.  

 

2.2. Boundary Conditions 
 

It is important to mention that we reconstructed real aneurysms using angiography images and the 

boundary conditions simulated the internal cardiovascular system of the brain and these ones 

should be adjusted to maximize the real conditions, being an important role in the development of 

the flow inside each artery. While, the inlet condition was used as a velocity profile, the outlet 

conditions represented the blood pressure. The pressure difference was another important factor 

that was assumed to be only a function of time, and it was generated by a pulse wave of a finite 

velocity [22]. 

 

We used the Womersley velocity theory [21] to obtain the physiological flow conditions at the 

artery inlet. The velocity profile was computed from the general Womersley solution (Eq. 2) 
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using a code in C++ and it was subsequently exported to the ANSYS Fluent software (the 

Womersley solution equation is described in more detail in [21]). 

 

𝑣(𝑟, 𝑡) =
2𝑄0

𝜋𝑎2 [1 − (
𝑟

𝑎
)
2

] + ∑
𝑄𝑛

𝜋𝑎2

[
 
 
 
 
 
1 −

𝐽0 (
𝛽𝑛𝑟
𝑎 )

𝐽0(𝛽𝑛)

1 −
2𝐽1(𝛽𝑛)
𝛽𝑛𝐽0(𝛽𝑛)

]
 
 
 
 
 

𝑒𝑖𝑛𝜔𝑡

𝑁

𝑛=1

                                            (2) 

With 

 

𝛽𝑛 = 𝑖
3

2𝛼𝑛 = 𝑖
3

2𝑎√
𝑛𝜔

𝜈
            (3) 

where αn is the n-Womersley number, a is the artery radius of the inlet, n is the number of modes, 

and ω is the angular frequency obtained from the period of the cardiac cycle. In our study, we 

have chosen eight modes and an angular frequency of 7.703 s-1 (period of the cardiac cycle was 

0.857 s) [23]. The Womersley solution depends on the Womersley number, and it is a measure of 

the ratio of the momentum equation to the viscous part [21]. When αn is small, the unsteadiness is 

not important, and the solutions become Poiseuille solutions that vary in magnitude, but not in 

shape. If αn is large, the shapes of the profiles are not parabolic [21].  

 

Figure 2a shows one of 60 blood velocity profile measurements delivered by INCA. We obtained 

the time-averaged maximum velocity (TAMAX) following the results given by Li et al. [24] and 

Blanco [25] for all artery-images using an R Studio tool[26]. We localized each RGB pixel of the 

TAMAX line (a smooth line of the Figure 2a), then, we related the distance between a subtraction 

of pixels and a subtraction of centimeters at the vertical 

 

axis. An average was derived from all the velocity profiles and it was multiplied by the inlet area 

of each geometry to yield the flow (Qi). Subsequently, a Fourier fitting of Qi was performed using 

a fit function of RStudio to obtain the respective Fourier coefficients. Finally, the Fourier 

coefficients were employed to calculate the Womersley velocity of each geometry. 

 

 
Figure 2. (a) Blood velocity measurement from a patient of INCA. (b) Flow volume to employ in the inlet 

condition. 
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We used a normal pulsatile pressure condition between 80 and 120 mmHg [27] (represented in 

Figure 3), calculated through a three-element Windkessel model for the outlets. The purpose of 

this model was to represent the realistic physiological flow patterns and pressure distributions in 

the computational domain for the fluid [28]. 

 

 
Figure 3.(a) Equivalent pulsatilepressure computed by the (b) three-element Windkessel model. 

 

2.3. Numerical Method and Setup of CFD 
 

A mesh for each geometry must be considered to solve the transient Navier–Stokes equations by 

considering a non-Newtonian fluid. In our case, we used a mesh of a density of 1500 

elements/mm3(shown in Figure 4), in which we studied the difference between the mean WSS at 

the systole of the pulsatile blood flow with 250, 500, 1000, 2500, 3500, and 4500 elements/mm3, 

respectively. The maximum difference is displayed in Figure 5, and it is below 3% between 1500 

and 4500 elements/mm3. The criteria values selected for the time step and residual were 0.0001 s 

and 0.001, respectively. 

 

 
 

Figure 4. Type of grid using 1500 elements/mm3 for a case studied. 

 



Machine Learning and Applications: An International Journal (MLAIJ) Vol.5, No.4, December 2018 

6 

 

 

Figure 5. Comparison between the mesh results when the WSS at systole time was calculated using 

different mesh densities. The difference of the computing time in ANSYS was almost ten times between 

4500 and 1500 elements/mm3. 

 

The pressure implicit with splitting of operator (PISO) algorithm was used to solve the Navier–

Stokes equations using the spatial discretization of the least squares cell based on the gradient, 

second-order pressure, and second-order upwind for the momentum. For the transient 

formulation, the second-order implicit method was used. 

 

We also calculated the Time-Averaged Wall Shear Stress (TAWSS) (Eq 4), where it was besides 

averaged over the area of each aneurysm during a cardiac cycle T. 

𝑇𝐴𝑊𝑆𝑆 =
1

𝑇
∫ |𝜏𝑤(�⃗�, 𝑡)|

𝑇

0

𝑑𝑡                                                                                                          (4) 

 

2.4. Statistic Test and Machine Learning Algorithm 
 

In the prediction algorithm (optimization problem) we minimized a multiclass SVM model [29] 

shown in Eq. (4) 

𝑚𝑖𝑛𝜃 [𝐶 ∑ ∑𝑦(𝑖)𝑐𝑜𝑠𝑡1(𝜃
𝑇𝑓(𝑖,𝑘)) + (1 − 𝑦(𝑖))𝑐𝑜𝑠𝑡0(𝜃

𝑇𝑓(𝑖,𝑘)) +
1

2
∑𝜃𝑗

2

𝑚

𝑗=1

𝑚

𝑖=1

𝑛

𝑘=1

]                  (4) 

Where 𝐶 (=
1

𝜆
) is a regularization parameter to avoid the bias or variance, 𝑦(𝑖) is the target, 𝜃𝑇are 

the unknow variables, 𝑥𝑗 are the features of the model, 𝑛 the quantity of the predictors and 𝑚 

quantity of the training set. We used the Gaussian kernel, 𝑓(𝑖,𝑘) = 𝑒𝑥𝑝 (−
‖𝑥𝑖−𝑥𝑗‖

2𝜎2 ) , where 

features are separated for a hyperplane in the transformed space.  

 

Also, we employed an 80% of the data for training and 20% for testing the model where an 

exhaustive cross-validation was used as a validation technique to avoid the problem of over-

fitting and it gives much more information about the algorithm performance. In addition, the 

features considered in the model were the gender (14 males and 46 females), the age, the 

Womersley number, the TAWSS, the RRT, the OSI, the AR and the Bottleneck (BNF). 
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Morphologic and hemodynamic parameters will be analyzed in an analysis of variance (ANOVA) 

test to determine the statistical significance of each one, using a tolerance smaller than 0.05 [30]. 

 

3. RESULTS AND DISCUSSION 
 

3.1. Simulation Results 
 

The time-dependent WSS on the wall of each cerebral aneurysm was computed in all the 

simulations (a case is showed in Figure 6), then, all hemodynamic parameters were computed and 

a SVM algorithm was developed to determine the rupture risk of each aneurysm using an RStudio 

script code. The WSS had a lower magnitude at the diastolic time than the systolic time, although 

the temporary form was maintained. In each simulation results we noted that the WSS was mainly 

located at the neck of the aneurysm (shown in Figure 7) due to the velocity vector inside of the 

cerebral artery was approximately 90° with respect to the wall of a saccular aneurysm [31] 

forming vorticities without being significant at the dome [32][33]. 

 

 
Figure 6. Mean WSS computed at an aneurysm for a normal pressure difference. We had considered the 

second cycle of the given pulsatile blood in each solution. 

 

 

Figure 7. (a) WSS and (b) velocity streamline computed at a systolic time from ANSYS software. The 

WSS was localized at the neck of the aneurysm (AR = 2.88) where the flow was facing the wall. 
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3.2. Statistical Analysis 
 

We analyzed the statistical significance of all parameters from CFD simulations and 

morphological parameters through ANOVA statistic tests, where we selected the variables shown 

in Table 1, satisfying the tolerance of P-value, and besides, we considered the smallest quantity of 

them. 
 

Table 1. Statistic of the predictors used on the predicted models. 

 

 Statistic WN TAWSS 

[Pa] 

Age AR BNF 

Ruptured 

(30 cases) 

Min. 0.196 0.253 29.00 0.854 0.633 

1st Qu. 2.687 0.365 52.00 1.294 1.187 

Median 3.303 0.414 57.00 1.690 1.453 

Mean 3.004 0.427 58.67 1.930 1.819 

3rd Qu. 3.362 0.523 67.50 2.303 2.157 

Max. 3.985 0.621 81.00 5.279 6.316 

Unruptured 

(30 cases) 

Min. 1.404 0.462 30.00 0.634 0.574 

1st Qu. 2.423 0.513 48.25 1.054 1.012 

Median 2.963 0.721 57.50 1.341 1.176 

Mean 2.871 0.736 56.10 1.388 1.372 

3rd Qu. 3.285 0.828 64.25 1.551 1.645 

Max. 4.104 0.967 76.00 3.860 2.854 

All cases 

(60) 

F Value 5.521 8.361 5.361 9.968 4.215 

P Value 0.00823 <0.001 0.00231 0.00263 0.0095 

 

In Table 1, all quantities had higher value of the mean in the ruptured than in the unruptured 

group, except TAWSS, in accordance with the results obtained by Xiang et al. [34] and [35]. We 

also analyzed other morphological parameters such as Non-sphericity index (NSI), Aneurysm 

Inclination Angle (AIA), volume and area of the aneurysm being less statistically significant than 

AR and BNF, which is in good agreement with previous works [36]. Respect to the age and 

gender variable of the patients, the p-value is smaller than the tolerance defined, being 

statistically significant, following the results obtained by Li et al. [37]. 

 

3.3. Machine Learning Results and Discussion 
 

An SVM with radial basis function kernel was trained with 46 samples, 6 predictors and 2 

classes, being “unruptured” the positive class. To validate the model, a cross-validation 

methodology was implemented with 10-folds, repeated 3 times. Then, the test set was used with 

14 out-of-samples. The final values used for the model were σ = 0. 1456 and C = 0.5, being 

92.86% in accuracy (showed in Fig. 8) and 0.6438 in Kappa. 
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Figure 8. Combination between Sigma and Cost to compute the best accuracy to the SVM radial model. 

 

In addition, we computed a confusion matrix for the test set where results are showed in Table 2 

and the statistics parameters showed in Table 3. 
 

Table 2. Confusion matrix for the test set using an SVM algorithm. 

 

Prediction Unruptured Ruptured 

Unruptured 7 1 

Ruptured 0 6 

 

Table 3. Statistics parameters for the validation of the model. 

 

Statistic parameter Value 

Accuracy 0.9286 

P-Value <1e-4 

95% CI (0.7613, 0.9982) 

Kappa 0.8571 

Sensitivity 1.0000 

Specificity 0.8571 

Positive predictive value 0.8750 

Negative predictive value 1.0000 

 

Xiang et al. [34], Qin et al. [38], Jing et al. [39] and Fan et al. [40], used the area under the ROC 

curve evaluation (AUC),  achieved to obtain an AUC over 70%  and under 90% using 

morphological, biological or hemodynamic predictors. On the other hand, Monsalve-

Torra[14]obtained a 95.1% in accuracy using a multilayer perceptron (MLP) algorithm, however, 

57 attributes were used from 310 cases (without hemodynamic parameters), being a non-scalable 

problem due to high calculation times and a possible overfit of the model. Lau et al. [41] obtained 

a maximum accuracy of 92.03%, evaluating many biological predictors in a small dataset. In this 

investigation, the adjusted model may predict an accuracy of 92.86% using easily measurable 

predictors as the AR, the Bottleneck, the age, the gender the Womersley number and the TAWSS. 
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Respect to the limitations of this study, computational fluid dynamic techniques in cerebral 

aneurysms are a relatively new approach translating a well-established engineering technology 

into clinical research, being a real-world approximation [42]. Boundary conditions have an 

important role in any CFD problem, they are approximated by no-variation generalized 

waveforms, quantifying hemodynamic differences between ruptured and unruptured aneurysms 

[43]. However, physiologic waveforms may also vary due to physical efforts or emotional 

excitement, resulting in a sudden change in blood pressure and TAWSS. We could also improve 

the accuracy of the models, considering the most statistically significant morphological, CFD, 

biological and fluid-structure interaction (FSI) variables, where in situations that involves the life 

or death of people, we need to have an accuracy as close as possible to 100%. This is also 

possible according as we increase the number of predictors in the model, as indicated by Kohavi 

et al. [44], or using reinforced learning algorithms, however in both cases it would imply having 

more patient data, being a very difficult task to fulfill, although undoubtedly, these results may be 

used as support for neurosurgeons. Respect to the time-computing limitations (considering both 

the CFD and training simulations), we may improve it using a deep learning approach to estimate 

the TAWSS [45], and then, to use the results in a new model to predict the rupture risk. 

 

4. CONCLUSIONS 
 

Six predictors were used to model an SVM radial classification algorithm to determine the 

ruptured and unruptured of saccular cerebral aneurysms using 60 samples. We simulated CFD 

models to compute the TAWSS in the aneurysms considering real cases of patients where we 

reconstructed each geometry from an angiography image. We assumed a rigid artery in all 

simulations. In the machine learning model, we considered a training sample of 48 cases 

randomly selected and a test sample of 12 cases. A cross validation method was used to validate 

the model, getting an accuracy of 92.86%. This result will help in medical decisions to avoid a 

complicated operation when the probability of rupture is low. All predictors may be easily 

measurable, however, to simulate and compute the TAWSS may be slow, in consequence, to 

obtain a result of the ruptured or unruptured prediction in a short time, it could be investigated 

and modeled with a machine learning algorithm in a future investigation. Also, in a future work, 

fluid-structure interaction simulations may be carried out to obtain a complete scheme and 

outcomes from the arterial oscillation, and how some resulting force can be used such as predictor 

of the machine learning models. 
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