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ABSTRACT 
 

We aimed to develop the method for estimating body posture and physical activity by acceleration signals 

from a Holter electrocardiographic (ECG) recorder with built-in accelerometer. In healthy young subjects, 

triaxial-acceleration and ECG signal were recorded with the Holter ECG recorder attached on their chest 

wall. During the recording, they randomly took eight postures, including supine, prone, left and right 

recumbent, standing, sitting in a reclining chair, sitting in chairs with and without backrest, and performed 

slow walking and fast walking. Machine learning (Random Forest) was performed on acceleration and 

ECG variables. The best discrimination model was obtained when the maximum values and standard 

deviations of accelerations in three axes and mean R-R interval were used as feature values. The overall 

discrimination accuracy was 79.2% (62.6-90.9%). Supine, prone, left recumbent, and slow and fast walk 
were discriminated with >80% accuracy, although sitting and standing positions were not discriminated by 

this method. 
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1. INTRODUCTION 
 

The importance of physical activity for health maintenance and promotion is gathering increasing 

attention. Sedentary behaviour is known to be associated with the incidence of malignant 

arrhythmias, and there is accumulating evidence to support that the maintenance and increase of 
physical activity decrease the risk of sudden cardiac death [1]. Increased physical activity by 

exercise can be expected to be effective in lowering the functional level of daily life and in 

preventing life-style related diseases including diabetes, dyslipidaemias, metabolic syndrome, 

heart diseases, and malignancies [2]. The World Health Organization's Global Recommendation 
for Physical Activity [1] states an increase in total step counts in daily life as a goal in the field of 

daily physical activity and exercise. It says that an increase of 1500 steps a day accounts for 2% 

reduction in the incidence and mortality by non-communicable diseases and 1.5-mm Hg reduction 
in blood pressure. 
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Even though these required physical activity criteria have been proposed based on scientific 

evidence, the information used to assess physical activity is often depends on that obtained by 
conventional methods such as a pedometer, in which information such as the type and frequency 

of postural changes and the speed of action and movement is ignored. As a result, the adjustment 

for the effects of age, gender, weight, and height on the assessment of physical activity, if 
implemented, become less rigorous.  

 

To overcome this problem, several studies proposed acceleration and other sensors [3-10] and 

algorithms including machine learning for the precise estimation of body posture and the type and 
level of physical activity [6,7,10]. The reported performance, however, differed with the type, 

number, and placement of sensors, signal sampling frequency, analysis window size, machine 

learning technique, and measurement setting, i.e., laboratory or free-living conditions [11]. In this 
study, we investigated the posture and activity estimation performance of a built-in accelerometer 

of a chest-mounted Holter electrocardiographic (ECG) recorder widely used for clinical purposes 

in combination with the Random Forest machine learning technique. 
 

2. EXPERIMENT METHODS 
 

2.1. Subjects 
 

We studied 11 healthy subjects (2 men, 9 women, 22 ± 1 yr) who gave a written informed consent 

to participate this study. The protocol of the present study was approved by the Institutional 
Review Board of Nagoya City University Graduate School of Medical Sciences and Nagoya City 

University Hospital (approval number, 60-18-0211). 

 

2.2. Measurement device 
 

Holter ECG recorders with a built-in 3-axis acceleration sensor (Cardy 303 pico+, Suzuken Co., 
Ltd; size, W28×D42×H9 mm, weight, 13 g) were used for measuring acceleration and ECG 

signals. The sampling frequency of the ECG was 128 Hz. The accelerometer recorded 

acceleration from left to right, cranio-caudal, and postero-anterior directions as the X, Y, and Z 
values, respectively, at a frequency of 31.25 Hz. 

 

2.3. Experimental protocol 
 

Experiments were conducted in an air-conditioned laboratory at 24 ± 2 ºC. The Holter ECG 

recorder and electrodes were attached on subjects’ chest wall at 09:30. Subjects were instructed to 
take supine, prone, right and left recumbent, and standing positions, to sit in three different chairs 

(a recliner and chairs with and without a backrest), and to walk slowly and walk fast, in a 

randomized order. Subjects maintained each posture and activity for 110 s, and then moved to the 

next posture or activity within 10 s. 
 

2.4. Data analysis 
 

2.4.1. Analysis of 3-axis acceleration time series and RRI time series 

 

The acceleration signals in X, Y, and Z axes at 31.25 Hz were under-sampled at 2 Hz per axis, 
and average, median, maximum, minimum, and standard deviation (SD) were calculated for 

every 10 s for each axis. Because the acceleration data were unstable during the beginning of each 

posture and activity, the first 20 s of each posture was removed, resulting in nine 10-s segments 
per posture/activity. 
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From the ECG signal, all R waves (sharp deflections corresponding to the ventricular electrical 

excitation) were detected and an R-R interval time series were obtained. R-R intervals consisting 
of consecutive sinus rhythms were extracted, resampled at 2 Hz using a step function, and 

averaged over every 10 s. 

 

2.4.2. Feature Selection 

 

As the feature datasets of acceleration variables for machine learning, we examined (1) the 

averages and SDs of 3 axes, (2) the medians and SDs of 3 axes, (3) the maximums and SDs of 3 
axes, (4) the minimums and SDs, and (5) all indices of 3 axes. In addition, the average of the R-R 

interval was added to each of the acceleration datasets, yielding 10 feature datasets. The number 

of data for one posture was nine (90 seconds) per variable. The data for sitting positions in 
different chairs were put together and nine time points were randomly selected from the pooled 

dataset. 

 

2.4.3. Machine learning of classification and verification 

 

We used Random Forest for the machine learning classifier. To reduce the bias of the learning 

data, learning and verification were performed using k-fold cross validation method (k = 11). 
There was no overlap between the training and the test data. These processes were performed 

with Python (3.6) obtained from the open data science platform Anaconda (ANACONDA, 

https://www.anaconda.com/). 
 

Verification of discrimination was performed by calculating the true positive (TP) and false 

negative (FN) for each posture from each subject, and then adding the TP and the FN from all 
subjects. The recall rate defined as equation (i) was calculated for each posture. For example, in 

the discrimination of the supine position, the TP was the number of successful discriminations of 

supine and FN was the number of unsuccessful discriminations of supine. 

 
Fig. 1. Time series of R-R interval and 3-axis acceleration during experiment. 

 

R-Rc = Right recumbent, L-Rc = Left recumbent, Sitting rec1 = sitting in a recliner with knee 
extending, Sitting rec2 = sitting in a recliner with knee bending, Sitting back = sitting in a chair 

with a backrest. 

https://www.anaconda.com/
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Table 1. Recall ratio for posture with feature dataset of acceleration 

 

Posture/activity 
Acceleration 

Average SD Median SD Max SD Min SD All indices 

Spine 0.869 0.859 0.859 0.859 0.869 

Prone 0.798 0.788 0.717 0.778 0.657 

R-recumbent 0.727 0.707 0.747 0.747 0.727 

L-recumbent 0.909 0.909 0.909 0.919 0.909 

Sitting 0.636 0.646 0.616 0.586 0.747 

Standing 0.626 0.576 0.616 0.606 0.535 

Slow walk 0.677 0.677 0.768 0.727 0.687 

Fast walk 0.697 0.747 0.758 0.677 0.758 

Accuracy 0.742 0.739 0.749 0.737 0.736 

SD 0.106 0.111 0.103 0.116 0.118 

 
Accuracy was calculated as the mean value of recalls for all postures.  

SD = standard deviation 

 
Table 2. Recall ratio for posture with feature dataset of acceleration and R-R interval 

 

Posture/activity 
Acceleration 

Average SD Median SD Max SD Min SD All indices 

Spine 0.869 0.838 0.899 0.879 0.859 

Prone 0.818 0.859 0.859 0.859 0.636 

R-recumbent 0.747 0.727 0.737 0.737 0.747 

L-recumbent 0.909 0.859 0.909 0.919 0.909 

Sitting 0.758 0.667 0.717 0.667 0.768 

Standing 0.525 0.586 0.626 0.535 0.434 

Slow walk 0.657 0.606 0.818 0.687 0.828 

Fast walk 0.717 0.737 0.768 0.758 0.737 

Accuracy 0.750 0.735 0.792 0.755 0.740 

SD 0.122 0.110 0.098 0.128 0.149 

 

Accuracy was calculated as the mean value of recalls for all postures. 

 

Recall＝TP／ (TP+FN) ・・・                                                                       (i) 

 
The number of the decision tree and the maximum depth of the tree of the Random Forest were 3 

and 20, respectively, and the maximum value of the recall was calculated by the grid search 

function in this range. 
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3. RESULTS 
 

Fig. 1 shows the examples of R-R interval and 3-axis acceleration time series during the 
experiment. The acceleration signals changed according to the changes in the relative direction of 

gravitation vector with postures. In addition, the acceleration signals, particularly in Y-axis 

reflecting cranio-caudal direction, showed fluctuations during walking and its amplitude was 
greater for fast walk than slow walk. 

 
Table 3. Confusion matrix of feature dataset with the best classification performance 

 

Posture/activity 
Estimated posture/activity 

Segment Recall 
Su Pr Rr Lr Si St Sw Fw 

Actual 

Su 89 0 7 0 0 0 1 2 99 0.899 

Pr 1 85 4 7 1 0 1 0 99 0.859 

Rr 7 15 73 1 3 0 0 0 99 0.737 
Lr 0 2 7 90 0 0 0 0 99 0.909 

Si 2 0 0 0 71 26 0 0 99 0.717 

St 0 0 0 0 34 62 3 0 99 0.626 
Sw 0 0 0 0 0 1 81 17 99 0.818 

Fw 0 0 0 0 0 0 23 76 99 0.768 

 

Su = supine, Pr = prone, Rr = right recumbent, Lr = left recumbent, Si = sitting, St = standing, Sw 
= slow walk, Fw fast walk. 

 
Table 4. Gross confusion matrix for coarse-grained posture/activity 

 

Posture/activity 
Estimated 

Segment Recall 
Lying Sitting Standing Walking 

Actual 

Lying 388 4 0 4 396 0.980 

Sitting 2 71 26 0 99 0.717 
Standing 0 34 62 3 99 0.626 

Walking 0 0 1 197 198 0.999 

Segment 390 109 89 204 792  

Specificity 0.995 0.945 0.961 0.986 Accuracy  
Positive predictive value 0.995 0.651 0.697 0.966 0.907  

 

Data are classification results by feature dataset with the maximum and SD of acceleration and 
mean R-R interval. 

 

Tables 1 and 2 shows the recall rate for the posture/activity by each feature dataset. The feature 

dataset with the highest mean recall rate was a combination of the maximum and SD of 
acceleration and mean R-R interval (mean recall rate ± SD, 0.792 ± 0.098). Supine, prone, left 

recumbent, and slow walk were discriminated by recall rates >0.80, while the recall rate for 

standing was 0.626.  
 

Tables 3 and 4 shows the confusion matrix for the feature dataset with the best performance 

(maximum and SD of acceleration and mean R-R interval). When the postures and activities were 
coarse-grained into lying, sitting, standing, and walking, the overall accuracy of classification was 

0.907. The recall ratio, specificity, and positive predictive value for classifications of lying and 

walking were >0.95. 
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Fig. 2. Histogram of the maximum and SD of acceleration and R-R interval for sitting and standing 

positions. 

Blue: sitting, Orange: standing. 
 

However, the discrimination between sitting and standing were less accurate. Although out of 99 

segments in sitting 71 segments were correctly discriminated as sitting, 26 segments were 

classified as standing, and 2 as prone position, indicating that 26% of sitting was estimated as 
standing. Similarly, out of 99 segments in standing 62 segments were correctly discriminated as 

standing, but 34 segments were classified as sitting and 3 as slow walking, indicating that 

standing was estimated as sitting at 34% probability. Fig. 3 is a histogram of the maximum and 
SD of acceleration and RRI in the sitting and standing postures. Both show the similar patterns of 

distribution. 
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4. DISCUSSIONS 
 

 
In the present study, we examined the usefulness of built-in triaxial accelerometer of a chest-

mounted Holter ECG recorder in combination with machine learning for estimating body posture 

and activity. All possible combinations of variables derived from triaxial acceleration signals 
every 10 s were used as feature dataset and discriminant models were generated by the Random 

Forest algorithm. The best classification performance was obtained by the feature dataset 

consisting of the maximum and SD of acceleration. For all feature datasets of acceleration 
variables, addition of mean R-R interval improved the classification performance. By the model 

using the maximum and SD of acceleration and mean R-R interval classified lying, sitting, 

standing, and walking with an overall accuracy of 0.907. The model showed, however, lesser 

discrimination performances for sitting and standing than those for lying and walking. While the 
recall ratios for lying and walking were 0.980 and 0.999, the ratios for sitting and standing were 

0.717 and 0.626, respectively. Our observations show both the strengths and weaknesses of 

posture/activity estimation by acceleration signals and seem to suggest hints for improving the 
estimation.      

 

There are many studies of the sensors and signal processing algorithms to discriminate body 
postures [3-10]. They reported different performance depending on factors related to sensors, 

signal processing, data analysis including machine learning techniques, and measurement 

settings. As expected, using multiple sensors gives better performance than a single sensor. Yeoh 

et al. [3] used 3 accelerometers at the waist and both thighs and achieved an overall accuracy of 
100% for classification of lying, sitting, standing, and walking and an overall mean-square error 

of 1.76 km/h for walking and running speeds. As to the type of sensor, Godfrey et al. [4] used 

chest mounted tri-axial accelerometer sensitive to both static and dynamic acceleration and 
reported sensitivity and specificity of >0.83 to detect activity types and postural transitions 

between sitting and standing using a sophisticated algorithm of Velocity Estimate and Scalar 

Product Activity. As to sensor placement, Fulk et al. [5] used acceleration and pressure sensors 

built into the shoe and successfully distinguished between sitting and standing with an accuracy 
of 82-100% in patients after stroke. Also, Doulah et al. [7] reported the detection of sit-to-stand 

posture transitions by orthosis-mounted sensors and Fanchamps et al. [9] used a acceleration 

sensor attached to the thigh in post-stroke patients. To discriminate activity types and postures, 
machine learning-based approaches are employed in most of recent studies, such as artificial 

neural network [7], support vector machines [5], Random Forest [10], Naïve Bayes, and K-

nearest neighbours [11]. Finally, as to measurement setting, the reported performance of activity 
and posture discriminations obtained in free-living settings were generally lower than those 

obtained in laboratory settings [9,11]. In the present study, we used a simple tri-axial static 

acceleration sensor built in a chest-mounted Holter ECG recorder, measured data in a laboratory 

setting, and generated the discriminant model for posture and activity by Random Forest 
technique. Thus, it is difficult to compare the present results with those of earlier studies, but the 

discriminant accuracies were comparable to them except that between sitting and standing. 
 

 

The low discrimination accuracy between sitting and standing may be attributable to the use of 

chest-mounted accelerometer that was less sensitive to dynamic acceleration and insensitive to 
the changes in angular velocity. Although the gravity vector is almost vertical in the sitting 

position, it may shift backward to some extent depending on the type of chair (more precisely, on 

the angle at which the body leans on the backrest). In contrast, the gravity vector in the standing 
posture is vertical theoretically; however, since the Holter ECG recorder is worn on the 

inclination of the chest, some backward inclination occurs. During standing acceleration may 

fluctuate slightly due to body sway, while it may more stable during sitting. In this experiment, 

however, the fluctuation of acceleration signal was observed also during sitting (Fig. 3). In 
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addition, the backward movement of the vertical acceleration vector may also occur due to 

walking and other forward movements, further complicating the determination. To overcome this 
problem, not only static features of acceleration such as mean, SD but also dynamic features of 

acceleration such as the pattern of changes seem necessary. 

 
To our knowledge, there was no study to report posture discrimination using both acceleration 

and R-R interval. Although the discrimination accuracy differed depending on the selection of the 

feature dataset, the discrimination accuracy was consistently improved by combining 3-axis 

acceleration and R-R interval. Since R-R interval is expected to shorten with standing [12], mean 
R-R interval may be useful feature to discriminate sitting and standing. This suggests possibility 

of using the indices of heart rate variability as the additional feature to discriminate 

posture/activity. Particularly, low frequency to high frequency power ratio may be useful for the 
feature to detect standing [13,14]. 

 

5. CONCLUSIONS 
 

We examined the posture and activity discrimination performance of signals from a built-in tri-
axial acceleration sensor in a chest-mounted Holter ECG recorder using Random Forest machine 

learning technique. We observed acceptable discriminate accuracy of activities and postures 

except for that between sitting and standing. Additionally, we found that the inclusion of R-R 
interval data as a feature improves the discriminatory accuracy. Because Holter ECG recorders 

with built-in accelerometer are widely used clinically, our findings seem to provide useful insight 

into the benefits and limitations of the clinical use of the accelerometer signal. 
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