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ABSTRACT 

It has been proven that deeper convolutional neural networks (CNN) can result in better accuracy in many 

problems, but this accuracy comes with a high computational cost. Also, input instances have not the same 

difficulty. As a solution for accuracy vs. computational cost dilemma, we introduce a new test-cost-sensitive 
method for convolutional neural networks. This method trains a CNN with a set of auxiliary outputs and 

expert branches in some middle layers of the network. The expert branches decide to use a shallower part 

of the network or going deeper to the end, based on the difficulty of input instance. The expert branches 

learn to determine: is the current network prediction is wrong and if the given instance passed to deeper 

layers of the network it will generate right output; If not, then the expert branches stop the computation 

process. The experimental results on standard dataset CIFAR-10 show that the proposed method can train 

models with lower test-cost and competitive accuracy in comparison with basic models. 
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1. INTRODUCTION 

Deep convolutional neural networks have produced state-of-the-art results on various 

benchmarks[1], [2]. Many Researches in the field of convolutional neural networks, practically 
proved that deeper networks have higher accuracy. Today the state of the art deep CNNs have 

more than one hundred layers and millions of weights and parameters[3]. This needs a vast 

amount of computational power and time to execute a network and generate the final output. The 
high computational cost of these networks can get real systems and applications[4], [5] into 

trouble. For example, a cloud computing service should process too many requests in every 

second, or mobile and embedded systems may have not enough power and hardware to run the 

network for its inputs. So it is very important to reduce the computational cost of networks while 
keeping their accuracy during the inference. If we consider outputs of each layer of the network 

as a set of features for the next layer, then computing features of each layer have its own test-cost 

which a cost-sensitive approach should consider them during computing network output. Figure 1 
illustrates the running process of a typical CNN. The model gets an input image and performs 

some convolution and pooling process layer by layer in the network. Fully connected layers exist 

at the end of the model which produce the final output for the given instance. 

Different methods have been proposed for test-cost reduction and compression of deep 

convolutional networks. The compression methods try to reduce the number of network 

parameters, but these approaches do not necessarily make faster networks; because most of the 

computation of a CNN is related to the convolution operations which cannot be reduced by 
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network compression only. Some recent researches focused on instance-based or input dependent 

methods which dynamically use a set of models or use some parts of the models to generate the 

result for a given instance[6]. As we know, even doubling the depth of network will have a small 
effect on accuracy, and all input instances have not the same difficulty, so many instances can be 

handled with shallower or simpler models. 

 

Figure 1. Illustration of deploying a typical CNN model on an input image 

Along the line of dynamic and instance-based approaches, in this paper, we propose a new test-

cost-sensitive method for deep convolutional networks which can learn to manage the available 

computational resources in the way that result in faster inference for many input instances. This 
method uses a set of middle output and expert branches in the convolutional network. When an 

instance is given to the network input, the computation is started layer by layer to the end of first 

middle output and expert branch. If the expert branch says that the generated output for the given 

instance is wrong at this output level but can be corrected in deeper layers of the network, then 
the running process of the network continues to the higher layers until the next output of the 

network. For other cases, the expert branches stop the computation process and assign the current 

output as the final output of the network. In this way, the deeper layers which result in higher 
computational cost are only used when the expert branch indicates the possibility of improvement 

in output accuracy, and prevent from useless computational power consumption. This can reduce 

the overall test-cost and keep the network accuracy at an acceptable level in comparison with the 
basic model. The experiments on standard datasets show the advantages of the proposed method 

in comparison with other methods. 
 

The paper continues as follow: in the next section we review the related works in test-cost-
sensitive deep learning,section three describes the proposed method in details, in section four we 

present the experimental results, and section five belongs to conclusions. 
 

2. RELATED WORK 
 

There are various types of costs during a machine learning process [7]. Since computational cost 
is a real challenge for deep neural networks, researches proposed different methods and 

approaches to solve it. In this section, we investigate the literature available in this field. These 

researches may do not use the test-cost-sensitive terminology but are relevant to the current 

research. The approaches can be categorized into three main categories. The first category 
belongs to methods that train a new model based on the original one or modify the trained 

models[8]. Methods of the second category increase the speed of deep networks using advanced 

computational methods and more efficient using of hardware[9]. Dynamic instance-based 
approaches are the third category of test-cost-sensitive methods for deep learning which resulted 

in effective solutions in recent years[6] and the proposed method of this paper belongs to this 

category. In the following, we describe these approached in more details with some example 
researches. 



Signal & Image Processing: An International Journal (SIPIJ) Vol.10, No.5, October 2019 

17 

 

2.1. Making a Modified Model 

Methods of this approach modify an existing model or learn a new model from scratch to reduce 
complexity and computational operations of the original model. “Mimicking” network methods 

train a new shallow network [10] or a “Fitnet”[11], which is called student model. This new 

model is made from scratch to mimic the behaviour of the original model which is called the 
teacher model. The newly generated models are more compact, In [10] they are shallower and in 

[11] models have fewer filters and are fitter. Network decomposition methods [12]–[14] is 

another group of model modification approaches that use estimation solutions. In these methods, 

filters are decomposed in the way that increases the total speed of the network but the output of 
original network layers still estimated well. Older network pruning methods [15]do not consider 

the computational cost reduction as their goal, but sparsification of the model reduces its 

complexity which indirectly results in the faster network[16]. 

2.2. Advanced and Low-Level Computational Methods 

Unlike the previous approach, these methods increase the speed of the deep network, without 

modifying the network structure. One family of methods focus on the way of computing layer 
outputs, specifically using fast Fourier transform (FFT)[9]. Another family, target the efficient 

usage of available hardware [17], [18] by low-level parallel computation, efficient memory usage, 

and low precision arithmetic operations. 

2.3. Adaptive Methods 

Both of previous approaches have a static behaviour with all of the input instances and cannot 

allocate the computational resources with an input dependent policy. So there was a lack of test-
cost-sensitive approaches that use computational recourse only when it is needed based on the 

given instance and with a dynamic manner. In recent years some solutions based on this approach 

have been proposed which we call them adaptive methods. Also, the adaptive methods can be 
combined with two previous categories of methods and make use of the advantages of both. One 

main group of researches in adaptive models is network cascades. These methods train a set of 

deep networks and use them in a cascade fashion. They start with simple models that have lower 

test-cost and continue the process with more complex networks until reaching an acceptable 
degree of confidence for the generated output. In this way models with heavier computations is 

only used for more challenging input instances. 

Deep Decision Network proposed in [19] for the classification of images. The method recognizes 
the hardness of instances and passes more difficult images to subsequent models in the cascade. 

The method in[20], called convolutional neural networks cascade, proposed for face detection. It 

operates on versions of the image with different resolutions, rejects the background regions in 
low-resolution stages and passes some challenging candidates to high-resolution evaluations. 

DeepPose proposed in [21] makes cascade deep regression framework using a divide and conquer 

strategy for human pose estimation. 

In a different fashion of cascade, the authors of [6] proposed Deep Layer Cascade for the 
semantic image segmentation problem. Layer cascade, unlike model cascades which use a set of 

models, trains a single network with some internal branches that generate a degree of confidence 

for the regions of the image and stop the process for easier parts which are recognized in lower 
layers of the network and pass harder regions to higher levels of the deep network. The proposed 

method in this paper is similar with layer cascade method but instead of using middle outputs as 

the degree of confidence for the regions of the image, we use expert branches which are specially 

trained to recognize instances that need a deeper process to be categorized correctly. Also, we use 

the proposed method as a solution for image classification problem. 
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3. CNNS WITH EXPERT BRANCHES 

In this section, we explain the proposed method in more details. It is called CNNs with Expert 

Branches (CNN-EB). In the following first we investigate the relationship between computational 

cost in CNNs and test-cost of classification. Then we explain the method details and describe it as 

an algorithm in the third part of this section. 

3.1. Test-Cost in CNNs 

The word test-cost comes from medical diagnosis field and means that if we want to do any test 
on the patient to find the related values of that test, we should consider its cost. Based on this 

concept we define the test-cost in deep CNNs. The deep learning methods have two main 

property: automatic learning of features, and a layered process of learning. The specifications of 
the learning process in deep CNNs mixed test-cost and computation cost concepts. That means in 

the process of feature extraction and learning in the layers of CNN, each layer gains values of a 

set of features (test-cost) by means of doing necessary computations (computation cost). That 
features have more abstraction and representation power in comparison with features in previous 

layers and can result in more accurate decisions in the CNN model. 

In the other words, we can consider a CNN model in the forms of a set of successive layers that 

each layer is responsible for extraction and computation of a feature set, and this is done by 
spending the required cost for doing tests and related computations. Also, we can consider the 

output of a set of network layers which builds a continuous block of the CNN, as the features for 

the successive building block of the network. Considering this viewpoint, in the next part, we 

describe a test-cost sensitive method for deep CNNs. 

3.2. Model Architecture 

The proposed deep CNN model consists of a common convolutional network and two types of 
augmented branches, which include middle output (or classifier) branches and expert branches. 

They are paired with each other and operates together on the middle points of the CNN. The 

output branches are extra output generators that, for example, can recognize the label of input 
instance in a classification problem. The expert branches look at the data from another view; they 

decide on passing input instance to higher layers of the network or considering the current 

generated result of the paired output branch as the final output of the network. To do this, the 

expert branches are trained to find instances that are recognized wrongly at current level of the 
network but can be classified correctly in higher levels and successive layers of the deep CNN. 

The training of expert branches is done based on the extracted features from the instance in 

concatenation with the result of corresponding paired output branch. This concatenation 
represents more features available to the expert branch and makes it able to generate more 

accurate decisions.  

Formally we can define the elements of the proposed CNNs with expert branches as follows: 

 𝐿𝑖 = {𝑙𝑖
1, 𝑙𝑖

2, … 𝑙𝑖
𝑘} set consists of𝑘 layer 𝑙𝑖

𝑗
,that builds a branch of the network and 

each𝑙𝑖
𝑗 ∈ 𝐿𝑖is one of the common CNN layer types. 𝐿𝑏𝑛 contains layers of the base 

network. 

 𝛺 = {𝑂1, 𝑂2, … 𝑂𝑚}set of m output branches, all of them are middle branches except 𝑂𝑚 

which is the last output of the network. Each branch 𝑂𝑖consists of a set of layers 𝐿𝑂𝑖
. 

 Given the input instance 𝑥 which has actual output 𝑦, The �̂�𝑖 is the generated output 

vector by output branch 𝑂𝑖for its input vector �́�𝑏𝑛
𝑗

: 
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�́�𝑏𝑛
𝑗

= 𝑓𝑏𝑛
𝑗 (𝑥; 𝑙𝑏𝑛

1 , … , 𝑙𝑏𝑛
𝑗 ) (1) 

and 

�́�𝑂𝑖

𝑘 = 𝑓𝑂𝑖

𝑘 (�́�𝑏𝑛
𝑗

; 𝑙𝑂𝑖

1 , … , 𝑙𝑂𝑖

𝑘 ) (2) 

where 𝑓𝑏𝑛
𝑗

 is the processing function of the base network from layer 𝑙𝑏𝑛
1  to 𝑙𝑏𝑛

𝑗
, and �́�𝑂𝑖

𝑘  is 

the output vector of layer 𝑙𝑂𝑖

𝑘  of output branch 𝑂𝑖 , and 𝑓𝑂𝑖

𝑘  is the processing function of 

this branch. Then we have: 

�̂�𝑖 = 𝜎(�́�𝑂𝑖

𝑘 ) =
𝑒𝑥𝑝(�́�𝑂𝑖

𝑘 )

∑ 𝑒𝑥𝑝 (�́�𝑂𝑖

𝑘

𝑐
)

|𝐶|
𝑐=1

 (3) 

where 𝜎 is the softmax function and |𝐶| is the number of dimensions of output 𝑦 (number 

of classes in classification problem). 

  = {𝐸1, 𝐸2, … 𝐸𝑚−1}set of m-1 expert branches. They are experts that decide about 

continuing the feature extraction process in the higher layers. Each expert branch 𝐸𝑖 is 

paired with an output branch 𝑂𝑖 and both are connected to the same point of the base 

network. 𝐸𝑖 consists of a set of the layers 𝐿𝐸𝑖
. The last output branch 𝑂𝑚 is not paired 

with an expert branch. Formally we have: 

�́�𝐸𝑖

𝑝 = 𝑓𝐸𝑖

𝑝(�́�𝑏𝑛
𝑗 ; 𝑙𝐸𝑖

1 , … , 𝑙𝐸𝑖

𝑝 ) (4) 

and 

�́�𝐸𝑖

𝑘 = 𝑓𝐸𝑖

𝑝,𝑘(�́�𝐸𝑖

𝑝
⨁�́�𝑂𝑖

𝑘 ; 𝑙𝐸𝑖

p
, … , 𝑙𝐸𝑖

𝑘 ) (5) 

Where �́�𝐸𝑖

𝑝
 is the output vector of the middle layer 𝑙𝐸𝑖

𝑝
 of expert branch 𝐸𝑖, and �́�𝐸𝑖

𝑘  is the 

last output vector of this expert branch.𝑓𝐸𝑖

𝑝,𝑘
 is the processing function from layer 𝑙𝐸𝑖

p
 to 

𝑙𝐸𝑖

𝑘 , and its input �́�𝐸𝑖

𝑝 ⨁�́�𝑂𝑖

𝑘  is the concatenation of the middle layer’s output of branch 𝐸𝑖 

and output vector of branch 𝑂𝑖. The decision 𝑑𝑖 is generated by expert branch 𝐸𝑖 using 

the following formula: 

�̂�𝑖 = 𝜎(�́�𝐸𝑖

𝑘 ) =
𝑒𝑥𝑝(�́�𝐸𝑖

𝑘 )

∑ 𝑒𝑥𝑝 (�́�𝐸𝑖

𝑘

𝑑
)

|𝐷|
𝑑=1

 (6) 

Where |𝐷| is the number of dimensions of decisions made by the expert, and 𝐷 =
{𝐹𝑇, 𝑂𝑡ℎ𝑒𝑟} where 𝐹𝑇 means that the generated output �̂�𝑖 for instance 𝑥 by output branch 

𝑂𝑖 is false and the true label will be made in the higher output branches of the network, 

and 𝑂𝑡ℎ𝑒𝑟 means all of the other cases. 

Figure 2 illustrates the architecture of the CNN-EB. The process starts by getting input instance 𝑥 

and continues layer by layer to classifier branches 𝑂𝑖 and expert branches 𝐸𝑖. If we get to the last 

output branch or the “check �̂�𝑖” node in the network decides to stops the process then �̂�𝑖 is 

considered as the final output of the network. 
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Figure 2 Illustration of the CNN-EB architecture. It includes base branch, expert branches and classifier 

branches 

3.2. Model Algorithm 

The pseudocode of generating the output vector for a given instance is illustrated in figure 3.The 

algorithm gets 𝑥 and 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 as inputs, which are the vector of input instance and 

the confidence threshold used for decision �̂�𝑖, respectively. The processing of the input starts 

layer by layer in the main branch of the network to 𝑂𝑟 . 𝑏𝑟𝑎𝑛𝑐ℎ𝑃𝑜𝑖𝑛𝑡 which is the position of the 

next-first output branch 𝑂𝑖 and expert branch 𝐸𝑖. Then the output �̂�𝑖 is computed for branch 𝑂𝑖, 

and the decision �̂�𝑖 is generated by concatenating �́�𝐸𝑖

𝑝
 and �́�𝑂𝑖

𝑘  during the computation of the 

layers for 𝐸𝑖. If �̂�𝑖[𝑂𝑡ℎ𝑒𝑟] which is decision vector value for 𝑂𝑡ℎ𝑒𝑟, be higher than 

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, or we  get the last output branch 𝑂𝑚, then the algorithm stops the 

process and �̂�𝑖 is considered as the final output of the network, Otherwise, the process continues 

for higher layers. 

This way, by managing the cost of computing and extracting feature values, the network will be 

able to generate final output for easy instances at a lower cost, and spend more cost on complex 

instances and continue computing at higher layers of the network. 

4. EXPERIMENTAL STUDY 

In this part section, first, we explain the metrics used for comparison of the methods. Then the 

dataset and settings of experiments are described. After that, the results and their analysis is 

explained based on the metrics. 

4.1. Evaluation Metrics 

Based on the cost-sensitive approach of the proposed method described in the previous sections, 

in addition to evaluating system performance using common standard metrics, the computational 
costs are also considered. Well-known and standard metrics including Recall, Precision, and 

Accuracy were used to evaluate the efficiency of the image processing methods. Also, the 

computational cost of the methods is evaluated on a time-based basis. 

𝑙𝑏𝑛
1  𝑙𝑏𝑛

2  
input 

𝑥 𝑙𝑏𝑛
𝑗  

𝑙𝐸𝑖
1  𝑙𝐸𝑖

2  𝑙𝐸𝑖

𝑝  𝑙𝐸𝑖
𝑘  

𝑙𝑂𝑖

1  𝑙𝑂𝑖

2  𝑙𝑂𝑖

𝑘  
output 

�̂�𝑖 

decision 

�̂�𝑖 
⨁ 

 check�̂�𝑖 𝑙𝑏𝑛
𝑘  

output 

�̂�𝑚 

 

Expert branch 𝐸𝑖 

Classifier 𝑂𝑖 

�́�𝑏𝑛
𝑗

 

�́�𝑏𝑛
𝑗

 
𝑂𝑚 

 

�́�𝑏𝑛
𝑗
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  Algorithm: Apply the model of CNN with expert branches 

 1: 

 2: 

 3: 

 4: 

 5: 

 6: 

 7: 

 8: 

 9: 

10: 

11: 

12: 

13: 

14: 

15: 

16: 

17: 

18: 

19: 

20: 

21: 

22: 

23: 

24: 

25: 

26: 

27: 

28: 

 input:𝑥: an input instance 

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑: confidence threshold for decisions 

output:�̂�: generated output vector for the input instance 

method: CNN-EB-Apply-Model(𝑥) 

𝑖 ← 1 

𝑟 ← 1 

�́� ← 𝑥 
while𝑟 ≤ 𝑚do  // 𝑚 is the number of branches 

𝑗 ← 𝑂𝑟 . 𝑏𝑟𝑎𝑛𝑐ℎ𝑃𝑜𝑖𝑛𝑡 //position of the next-first output and expert branches 

�́�𝑏𝑛
𝑗

← 𝑓𝑏𝑛
𝑖,𝑗(�́�; 𝑙𝑏𝑛

𝑖 , … , 𝑙𝑏𝑛
𝑗 )  //base network 

�́�𝑂𝑖

𝑘 ← 𝑓𝑂𝑖

𝑘 (�́�𝑏𝑛
𝑗

; 𝑙𝑂𝑖

1 , … , 𝑙𝑂𝑖

𝑘 )  //classifier branch 

�̂�𝑖 ← 𝜎(�́�𝑂𝑖

𝑘 ) 

if𝑟 ≠ 𝑚then//there are 𝑚 − 1 expert branches 

�́�𝐸𝑖

𝑝
← 𝑓𝐸𝑖

𝑝(�́�𝑏𝑛
𝑗

; 𝑙𝐸𝑖

1 , … , 𝑙𝐸𝑖

𝑝 ) 

�́�𝐸𝑖

𝑘 ← 𝑓𝐸𝑖

𝑝,𝑘(�́�𝐸𝑖

𝑝 ⨁�́�𝑂𝑖

𝑘 ; 𝑙𝐸𝑖

p
, … , 𝑙𝐸𝑖

𝑘 ) 

�̂�𝑖 ← 𝜎(�́�𝐸𝑖

𝑘 ) 

end if 

if𝑟 = 𝑚or�̂�𝑖[𝑂𝑡ℎ𝑒𝑟] > 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑then 

�̂� ← �̂�𝑖 

break while 

else 

𝑖 ← 𝑗 + 1 

𝑟 ← 𝑟 + 1 

�́� ← �́�𝑏𝑛
𝑗

 

end if 

end while 

return�̂� 

end method 

 

Figure 3. Pseudocode of Applying the proposed CNN-EB 

The metrics are calculated using the following equations: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
 (7) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
 (8) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑡𝑛 + 𝑓𝑝 + 𝑓𝑛
 (9) 
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where𝑡𝑝 is true positive, 𝑡𝑛 is true negative, 𝑓𝑝 is false positive, and 𝑓𝑛 is false negative results 

during the classification process. 

4.2. The Dataset 

To evaluate the methods we used the CIFAR-10 dataset [22]which is one of the most widely used 

datasets for image processing research. This dataset contains 60,000 images in 10 different 

classes. Each class consists of 6,000 images. About 85% of images are used for training and the 

rest of images is used for testing of models. Table 1 shows the specifications of the CIFAR-10. 

Table 1. Specifications of CIFAR-10 dataset used for evaluation of methods 

Class Train dataset Test dataset 

Airplanes 5,000 1,000 

Birds 5,000 1,000 

Cars 5,000 1,000 

Cats 5,000 1,000 

Deers 5,000 1,000 

Doges 5,000 1,000 

Frogs 5,000 1,000 

Horses 5,000 1,000 

Ships 5,000 1,000 

Trucks 5,000 1,000 

Total 50,000 10,000 

 

4.2. Experimental Settings 

Figure 4 shows the architecture of the proposed CNN-EB model implemented for image 
classification. The structure of this model is similar to the Google inception v3 model[23], but we 

placed the auxiliary branch of the original model after the first inception module which is called 

“mixed 5b”. By doing so, the auxiliary branch is used as the first classifier 𝑂1 which can generate 
the output for the input instances with much lower cost in comparison with the main output of the 

model at the end of the network which is the classifier 𝑂2. The expert branch 𝐸1 is also added to 

the same branchpoint of 𝑂1 in the network. The structure of 𝐸1 is similar to 𝑂1 in addition to a 

“concat” layer which concatenates middle outputs of branches 𝑂1 and 𝐸1. The output of 𝐸1 is 
evaluated by “check decision” node in the network, which make the decision to stop the 

classification or continue the process in higher layers of the model. 

 

Figure 4. The architecture of implemented proposed CNN-EB method  
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Three variants of the proposed expert branch method and two basic well-known inception v3 

models are compared to specify the characteristics of the proposed method. In the “Auxiliary as 

Expert Branch” method, the output of the original auxiliary branch of inception v3 which we 
placed after module 5b, is used as the expert branch decisions by applying some thresholds. This 

method is very similar to the proposed method in [6] but in a different fashion, we used the output 

of the auxiliary branch to determine the difficulty of complete instance, not some parts of it. The 
“Auxiliary+5b as Expert Branch” is implemented by considering auxiliary branch in addition to 

the inception 5b module as the expert branch of CNN-EB. The “Proposed Expert Branch” is 

implemented quite similar to the architecture shown in figure 4. The “Inception v3 Auxiliary as 
Final Classifier” and “Inception v3 Main as Final Classifier” are two basic inception v3 models 

where in the first model we used the output of auxiliary branch as the final output of the model, 

and in the second model, the main output of the original inception v3 is used as the final 

classifier. The TensorFlow[24]which is a well-known machine learning framework is used for the 
implementation of the models. A machine with Intel Core i7 CPU and Nvidia GeForce GT 740M 

GPU is used for training of the models. 

4.3. Implementation Results 

In this section first, we evaluate the performance of the expert branches Apart from the base 

networks. The 𝐹𝑇 class is considered as negative and the 𝑂𝑡ℎ𝑒𝑟 class is considered as positive. 

Figure 5 shows the precision against the recall of expert branch methods for different 

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑s. Since a majority number of instances belonging to 𝑂𝑡ℎ𝑒𝑟 class and we 

considered them as positive samples, the precision of the expert branches is greater than 85% for 

all of the methods. As we see “Proposed Expert Branch” has higher performance than the other 
methods and as expected the “Auxiliary+5b as Expert Branch” which has deeper expert branch 

structure than “Auxiliary as Expert Branch”, resulted in more accurate branch model. 

 

Figure 5. Illustration of precision against recall at various thresholds for expert branches 

The ROC curves of the expert branches which shows the true positive rate (TPR) against the false 

positive rate (FPR) at various 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑s, is illustrated in figure 6. The “Proposed 

Expert Branch” has higher curves in comparison with the other methods and same positions as the 

results of figure 5 are held for ROC curves of the expert branches. 

The accuracy against the time at several𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑s for two basic inception v3 

methods and three variants of the proposed CNN with expert branch methods are shown in figure 
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7. The line between “Inception v3 Auxiliary as Final Classifier” and “Inception v3 Main as Final 

Classifier” illustrates the imaginary linear growth of accuracy against time for these models. 

 

Figure 6. Illustration of The ROC curves for expert branch methods 

 

Figure 7. Illustration of accuracy against time at various thresholds for different methods 

As can be seen in figure 7 the “Proposed Expert Branch” method has better performance than the 
other expert branch methods and a small decrease in the accuracy of this method can save a 

significant amount of processing time and reduce the computational cost of the model. Since The 

“Auxiliary as Expert Branch” method has lower computational cost in comparison with 
“Auxiliary+5b as Expert Branch” method, in the most of the cases it can make the same accuracy 
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with lower cost. The “Proposed Expert Branch” and “Auxiliary as Expert Branch” methods are 

almost above the imaginary line between two basic inception v3 methods. This indicates that the 

proposed CNN-EB method is successful in managing the use of computational resources by 
utilizing the shallower and deeper structure of the network for easier and harder instance, 

respectively. 

 

Figure 8. Sample results of output classifiers 𝑂1  and 𝑂2  for five CIFAR-10 classes. The left side shows 
easier instances where both classifiers made true classification, and the right side shows harder instances 

where only classifier 𝑂2  made the true classification. 

To make a visual understanding of easy and hard images for classifiers, figure 8 shows some 

sample results of output classifiers 𝑂1 and 𝑂2(based on figure 4) for five CIFAR-10 classes. The 
left side shows easier instances where objects inside the images are clear, with a good position 

and angle which make it easy for the shallower classifier to predict the true label for these 

instances. The right side contains harder instances that contain parts of the objects, strange images 

and multiple objects in the image. Only classifier 𝑂2 that utilizes the deeper structure of the 
network can generate the true label for hard instances. The illustrated images in figure 8 support 

the idea of existing easy and hard images in the dataset, and possibility of using cost-sensitive 

approaches that classify easy instances in shallower and hard instances in deeper layers of the 
CNN. 
 

Table 2. Comparison of basic and proposed methods based on accuracy and time metrics 
 

Method Accuracy 
Time 

(msecs) 

Accuracy 

Decrease 

Time 

Saving 

Inception v3 Auxiliary as Final Classifier 78% 185 - - 

Inception v3 Main as Final Classifier 85% 570 - - 

Auxiliary as Expert Branch 84% 500 1% 14% 

Auxiliary+5b as Expert Branch 84% 520 1% 9% 

Proposed Expert Branch 84% 450 1% 21% 

Auxiliary as Expert Branch 83% 430 2% 25% 

Auxiliary+5b as Expert Branch 83% 460 2% 19% 

Proposed Expert Branch 83% 395 2% 31% 
 

Airplanes: 

Birds: 

Cars: 

Cats: 

Deers: 

Classifier 𝑂1: true   &Classifier𝑂2: true 
 

Classifier 𝑂1: false&Classifier𝑂2: true 
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Table 2 shows the performance of basic inception v3 methods and variants of the proposed expert 

branch method based on accuracy and time metrics. As we can see, 1% decrease in the accuracy 

of “Proposed Expert Branch” model in comparison with basic “Inception v3 Main as Final 
Classifier”, results in 21% time and computational cost saving of the model, and 2% of accuracy 

decrease makes 31% time-saving. The “Proposed Expert Branch” can save more time than other 

proposed expert branch method variants with the same accuracy. 
 

5. CONCLUSION 
 

The test-cost of the deep convolutional neural networks is a challenging issue in real-world 
problems. In this paper, we introduced CNN-EB which is a test-cost-sensitive CNN method that 

utilizes expert branches to determine the hardness of input instances, and by using shallower 

layers of the network for easier instances and deeper layers for harder ones, manages the use of 
available computational resources. The proposed method can be combined with other cost-

sensitive CNN methods to make more effective deep models. We implemented the proposed 

method and compared it with well-known basic method inception v3. The experimental results 
show that a small decrease in the accuracy of the proposed method in comparison with the basic 

models will result in significant time and computational resource saving. In order to better 

evaluate the proposed method, experiments on deeper models can be performed in future work 

and the efficiency of the proposed method can be investigated for these models. 
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