
Signal & Image Processing: An International Journal (SIPIJ) Vol.10, No.5, October 2019

DOI: 10.5121/sipij.2019.10502 15

TEST-COST-SENSITIVE CONVOLUTIONAL NEURAL

NETWORKS WITH EXPERT BRANCHES

Mahdi Naghibi1, Reza Anvari1, Ali Forghani1 and Behrouz Minaei2

1Faculty of Electrical and Computer Engineering, Malek-Ashtar University of

Technology, Iran
2Faculty of Computer Engineering, Iran University of Science and Technology, Iran

ABSTRACT

It has been proven that deeper convolutional neural networks (CNN) can result in better accuracy in many

problems, but this accuracy comes with a high computational cost. Also, input instances have not the same

difficulty. As a solution for accuracy vs. computational cost dilemma, we introduce a new test-cost-sensitive
method for convolutional neural networks. This method trains a CNN with a set of auxiliary outputs and

expert branches in some middle layers of the network. The expert branches decide to use a shallower part

of the network or going deeper to the end, based on the difficulty of input instance. The expert branches

learn to determine: is the current network prediction is wrong and if the given instance passed to deeper

layers of the network it will generate right output; If not, then the expert branches stop the computation

process. The experimental results on standard dataset CIFAR-10 show that the proposed method can train

models with lower test-cost and competitive accuracy in comparison with basic models.

KEYWORDS

Test-Cost-Sensitive Learning; Deep Learning; CNN withExpert Branches; Instance-Based Cost

1. INTRODUCTION

Deep convolutional neural networks have produced state-of-the-art results on various

benchmarks[1], [2]. Many Researches in the field of convolutional neural networks, practically
proved that deeper networks have higher accuracy. Today the state of the art deep CNNs have

more than one hundred layers and millions of weights and parameters[3]. This needs a vast

amount of computational power and time to execute a network and generate the final output. The
high computational cost of these networks can get real systems and applications[4], [5] into

trouble. For example, a cloud computing service should process too many requests in every

second, or mobile and embedded systems may have not enough power and hardware to run the

network for its inputs. So it is very important to reduce the computational cost of networks while
keeping their accuracy during the inference. If we consider outputs of each layer of the network

as a set of features for the next layer, then computing features of each layer have its own test-cost

which a cost-sensitive approach should consider them during computing network output. Figure 1
illustrates the running process of a typical CNN. The model gets an input image and performs

some convolution and pooling process layer by layer in the network. Fully connected layers exist

at the end of the model which produce the final output for the given instance.

Different methods have been proposed for test-cost reduction and compression of deep

convolutional networks. The compression methods try to reduce the number of network

parameters, but these approaches do not necessarily make faster networks; because most of the

computation of a CNN is related to the convolution operations which cannot be reduced by

Signal & Image Processing: An International Journal (SIPIJ) Vol.10, No.5, October 2019

16

network compression only. Some recent researches focused on instance-based or input dependent

methods which dynamically use a set of models or use some parts of the models to generate the

result for a given instance[6]. As we know, even doubling the depth of network will have a small
effect on accuracy, and all input instances have not the same difficulty, so many instances can be

handled with shallower or simpler models.

Figure 1. Illustration of deploying a typical CNN model on an input image

Along the line of dynamic and instance-based approaches, in this paper, we propose a new test-

cost-sensitive method for deep convolutional networks which can learn to manage the available

computational resources in the way that result in faster inference for many input instances. This
method uses a set of middle output and expert branches in the convolutional network. When an

instance is given to the network input, the computation is started layer by layer to the end of first

middle output and expert branch. If the expert branch says that the generated output for the given

instance is wrong at this output level but can be corrected in deeper layers of the network, then
the running process of the network continues to the higher layers until the next output of the

network. For other cases, the expert branches stop the computation process and assign the current

output as the final output of the network. In this way, the deeper layers which result in higher
computational cost are only used when the expert branch indicates the possibility of improvement

in output accuracy, and prevent from useless computational power consumption. This can reduce

the overall test-cost and keep the network accuracy at an acceptable level in comparison with the
basic model. The experiments on standard datasets show the advantages of the proposed method

in comparison with other methods.

The paper continues as follow: in the next section we review the related works in test-cost-
sensitive deep learning,section three describes the proposed method in details, in section four we

present the experimental results, and section five belongs to conclusions.

2. RELATED WORK

There are various types of costs during a machine learning process [7]. Since computational cost
is a real challenge for deep neural networks, researches proposed different methods and

approaches to solve it. In this section, we investigate the literature available in this field. These

researches may do not use the test-cost-sensitive terminology but are relevant to the current

research. The approaches can be categorized into three main categories. The first category
belongs to methods that train a new model based on the original one or modify the trained

models[8]. Methods of the second category increase the speed of deep networks using advanced

computational methods and more efficient using of hardware[9]. Dynamic instance-based
approaches are the third category of test-cost-sensitive methods for deep learning which resulted

in effective solutions in recent years[6] and the proposed method of this paper belongs to this

category. In the following, we describe these approached in more details with some example
researches.

Signal & Image Processing: An International Journal (SIPIJ) Vol.10, No.5, October 2019

17

2.1. Making a Modified Model

Methods of this approach modify an existing model or learn a new model from scratch to reduce
complexity and computational operations of the original model. “Mimicking” network methods

train a new shallow network [10] or a “Fitnet”[11], which is called student model. This new

model is made from scratch to mimic the behaviour of the original model which is called the
teacher model. The newly generated models are more compact, In [10] they are shallower and in

[11] models have fewer filters and are fitter. Network decomposition methods [12]–[14] is

another group of model modification approaches that use estimation solutions. In these methods,

filters are decomposed in the way that increases the total speed of the network but the output of
original network layers still estimated well. Older network pruning methods [15]do not consider

the computational cost reduction as their goal, but sparsification of the model reduces its

complexity which indirectly results in the faster network[16].

2.2. Advanced and Low-Level Computational Methods

Unlike the previous approach, these methods increase the speed of the deep network, without

modifying the network structure. One family of methods focus on the way of computing layer
outputs, specifically using fast Fourier transform (FFT)[9]. Another family, target the efficient

usage of available hardware [17], [18] by low-level parallel computation, efficient memory usage,

and low precision arithmetic operations.

2.3. Adaptive Methods

Both of previous approaches have a static behaviour with all of the input instances and cannot

allocate the computational resources with an input dependent policy. So there was a lack of test-
cost-sensitive approaches that use computational recourse only when it is needed based on the

given instance and with a dynamic manner. In recent years some solutions based on this approach

have been proposed which we call them adaptive methods. Also, the adaptive methods can be
combined with two previous categories of methods and make use of the advantages of both. One

main group of researches in adaptive models is network cascades. These methods train a set of

deep networks and use them in a cascade fashion. They start with simple models that have lower

test-cost and continue the process with more complex networks until reaching an acceptable
degree of confidence for the generated output. In this way models with heavier computations is

only used for more challenging input instances.

Deep Decision Network proposed in [19] for the classification of images. The method recognizes
the hardness of instances and passes more difficult images to subsequent models in the cascade.

The method in[20], called convolutional neural networks cascade, proposed for face detection. It

operates on versions of the image with different resolutions, rejects the background regions in
low-resolution stages and passes some challenging candidates to high-resolution evaluations.

DeepPose proposed in [21] makes cascade deep regression framework using a divide and conquer

strategy for human pose estimation.

In a different fashion of cascade, the authors of [6] proposed Deep Layer Cascade for the
semantic image segmentation problem. Layer cascade, unlike model cascades which use a set of

models, trains a single network with some internal branches that generate a degree of confidence

for the regions of the image and stop the process for easier parts which are recognized in lower
layers of the network and pass harder regions to higher levels of the deep network. The proposed

method in this paper is similar with layer cascade method but instead of using middle outputs as

the degree of confidence for the regions of the image, we use expert branches which are specially

trained to recognize instances that need a deeper process to be categorized correctly. Also, we use

the proposed method as a solution for image classification problem.

Signal & Image Processing: An International Journal (SIPIJ) Vol.10, No.5, October 2019

18

3. CNNS WITH EXPERT BRANCHES

In this section, we explain the proposed method in more details. It is called CNNs with Expert

Branches (CNN-EB). In the following first we investigate the relationship between computational

cost in CNNs and test-cost of classification. Then we explain the method details and describe it as

an algorithm in the third part of this section.

3.1. Test-Cost in CNNs

The word test-cost comes from medical diagnosis field and means that if we want to do any test
on the patient to find the related values of that test, we should consider its cost. Based on this

concept we define the test-cost in deep CNNs. The deep learning methods have two main

property: automatic learning of features, and a layered process of learning. The specifications of
the learning process in deep CNNs mixed test-cost and computation cost concepts. That means in

the process of feature extraction and learning in the layers of CNN, each layer gains values of a

set of features (test-cost) by means of doing necessary computations (computation cost). That
features have more abstraction and representation power in comparison with features in previous

layers and can result in more accurate decisions in the CNN model.

In the other words, we can consider a CNN model in the forms of a set of successive layers that

each layer is responsible for extraction and computation of a feature set, and this is done by
spending the required cost for doing tests and related computations. Also, we can consider the

output of a set of network layers which builds a continuous block of the CNN, as the features for

the successive building block of the network. Considering this viewpoint, in the next part, we

describe a test-cost sensitive method for deep CNNs.

3.2. Model Architecture

The proposed deep CNN model consists of a common convolutional network and two types of
augmented branches, which include middle output (or classifier) branches and expert branches.

They are paired with each other and operates together on the middle points of the CNN. The

output branches are extra output generators that, for example, can recognize the label of input
instance in a classification problem. The expert branches look at the data from another view; they

decide on passing input instance to higher layers of the network or considering the current

generated result of the paired output branch as the final output of the network. To do this, the

expert branches are trained to find instances that are recognized wrongly at current level of the
network but can be classified correctly in higher levels and successive layers of the deep CNN.

The training of expert branches is done based on the extracted features from the instance in

concatenation with the result of corresponding paired output branch. This concatenation
represents more features available to the expert branch and makes it able to generate more

accurate decisions.

Formally we can define the elements of the proposed CNNs with expert branches as follows:

 𝐿𝑖 = {𝑙𝑖
1, 𝑙𝑖

2, … 𝑙𝑖
𝑘} set consists of𝑘 layer 𝑙𝑖

𝑗
,that builds a branch of the network and

each𝑙𝑖
𝑗 ∈ 𝐿𝑖is one of the common CNN layer types. 𝐿𝑏𝑛 contains layers of the base

network.

 𝛺 = {𝑂1, 𝑂2, … 𝑂𝑚}set of m output branches, all of them are middle branches except 𝑂𝑚

which is the last output of the network. Each branch 𝑂𝑖consists of a set of layers 𝐿𝑂𝑖
.

 Given the input instance 𝑥 which has actual output 𝑦, The �̂�𝑖 is the generated output

vector by output branch 𝑂𝑖for its input vector �́�𝑏𝑛
𝑗

:

Signal & Image Processing: An International Journal (SIPIJ) Vol.10, No.5, October 2019

19

�́�𝑏𝑛
𝑗

= 𝑓𝑏𝑛
𝑗 (𝑥; 𝑙𝑏𝑛

1 , … , 𝑙𝑏𝑛
𝑗) (1)

and

�́�𝑂𝑖

𝑘 = 𝑓𝑂𝑖

𝑘 (�́�𝑏𝑛
𝑗

; 𝑙𝑂𝑖

1 , … , 𝑙𝑂𝑖

𝑘) (2)

where 𝑓𝑏𝑛
𝑗

 is the processing function of the base network from layer 𝑙𝑏𝑛
1 to 𝑙𝑏𝑛

𝑗
, and �́�𝑂𝑖

𝑘 is

the output vector of layer 𝑙𝑂𝑖

𝑘 of output branch 𝑂𝑖 , and 𝑓𝑂𝑖

𝑘 is the processing function of

this branch. Then we have:

�̂�𝑖 = 𝜎(�́�𝑂𝑖

𝑘) =
𝑒𝑥𝑝(�́�𝑂𝑖

𝑘)

∑ 𝑒𝑥𝑝 (�́�𝑂𝑖

𝑘

𝑐
)

|𝐶|
𝑐=1

 (3)

where 𝜎 is the softmax function and |𝐶| is the number of dimensions of output 𝑦 (number

of classes in classification problem).

 = {𝐸1, 𝐸2, … 𝐸𝑚−1}set of m-1 expert branches. They are experts that decide about

continuing the feature extraction process in the higher layers. Each expert branch 𝐸𝑖 is

paired with an output branch 𝑂𝑖 and both are connected to the same point of the base

network. 𝐸𝑖 consists of a set of the layers 𝐿𝐸𝑖
. The last output branch 𝑂𝑚 is not paired

with an expert branch. Formally we have:

�́�𝐸𝑖

𝑝 = 𝑓𝐸𝑖

𝑝(�́�𝑏𝑛
𝑗 ; 𝑙𝐸𝑖

1 , … , 𝑙𝐸𝑖

𝑝) (4)

and

�́�𝐸𝑖

𝑘 = 𝑓𝐸𝑖

𝑝,𝑘(�́�𝐸𝑖

𝑝
⨁�́�𝑂𝑖

𝑘 ; 𝑙𝐸𝑖

p
, … , 𝑙𝐸𝑖

𝑘) (5)

Where �́�𝐸𝑖

𝑝
 is the output vector of the middle layer 𝑙𝐸𝑖

𝑝
 of expert branch 𝐸𝑖, and �́�𝐸𝑖

𝑘 is the

last output vector of this expert branch.𝑓𝐸𝑖

𝑝,𝑘
 is the processing function from layer 𝑙𝐸𝑖

p
 to

𝑙𝐸𝑖

𝑘 , and its input �́�𝐸𝑖

𝑝 ⨁�́�𝑂𝑖

𝑘 is the concatenation of the middle layer’s output of branch 𝐸𝑖

and output vector of branch 𝑂𝑖. The decision 𝑑𝑖 is generated by expert branch 𝐸𝑖 using

the following formula:

�̂�𝑖 = 𝜎(�́�𝐸𝑖

𝑘) =
𝑒𝑥𝑝(�́�𝐸𝑖

𝑘)

∑ 𝑒𝑥𝑝 (�́�𝐸𝑖

𝑘

𝑑
)

|𝐷|
𝑑=1

 (6)

Where |𝐷| is the number of dimensions of decisions made by the expert, and 𝐷 =
{𝐹𝑇, 𝑂𝑡ℎ𝑒𝑟} where 𝐹𝑇 means that the generated output �̂�𝑖 for instance 𝑥 by output branch

𝑂𝑖 is false and the true label will be made in the higher output branches of the network,

and 𝑂𝑡ℎ𝑒𝑟 means all of the other cases.

Figure 2 illustrates the architecture of the CNN-EB. The process starts by getting input instance 𝑥

and continues layer by layer to classifier branches 𝑂𝑖 and expert branches 𝐸𝑖. If we get to the last

output branch or the “check �̂�𝑖” node in the network decides to stops the process then �̂�𝑖 is

considered as the final output of the network.

Signal & Image Processing: An International Journal (SIPIJ) Vol.10, No.5, October 2019

20

Figure 2 Illustration of the CNN-EB architecture. It includes base branch, expert branches and classifier

branches

3.2. Model Algorithm

The pseudocode of generating the output vector for a given instance is illustrated in figure 3.The

algorithm gets 𝑥 and 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 as inputs, which are the vector of input instance and

the confidence threshold used for decision �̂�𝑖, respectively. The processing of the input starts

layer by layer in the main branch of the network to 𝑂𝑟 . 𝑏𝑟𝑎𝑛𝑐ℎ𝑃𝑜𝑖𝑛𝑡 which is the position of the

next-first output branch 𝑂𝑖 and expert branch 𝐸𝑖. Then the output �̂�𝑖 is computed for branch 𝑂𝑖,

and the decision �̂�𝑖 is generated by concatenating �́�𝐸𝑖

𝑝
 and �́�𝑂𝑖

𝑘 during the computation of the

layers for 𝐸𝑖. If �̂�𝑖[𝑂𝑡ℎ𝑒𝑟] which is decision vector value for 𝑂𝑡ℎ𝑒𝑟, be higher than

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, or we get the last output branch 𝑂𝑚, then the algorithm stops the

process and �̂�𝑖 is considered as the final output of the network, Otherwise, the process continues

for higher layers.

This way, by managing the cost of computing and extracting feature values, the network will be

able to generate final output for easy instances at a lower cost, and spend more cost on complex

instances and continue computing at higher layers of the network.

4. EXPERIMENTAL STUDY

In this part section, first, we explain the metrics used for comparison of the methods. Then the

dataset and settings of experiments are described. After that, the results and their analysis is

explained based on the metrics.

4.1. Evaluation Metrics

Based on the cost-sensitive approach of the proposed method described in the previous sections,

in addition to evaluating system performance using common standard metrics, the computational
costs are also considered. Well-known and standard metrics including Recall, Precision, and

Accuracy were used to evaluate the efficiency of the image processing methods. Also, the

computational cost of the methods is evaluated on a time-based basis.

𝑙𝑏𝑛
1 𝑙𝑏𝑛

2
input

𝑥 𝑙𝑏𝑛
𝑗

𝑙𝐸𝑖
1 𝑙𝐸𝑖

2 𝑙𝐸𝑖

𝑝 𝑙𝐸𝑖
𝑘

𝑙𝑂𝑖

1 𝑙𝑂𝑖

2 𝑙𝑂𝑖

𝑘
output

�̂�𝑖

decision

�̂�𝑖
⨁

 check�̂�𝑖 𝑙𝑏𝑛
𝑘

output

�̂�𝑚

Expert branch 𝐸𝑖

Classifier 𝑂𝑖

�́�𝑏𝑛
𝑗

�́�𝑏𝑛
𝑗

𝑂𝑚

�́�𝑏𝑛
𝑗

Signal & Image Processing: An International Journal (SIPIJ) Vol.10, No.5, October 2019

21

 Algorithm: Apply the model of CNN with expert branches

 1:

 2:

 3:

 4:

 5:

 6:

 7:

 8:

 9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

25:

26:

27:

28:

 input:𝑥: an input instance

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑: confidence threshold for decisions

output:�̂�: generated output vector for the input instance

method: CNN-EB-Apply-Model(𝑥)

𝑖 ← 1

𝑟 ← 1

�́� ← 𝑥
while𝑟 ≤ 𝑚do // 𝑚 is the number of branches

𝑗 ← 𝑂𝑟 . 𝑏𝑟𝑎𝑛𝑐ℎ𝑃𝑜𝑖𝑛𝑡 //position of the next-first output and expert branches

�́�𝑏𝑛
𝑗

← 𝑓𝑏𝑛
𝑖,𝑗(�́�; 𝑙𝑏𝑛

𝑖 , … , 𝑙𝑏𝑛
𝑗) //base network

�́�𝑂𝑖

𝑘 ← 𝑓𝑂𝑖

𝑘 (�́�𝑏𝑛
𝑗

; 𝑙𝑂𝑖

1 , … , 𝑙𝑂𝑖

𝑘) //classifier branch

�̂�𝑖 ← 𝜎(�́�𝑂𝑖

𝑘)

if𝑟 ≠ 𝑚then//there are 𝑚 − 1 expert branches

�́�𝐸𝑖

𝑝
← 𝑓𝐸𝑖

𝑝(�́�𝑏𝑛
𝑗

; 𝑙𝐸𝑖

1 , … , 𝑙𝐸𝑖

𝑝)

�́�𝐸𝑖

𝑘 ← 𝑓𝐸𝑖

𝑝,𝑘(�́�𝐸𝑖

𝑝 ⨁�́�𝑂𝑖

𝑘 ; 𝑙𝐸𝑖

p
, … , 𝑙𝐸𝑖

𝑘)

�̂�𝑖 ← 𝜎(�́�𝐸𝑖

𝑘)

end if

if𝑟 = 𝑚or�̂�𝑖[𝑂𝑡ℎ𝑒𝑟] > 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑then

�̂� ← �̂�𝑖

break while

else

𝑖 ← 𝑗 + 1

𝑟 ← 𝑟 + 1

�́� ← �́�𝑏𝑛
𝑗

end if

end while

return�̂�

end method

Figure 3. Pseudocode of Applying the proposed CNN-EB

The metrics are calculated using the following equations:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
 (7)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
 (8)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑡𝑛 + 𝑓𝑝 + 𝑓𝑛
 (9)

Signal & Image Processing: An International Journal (SIPIJ) Vol.10, No.5, October 2019

22

where𝑡𝑝 is true positive, 𝑡𝑛 is true negative, 𝑓𝑝 is false positive, and 𝑓𝑛 is false negative results

during the classification process.

4.2. The Dataset

To evaluate the methods we used the CIFAR-10 dataset [22]which is one of the most widely used

datasets for image processing research. This dataset contains 60,000 images in 10 different

classes. Each class consists of 6,000 images. About 85% of images are used for training and the

rest of images is used for testing of models. Table 1 shows the specifications of the CIFAR-10.

Table 1. Specifications of CIFAR-10 dataset used for evaluation of methods

Class Train dataset Test dataset

Airplanes 5,000 1,000

Birds 5,000 1,000

Cars 5,000 1,000

Cats 5,000 1,000

Deers 5,000 1,000

Doges 5,000 1,000

Frogs 5,000 1,000

Horses 5,000 1,000

Ships 5,000 1,000

Trucks 5,000 1,000

Total 50,000 10,000

4.2. Experimental Settings

Figure 4 shows the architecture of the proposed CNN-EB model implemented for image
classification. The structure of this model is similar to the Google inception v3 model[23], but we

placed the auxiliary branch of the original model after the first inception module which is called

“mixed 5b”. By doing so, the auxiliary branch is used as the first classifier 𝑂1 which can generate
the output for the input instances with much lower cost in comparison with the main output of the

model at the end of the network which is the classifier 𝑂2. The expert branch 𝐸1 is also added to

the same branchpoint of 𝑂1 in the network. The structure of 𝐸1 is similar to 𝑂1 in addition to a

“concat” layer which concatenates middle outputs of branches 𝑂1 and 𝐸1. The output of 𝐸1 is
evaluated by “check decision” node in the network, which make the decision to stop the

classification or continue the process in higher layers of the model.

Figure 4. The architecture of implemented proposed CNN-EB method

Check
Decision

Classifier 𝑂1

Classifier

𝑂2

Expert branch 𝐸1

Convolution

AvgPool
MaxPool
Concat

Dropout
Fully connected

Softmax
Check decision

Signal & Image Processing: An International Journal (SIPIJ) Vol.10, No.5, October 2019

23

Three variants of the proposed expert branch method and two basic well-known inception v3

models are compared to specify the characteristics of the proposed method. In the “Auxiliary as

Expert Branch” method, the output of the original auxiliary branch of inception v3 which we
placed after module 5b, is used as the expert branch decisions by applying some thresholds. This

method is very similar to the proposed method in [6] but in a different fashion, we used the output

of the auxiliary branch to determine the difficulty of complete instance, not some parts of it. The
“Auxiliary+5b as Expert Branch” is implemented by considering auxiliary branch in addition to

the inception 5b module as the expert branch of CNN-EB. The “Proposed Expert Branch” is

implemented quite similar to the architecture shown in figure 4. The “Inception v3 Auxiliary as
Final Classifier” and “Inception v3 Main as Final Classifier” are two basic inception v3 models

where in the first model we used the output of auxiliary branch as the final output of the model,

and in the second model, the main output of the original inception v3 is used as the final

classifier. The TensorFlow[24]which is a well-known machine learning framework is used for the
implementation of the models. A machine with Intel Core i7 CPU and Nvidia GeForce GT 740M

GPU is used for training of the models.

4.3. Implementation Results

In this section first, we evaluate the performance of the expert branches Apart from the base

networks. The 𝐹𝑇 class is considered as negative and the 𝑂𝑡ℎ𝑒𝑟 class is considered as positive.

Figure 5 shows the precision against the recall of expert branch methods for different

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑s. Since a majority number of instances belonging to 𝑂𝑡ℎ𝑒𝑟 class and we

considered them as positive samples, the precision of the expert branches is greater than 85% for

all of the methods. As we see “Proposed Expert Branch” has higher performance than the other
methods and as expected the “Auxiliary+5b as Expert Branch” which has deeper expert branch

structure than “Auxiliary as Expert Branch”, resulted in more accurate branch model.

Figure 5. Illustration of precision against recall at various thresholds for expert branches

The ROC curves of the expert branches which shows the true positive rate (TPR) against the false

positive rate (FPR) at various 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑s, is illustrated in figure 6. The “Proposed

Expert Branch” has higher curves in comparison with the other methods and same positions as the

results of figure 5 are held for ROC curves of the expert branches.

The accuracy against the time at several𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑s for two basic inception v3

methods and three variants of the proposed CNN with expert branch methods are shown in figure

0.85

0.87

0.89

0.91

0.93

0.95

0.97

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
is

io
n

Recall

Auxiliary as Expert Branch

Auxiliary+5b as Expert Branch

Proposed Expert Branch

Signal & Image Processing: An International Journal (SIPIJ) Vol.10, No.5, October 2019

24

7. The line between “Inception v3 Auxiliary as Final Classifier” and “Inception v3 Main as Final

Classifier” illustrates the imaginary linear growth of accuracy against time for these models.

Figure 6. Illustration of The ROC curves for expert branch methods

Figure 7. Illustration of accuracy against time at various thresholds for different methods

As can be seen in figure 7 the “Proposed Expert Branch” method has better performance than the
other expert branch methods and a small decrease in the accuracy of this method can save a

significant amount of processing time and reduce the computational cost of the model. Since The

“Auxiliary as Expert Branch” method has lower computational cost in comparison with
“Auxiliary+5b as Expert Branch” method, in the most of the cases it can make the same accuracy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
r
u

e
 P

o
si

ti
v
e
 R

a
te

False Positive Rate

Auxiliary as Expert Branch

Auxiliary+5b as Expert Branch

Proposed Expert Branch

Reference Line

0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

0.86

180 280 380 480 580

A
c
c
u

r
a

c
y

Time (milliseconds)

Auxiliary as Expert Branch

Auxiliary+5b as Expert Branch

Proposed Expert Branch

Inception v3 Auxiliary as Final
Classifier
Inception v3 Main as Final Classifier

Linear Growth of Accuracy-Time
(Inception v3 Auxiliary to Main)

Signal & Image Processing: An International Journal (SIPIJ) Vol.10, No.5, October 2019

25

with lower cost. The “Proposed Expert Branch” and “Auxiliary as Expert Branch” methods are

almost above the imaginary line between two basic inception v3 methods. This indicates that the

proposed CNN-EB method is successful in managing the use of computational resources by
utilizing the shallower and deeper structure of the network for easier and harder instance,

respectively.

Figure 8. Sample results of output classifiers 𝑂1 and 𝑂2 for five CIFAR-10 classes. The left side shows
easier instances where both classifiers made true classification, and the right side shows harder instances

where only classifier 𝑂2 made the true classification.

To make a visual understanding of easy and hard images for classifiers, figure 8 shows some

sample results of output classifiers 𝑂1 and 𝑂2(based on figure 4) for five CIFAR-10 classes. The
left side shows easier instances where objects inside the images are clear, with a good position

and angle which make it easy for the shallower classifier to predict the true label for these

instances. The right side contains harder instances that contain parts of the objects, strange images

and multiple objects in the image. Only classifier 𝑂2 that utilizes the deeper structure of the
network can generate the true label for hard instances. The illustrated images in figure 8 support

the idea of existing easy and hard images in the dataset, and possibility of using cost-sensitive

approaches that classify easy instances in shallower and hard instances in deeper layers of the
CNN.

Table 2. Comparison of basic and proposed methods based on accuracy and time metrics

Method Accuracy
Time

(msecs)

Accuracy

Decrease

Time

Saving

Inception v3 Auxiliary as Final Classifier 78% 185 - -

Inception v3 Main as Final Classifier 85% 570 - -

Auxiliary as Expert Branch 84% 500 1% 14%

Auxiliary+5b as Expert Branch 84% 520 1% 9%

Proposed Expert Branch 84% 450 1% 21%

Auxiliary as Expert Branch 83% 430 2% 25%

Auxiliary+5b as Expert Branch 83% 460 2% 19%

Proposed Expert Branch 83% 395 2% 31%

Airplanes:

Birds:

Cars:

Cats:

Deers:

Classifier 𝑂1: true &Classifier𝑂2: true

Classifier 𝑂1: false&Classifier𝑂2: true

Signal & Image Processing: An International Journal (SIPIJ) Vol.10, No.5, October 2019

26

Table 2 shows the performance of basic inception v3 methods and variants of the proposed expert

branch method based on accuracy and time metrics. As we can see, 1% decrease in the accuracy

of “Proposed Expert Branch” model in comparison with basic “Inception v3 Main as Final
Classifier”, results in 21% time and computational cost saving of the model, and 2% of accuracy

decrease makes 31% time-saving. The “Proposed Expert Branch” can save more time than other

proposed expert branch method variants with the same accuracy.

5. CONCLUSION

The test-cost of the deep convolutional neural networks is a challenging issue in real-world
problems. In this paper, we introduced CNN-EB which is a test-cost-sensitive CNN method that

utilizes expert branches to determine the hardness of input instances, and by using shallower

layers of the network for easier instances and deeper layers for harder ones, manages the use of
available computational resources. The proposed method can be combined with other cost-

sensitive CNN methods to make more effective deep models. We implemented the proposed

method and compared it with well-known basic method inception v3. The experimental results
show that a small decrease in the accuracy of the proposed method in comparison with the basic

models will result in significant time and computational resource saving. In order to better

evaluate the proposed method, experiments on deeper models can be performed in future work

and the efficiency of the proposed method can be investigated for these models.

REFERENCES

[1] S. P. S. Gurjar, S. Gupta, and R. Srivastava, “Automatic Image Annotation Model Using LSTM

Approach,” Signal Image Process. An Int. J., vol. 8, no. 4, pp. 25–37, Aug. 2017.

[2] S. Maity, M. Abdel-Mottaleb, and S. S. As, “Multimodal Biometrics Recognition from Facial

Video via Deep Learning,” in Computer Science & Information Technology (CS & IT), 2017, pp.

67–75.

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” arXiv

Prepr. arXiv1512.03385, 2015.

[4] D. Kadam, A. R. Madane, K. Kutty, and B. S.V, “Rain Streaks Elimination Using Image

Processing Algorithms,” Signal Image Process. An Int. J., vol. 10, no. 03, pp. 21–32, Jun. 2019.

[5] A. Massaro, V. Vitti, and A. Galiano, “Automatic Image Processing Engine Oriented on Quality

Control of Electronic Boards,” Signal Image Process. An Int. J., vol. 9, no. 2, pp. 01–14, Apr.

2018.

[6] X. Li, Z. Liu, P. Luo, C. Change Loy, and X. Tang, “Not all pixels are equal: Difficulty-aware

semantic segmentation via deep layer cascade,” in Proceedings of the IEEE conference on

computer vision and pattern recognition, 2017, pp. 3193–3202.

[7] M. Naghibi, R. Anvari, A. Forghani, and B. Minaei, “Cost-Sensitive Topical Data Acquisition from

the Web,” Int. J. Data Min. Knowl. Manag. Process, vol. 09, no. 03, pp. 39–56, May 2019.

[8] A. Polyak and L. Wolf, “Channel-Level Acceleration of Deep Face Representations,” Access,

IEEE, vol. 3, pp. 2163–2175, 2015.

[9] A. Lavin and S. Gray, “Fast Algorithms for Convolutional Neural Networks,” in 2016 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 4013–4021.

[10] J. Ba and R. Caruana, “Do deep nets really need to be deep?,” in Advances in neural information

processing systems, 2014, pp. 2654–2662.

[11] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and Y. Bengio, “Fitnets: Hints for thin

deep nets,” arXiv Prepr. arXiv1412.6550, 2014.

[12] X. Zhang, J. Zou, K. He, and J. Sun, “Accelerating very deep convolutional networks for

classification and detection,” 2015.

Signal & Image Processing: An International Journal (SIPIJ) Vol.10, No.5, October 2019

27

[13] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus, “Exploiting linear structure within

convolutional networks for efficient evaluation,” in Advances in Neural Information Processing

Systems, 2014, pp. 1269–1277.

[14] M. Jaderberg, A. Vedaldi, and A. Zisserman, “Speeding up convolutional neural networks with low

rank expansions,” arXiv Prepr. arXiv1405.3866, 2014.

[15] N. Ström, “Sparse connection and pruning in large dynamic artificial neural networks.,” in

EUROSPEECH, 1997.

[16] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov, “Improving

neural networks by preventing co-adaptation of feature detectors,” arXiv Prepr. arXiv1207.0580,

2012.

[17] N. Vasilache, J. Johnson, M. Mathieu, S. Chintala, S. Piantino, and Y. LeCun, “Fast convolutional

nets with fbfft: A GPU performance evaluation,” arXiv Prepr. arXiv1412.7580, 2014.

[18] M. Mathieu, M. Henaff, and Y. LeCun, “Fast training of convolutional networks through FFTs,”

arXiv Prepr. arXiv1312.5851, 2013.

[19] V. N. Murthy, V. Singh, T. Chen, R. Manmatha, and D. Comaniciu, “Deep decision network for

multi-class image classification,” in Proceedings of the IEEE conference on computer vision and

pattern recognition, 2016, pp. 2240–2248.

[20] V. Vanhoucke, A. Senior, and M. Z. Mao, “Improving the speed of neural networks on CPUs,” in

Proc. Deep Learning and Unsupervised Feature Learning NIPS Workshop, 2011, vol. 1.

[21] A. Toshev and C. Szegedy, “Deeppose: Human pose estimation via deep neural networks,” in

Proceedings of the IEEE conference on computer vision and pattern recognition, 2014, pp. 1653–

1660.

[22] A. Krizhevsky, G. Hinton, and others, “Learning multiple layers of features from tiny images,”

2009.

[23] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception

architecture for computer vision,” in Proceedings of the IEEE conference on computer vision and

pattern recognition, 2016, pp. 2818–2826.

[24] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,

M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L.

Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster,

J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas,

O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-

Scale Machine Learning on Heterogeneous Distributed Systems,” Mar. 2016.

	Abstract
	Keywords
	Test-Cost-Sensitive Learning; Deep Learning; CNN withExpert Branches; Instance-Based Cost

