
Signal & Image Processing: An International Journal (SIPIJ) Vol.10, No.6, December 2019

DOI: 10.5121/sipij.2019.10601 1

EFFICIENT METHOD TO FIND NEAREST

NEIGHBOURS IN FLOCKING BEHAVIOURS

Omar Adwan

Computer Information Systems Department, The University of Jordan,

Amman – Jordan

ABSTRACT

Flocking is a behaviour in which objects move or work together as a group. This behaviour is very common

in nature think of a flock of flying geese or a school of fish in the sea. Flocking behaviours have been

simulated in different areas such as computer animation, graphics and games. However, the simulation of

the flocking behaviours of large number of objects in real time is computationally intensive task. This

intensity is due to the n-squared complexity of the nearest neighbour (NN) algorithm used to separate

objects, where n is the number of objects. This paper proposes an efficient NN method based on the partial

distance approach to enhance the performance of the flocking algorithm and its application to flocking

behaviour. The proposed method was implemented and the experimental results showed that the proposed

method outperformed conventional NN methods when applied to flocking fish.

KEYWORDS

flocking behaviours, nearest neighbours, partial distance approach, computer graphics and games

1. INTRODUCTION

Flocking is a behaviour in which objects move or work together as a group [1]. Flocking can be

defined as the behaviour of a group of objects that usually has their members (agents) are locally

controlled by a small set of rules. These members are fewer than particle systems. We find many

examples in life and nature of this behaviour: birds, fish, sheep, etc. [2-4]: birds fly in swarms,

fish swim in fish schools and sheep move as herd steering by a dog. They behave in such a way

that they appear as a single coherent entity, in spite of their shape and direction [1-2]. Bird flocks

and fish schools can be modelled and simulated to mimic the flocking behaviour of birds on

computer [3]. Flocking simulations have been widely studied in computer animation, graphics,

games and other areas such as road designs in order to simulate pedestrian's behaviour [4].

One of the first algorithms to for producing flocking behaviour in groups of computer characters

(objects) was presented by Reynolds [1], with the motivation to simulate flocks of birds for

computer graphics. The algorithm has three rules. Each flock agent makes steering decisions

based on the following behaviours: Cohesion, Alignment and Separation. Flock individuals

would follow simple local rules to avoid collisions (separation), match velocities to their

neighbours (alignment), and center themselves among their neighbours (cohesion). These rules

are applied to each individual object in a group with the result of very convincing flocking

behaviour [1,4-6]. These rules (illustrated in Fig. 1).

Signal & Image Processing: An International Journal (SIPIJ) Vol.10, No.6, December 2019

 2

Fig 1. Flocking rules: (a) move toward average group position, (b) align heading with average group

heading, and (c) avoid others [6]

Cohesion implies that all the objects in the flock stay together in a group; we don’t want each

object breaking from the group and going its separate way. To satisfy this rule, each object should

steer toward the average position of its neighbours. Alignment implies that all the object in a

flock to head in generally in the same direction. To satisfy this rule, each object should steer so as

to try to assume a heading equal to the average heading of its neighbours. Separation implies that

we want the objects to maintain some minimum distance away from each other, even though they

might be trying to get closer to each other as a result of the cohesion and alignment rules that is to

avoid crowding neighbours. We don’t want the objects running into each other or coalescing at a

coincident position. Therefore, we’ll enforce separation by requiring the objects to steer away

from any neighbour that is within view and within a prescribed minimum separation distance. To

maintain a distance with other neighbours in the flock to avoid collision, the middle moving

entity sometimes called flockmates or (boid) is shown moving in a direction away from the rest of

the boids, without changing its heading as shown in Fig. 2.

Fig 2. maintaining a distance with other neighbours in the flock

There are two conflicting propensities when working in flocking: collision avoidance and flock

centering. It is a huge challenge is to simulate tens of thousands of objects in real-time where they

realistically separate or avoid collisions with each other. In this paper, we are focusing on the

separation rule. A conventional approach for achieving the separation rule in flocking behaviour

is to perform nearest neighbour approach. Many implementations of the basic flocking algorithm

grow in complexity. For a flock of n members, calculation of their instantaneous influences on

each other, i.e. finding the nearest neighbour approach has the complexity of O(n2), because every

object has to calculate its distance from every other object in the entire flock, in order to ensure

the separation rule. For example, if we double the number of boids, it quadruples the amount of

time taken. This high complexity makes it difficult to the game to be efficient, and therefore,

techniques to reduce the high complexity is acquired [5].

The objective of this paper is to propose an efficient NN method based on the partial distance

approach for simulation of flocking behaviours.

Signal & Image Processing: An International Journal (SIPIJ) Vol.10, No.6, December 2019

 3

2. RELATED WORK

Flocking behaviour is a combination of three rules behaviours cohesion, separation, and

alignment. To find the nearest neighbours efficiently, first a search is made to find other boids

within the simulated world. This might be an exhaustive search of all boids in the simulated

world. One way to find the nearest neighbours efficiently is to perform a three-dimensional

bucket sort and then check adjacent buckets for neighbours. Such a bucket sort can be updated

incrementally by adjusting bucket positions of any members that deviate too much from the

bucket center as the buckets are transformed along with the flock. There is, of course, a time-

space trade-off involved in bucket size—the smaller the buckets, the more buckets needed but the

fewer members per bucket on average. However, this does not completely eliminate the n-

squared problem because of worst-case distributions [9-13]

In [10], the authors improved the conventional flocking algorithm by using the characteristic of

flocking behaviour which two objects may share many common neighbours if they are spatially

close to each other. They proposed the condition which can check whether two objects share their

neighbours for a given set of agents or not.

In [14], the authors introduced a procedure that identifies the influential neighbours of fish

moving in a group, and tested it along a series of experiments in groups of two and five

individuals of the freshwater tropical fish swimming in a ring-shaped tank. Four parameters were

used to identify influential neighbours: the time-delay τ, the window size w, the correlation

threshold Cmin above which individuals are supposed to be interacting, and the threshold ε for

selecting more than one influential fish.

In [15], the Partial Distance (PD) algorithm has been proposed. The algorithm allows early

termination of the distance calculation by introducing a premature exit condition in the search

process. The Partial Distance (PD) algorithm is proposed to reduce the computation complexity

of the exhaustive search. The PD algorithm allows early termination of the distance calculation

between an object and all other objects in the flock by introducing a premature exit condition in

the search process.

Let C = {ci, i = 1,…,N} be a set of cluster centers of size N, where (cij, j = 1,…, K) is a K

dimensional data point (vector). For a given data point X = (xj, j = 1,…, K), it is required to find

the vector with the minimum distance from the set C under the squared-error distance measure

defined as follows:

.






K

j

ijji cxcXd

1

2)(),(

The basic structure of the PD algorithm is illustrated below:

 Loop A: For i = 1, …, N

d = 0

Loop B: For j = 1, …, K

d = d + (xj – cij)2

if (d > dmin) Next i // (exit condition)

Next j

dmin = d

min = i

Next i

Signal & Image Processing: An International Journal (SIPIJ) Vol.10, No.6, December 2019

 4

It can be observed that the partial distance search algorithm gains computation saving over the

full search algorithm because of the provision for a premature exit from Loop B, on satisfying the

condition d > dmin (called the exit condition) before the completion of the distance computation

d(X, ci). The problem with the PD algorithm is that its efficiency is dependent on the current

(initial) distance dmin found so far. The larger the distance is, the less useful this method

becomes [16].

In [16], the authors proposed efficient initial distances to the PD algorithm. The proposed strategy

avoids many unnecessary distance calculations by applying efficient PD strategy (EPD). Let x be

any data point, let c be a cluster center and let cprev be the previous location of the same object.

Suppose that in the previous iteration we know that dprev is the distance between x and cprev,

then we can use dprev as an initial distance for the PD algorithm. In other words, if cprev has

moved a small distance, then dprev is a good initial distance. Having these observations, the EPD

algorithm works as follows:

Step 0: assign each data point, x, to its closest cluster center, c, using the PD algorithm. Use each

resulting distance (dprev) as an initial distance in the next step.

Step 1: dmin = dprev (from step 0)

Loop A: For i = 1, …, N

d = 0

Loop B: For j = 1, …, K

d = d + (xj – cij)2

if (d > dmin) Next i // (exit condition)

Next j

dmin = d

min = i

Next i

It can be noticed that the new proposed strategy would gain more computation time saving than

the conventional PD algorithm. This is because the initial distance, d > dmin produced from the

proposed strategy is very small, as shown in Step1 (first line) in the algorithm above. Note that

step 0 is applied only once to find previous distances for the next steps. If the PD algorithm is

used in step 0, then we still gain some CPU time savings.

In this paper, we apply both the partial distance (PD) and its enhanced version (EPD) to the

flocking fish project

3. EXPERIMENTAL WORK

It is more practical to understand flocks and herds by relating them to the real-life

behaviours they model. These concepts describe a group of objects, or boids, as they are

called in artificial intelligence terms, moving together as a group [17-18]. The flocking

algorithm gets its name from the behaviour fish flocking exhibit in nature, where a group

of fish follow one another toward a common destination, keeping a mostly fixed distance

from each other. The emphasis here is on the group.

Signal & Image Processing: An International Journal (SIPIJ) Vol.10, No.6, December 2019

 5

In [6], de Byl, Penny developed a computer game to simulate the behaviour of fish flocks using

Unity-3D game engine [Unity3D.com] with C# programming language. Fig. 3 shows a flock of

50 fish simulated by [6]. The figure shows a clear separation between the fish.

In this paper, we implement the work of [6] using Unity3D game engine. And then implement our

method to enhance the algorithm in [4].

Fig. 3. A flock of 50 fish simulated by [de Byl, Penny]

In order to test the efficiency of PD strategy, the fish flock of [6] has been implemented. The

frame per second (fps) is measured. The results are show in Table 1. The Table shows that the PD

method outperformed the conventional approach. Table 1 also shows the performance of the EPD

methods for the flock of fish, and the number of objects (No. Objects) in the flock. It can be

noticed from Table 1 that the Partial Distance (PD) method outperformed the conventional

approach. The Table also shows that the EPD method gave the best results in all cases. The

frame-per-second (fps) of the EPD is always higher.

Table 1: fps for exhaustive, the PD and EPD methods for the fish flock

No
Objects

Ex PD EPD

100 100 100 100
200 80 80 80
300 75 80 85
400 65 75 80
500 54 65 70
600 30 35 45
700 22 30 38
800 17 30 35
900 13 25 32

1000 11 25 32

It can be noticed from the table above that the EPD method outperformed the exhaustive and the

PD methods. Fig.4 show the graphical results.

Signal & Image Processing: An International Journal (SIPIJ) Vol.10, No.6, December 2019

 6

Fig.4 Graphical results (fps) of the fish flock.

4. CONCLUSIONS

Flocking behaviours are used in computer animation, games and graphics for realistic simulation

of massive crowds. In real life, simulation of massive crowd is complex and intensive. This paper

describes a faster flocking algorithm and its application to the fish flocking problem. We propose

a nearest neighbour's method based on the partial distance (PD) approach. The proposed

algorithms avoid many unnecessary distance calculations by applying an efficient partial distance

strategy. Experimental results show that the proposed algorithm gave better results than the

conventional algorithms when applied to flocking fish.

REFERENCES

[1] Reynolds, C. W., Flocks, Herds, and Schools: A Distributed Behavioural Model, In Proceedings

of SIGGRAPH 87, 21(4), 1987, pp. 25-34.

[2] Farine, D.R., Garroway, C.J. & Sheldon, B.C. (2012) Social network analysis of mixed‐species

flocks: exploring the structure and evolution of interspecific social behaviour. Animal

Behaviour, 84, 1271–1277.

[3] Levent Bayındır, A review of swarm robotics tasks, Neurocomputing, 172(8), 2015, pp292-321

[4] Jae Moon Lee, Seongdong Kim, A simulation of multiple grouping movements for pedestrians,

International Journal of Computational Vision and Robotics, 7(3), 2017.

[5] Mohit Sajwan, Devashish Gosain, Sagarkumar Surani, Flocking Behaviour Simulation:

Explanation and Enhancements in Boid Algorithm, International Journal of Computer Science and

Information Technologies, Vol. 5 (4), 2014, 5539-5544

[6] de Byl, Penny. Holistic Game Development with Unity: An All-in-One Guide to Implementing

Game Mechanics, Art, Design and Programming, CRC Press. Kindle Edition, 2018.

[7] D. Shiffman, The Nature of Code, Processing Foundation, available: https://natureofcode.com/,

last visited, May, 2019.

[8] E. Adams, Fundamentals of Game Design Third Edition, Pearson, 2014.

https://www.sciencedirect.com/science/journal/09252312

Signal & Image Processing: An International Journal (SIPIJ) Vol.10, No.6, December 2019

 7

[9] R. Parent, Computer Animation, Algorithms and Techniques, Third Edition, Morgan Kaufmann,

2012.

[10] Jae Moo Lee, An Efficient Algorithm to Find k-Nearest Neighbors in Flocking Behavior,

Information Processing Letters, 110, 2010, pp. 576-579.

[11] M. Sajwan, D. Gosain, S. Surani, Flocking Behaviour Simulation: Explanation and Enhancements

in Boid Algorithm, International Journal of Computer Science and Information Technologies, 5

(4), 2014, 5539-5544.

[12] M. Moussaıd, D. Helbing, and G. Theraulaz, “How simple rules determine pedestrian behavior

and crowd disasters,” in Proceedings of the National Academy of Science, vol. 108, 2011, pp.

6884–6888.

[13] B. Chazelle, The Convergence of Bird Flocking, J. ACM 61(4), 2014, pp. 21-35.

[14] Li Jiang, L. Giuggioli, A. Perna, R. Escobedo, V. Lecheval, C. Sire, Z. Han, and G. Theraulaz,

Identifying influential neighbors in animal flocking. PLOS Computational Biology 13(12), 2017.

[15] S. Chen and W. Hsieh, Fast Algorithm for VQ Codebook Design. IEE Proc., 138 (5), 1991. pp.

357-362.

[16] M. B. Al- Zoubi, A. Hudaib, A. Huneiti and B. Hammo , New Efficient Strategy to Accelerate K-

Means Clustering Algorithm , American Journal of Applied Sciences, 5(9), 2008, pp. 1247-1250.

[17] Ray Barrera, Aung Sithu Kyaw, Clifford Peters and Thet Naing Swe, Unity AI Game

Programming, Second Edition , Packt Publishing, 2015.

[18] Aung Sithu Kyaw. Clifford Peters and Thet Naing Swe, Unity 4.x Game AI Programming, Packt

Publishing, 2013.

AUTHOR

Omar Adwan is an Associate Professor in the Department of Computer Information

System at the University of Jordan, where he has been since 2010. From 2012 to

2016 he served as Department Chair. He received a B.S. in Computer Science from

Eastern Michigan University in 1987. Dr Adwan received his M.S. and Ph.D. in

Computer Science majoring in Software Engineering from The George Washington

University. Currently Dr. Adwan is the Deputy Dean of Student Affairs at the

University of Jordan. Dr Adwan research interests are in Image Processing, software

engineering, with focus on software testing, software analytics, software security,

intelligent software engineering, and both data mining and machine learning

(adwanoy@ju.edu.jo)

	Abstract
	Keywords
	flocking behaviours, nearest neighbours, partial distance approach, computer graphics and games

