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ABSTRACT 
 

In CFA 2.0, there are white pixels in a color filter array (CFA) that has proven to help the demosaicing 

performance for images collected in low light conditions. Here, we evaluate the performance of 
demosaicing for images collected in low light conditions using an RGBW pattern with 75% white pixels. 

We term this CFA the CFA 3.0. Using a data set containing 10 images collected in low light conditions, we 

performed extensive experiments. Both objective and subjective evaluations were used in our experiments.  
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1. INTRODUCTION 
 

The standard Bayer pattern [1], also known as color filter array (CFA) 1.0, has been widely used 

in many commercial cameras. As shown in Figure 1 (a), for each 2x2 block, there are two green, 

one red, and one blue pixels. In the Mastcam onboard the NASA’s Mars rover Curiosity [2]-[5], 
Bayer pattern has been used for the RGB images. One key reason for using Bayer pattern is to 

reduce cost. Due to the huge success of the Bayer pattern, another pattern known as RGBW or 

CFA 2.0 with the aim of improving image quality in low lighting conditions was introduced by 
researchers at Kodak [6]. For each 4x4 block in a RGBW pattern (Figure 1 (b)), there are 50% 

white pixels, 25% green pixels, and 12.5% red and blue pixels. 

 

 
(a) 

 
(b) 

 
(c)  

 
(d) 

 
Figure 1. Three CFA patterns. (a) Standard Bayer pattern (CFA 1.0); (b) RGBW (CFA 2.0); (c) RGBW 

with 75% white (CFA 3.0); (c) RGBW with 32/36 percent white [7]. 

 
Recently, we proposed a new CFA pattern known as CFA 3.0 [8][9]. In each 4x4 block as shown 

in Figure 1 (c), there are 12 white pixels, two green pixels, one red and one blue pixels. One key 

advantage for CFA 3.0 is that some algorithms for CFA 2.0 can be easily modified and adapted to 
CFA 3.0. In that paper [8], we have also solved the problem of demosaicing for CFA 3.0. 

http://www.airccse.org/journal/sipij/vol11.html
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Emulated low lighting images were used in our experiments. It was observed that CFA 3.0 
achieved a performance somewhere between CFAs 1.0 and 2.0. 

 

It is worth to mention a related paper [7], which further increases the number of white pixels. The 

CFA is shown in Figure 1 (d). It can be seen that, for each 6x6 block, 32 pixels are white. The 
remaining pixels form a Bayer pattern in the center. It was claimed that this CFA can work well 

in low lighting conditions. However, Gaussian noise was used to emulate noise induced in low 

lighting conditions. As mentioned in [10], the noise generated in low lighting conditions is 
known as Poisson noise, which is different from Gaussian noise because Poisson noise is 

amplitude dependent. Poisson noise should be used instead to emulate noise in low lighting 

conditions. 
 

In our recent paper on the demosaicing of CFA 2.0 (RGBW) [11], we have extensively compared 

CFA 1.0 and CFA 2.0 using IMAX and Kodak images and observed that CFA 1.0 has better 

performance. One reason for that is because IMAX and Kodak data sets were not collected in low 
light conditions and CFA 2.0 was designed for images in low lighting conditions. We then 

performed another study using emulated low lighting images in [10]. It was observed that CFA 

2.0 indeed performed better than CFA 1.0. 
 

However, in another recent paper [12], we observed that CFA 2.0 still performed better than CFA 

1.0 using realistic low lighting images. In this chapter, we summarize our investigation of using 
CFA 3.0 for some realistic low lighting images. The goal is to see if CFA 3.0 can work well for 

those realistic low lighting images. Extensive experiments using more than ten methods were 

carried out. Both objective and subjective evaluations were performed. 

 
Our contributions are as follows. First, we applied and compared CFA 1.0, CFA 2.0, and CFA 

3.0 to actual low lighting images. This study has not been done before in the literature. Second, 

our experiments showed that CFA 2.0 and CFA 3.0 have lower noise than CFA 1.0 in actual low 
lighting images. This confirmed the observations in [11] where simulated images were used in 

the experiments. Third, we offered an explanation to some inconsistent findings in our 

experiments.  Basically, the observations and conclusions in [7] are questionable because some 

real low lighting images containing Poisson noise were used as references in calculating the 
performance metrics. 

 

In Section 2, we will briefly review the demosaicing algorithms for CFA 3.0. In Section 3, we 
will summarize the experiments using ten real low lighting images. Section 4 will conclude the 

chapter with a few remarks.  

 

2. REVIEW OF DEMOSAICING ALGORITHMS FOR CFA 3.0 
 
Different from the random color patterns in [13], the CFA 3.0 pattern in this paper has fixed 

patterns. One key advantage is that some approaches for CFA 2.0 can be directly applied with 

little modifications. As shown in Figure 2, in each 4x4 block, the four R, G, B pixels in the CFA 
3.0 raw image are extracted to form a reduced resolution CFA image. A standard demosaicing 

algorithm can be applied. The missing pan pixels are interpolated to create a full resolution pan 

image. The subsequent steps will be the same as before. Details can be found in [8]. 
 

In [8], the pansharpening approach for CFA 3.0 is shown in Figure 3. Here, the four R, G, B 

pixels are extracted first and then a demosaicing algorithm for CFA 1.0 is applied. For the pan 

band, any interpolation algorithms can be applied. Afterwards, any pansharpening algorithms can 
be used to fuse the pan and the demosaiced reduced resolution image to generate a full resolution 

color image. In our experiments, we have used Principal Component Analysis (PCA) [13], 
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Smoothing Filter-based Intensity Modulation (SFIM) [15], Modulation Transfer Function 
Generalized Laplacian Pyramid (MTF-GLP) [16], MTF-GLP with High Pass Modulation (MTF-

GLP-HPM) [17], Gram Schmidt (GS) [18], GS Adaptive (GSA) [19], Guided Filter PCA 

(GFPCA) [20], PRACS [21] and hybrid color mapping (HCM) [22]-[26]. 

 

P
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Figure 2. Standard approach to demosaicing CFA 3.0. 
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Figure 3. A pansharpening approach to demosaicing CFA 3.0. 

 

In [8], a hybrid approach combining deep learning and pansharpening [27] was adapted to CFA 
3.0 as well, as shown in Figure 4. For the reduced resolution demosaicing step, the Demonet 

algorithm is used. In the pan band generation step, we also propose to apply Demonet [28]. After 

those two steps, a pansharpening algorithm is then applied. 
 

We also have two pixel-level fusion algorithms known as F3 [29] and ATMF [30].  
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Figure 4. A hybrid deep learning and pansharpening approach to demosacing CFA 3.0. 
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3. EXPERIMENTS 
 

3.1. Low Lighting Images 
 

We downloaded a benchmark data set with low light images [31]. The 10 images are shown in 
Figure 5. In each image, there is a color checker board. The size of the images varies. Some are 

more than 2000 by 2000 pixels. Some of them are really dark and hence this is a good data set for 

comparing the different CFA patterns. We believe this data set is quite realistic. 
 

 
Image 1 

 
Image 2 

 
Image 3 

 
Image 4 

 
Image 5 

 
Image 6 
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Image 7 

 
Image 8 

 
Image 9 

 
Image 10 

 

Figure 5. Ten images collected in low light conditions. The faces of the two people in Image 2 are 

concealed to protect the privacy of them. 

 

In addition to objective performance comparisons, we also carried out subjective evaluations. To 

visually compare the demosaicing methods, two sections were taken from the first image. See 
Figure 6. One section contains a tablet of colored squares that can be found in each image and the 

other section is a radio on the table. The color tablet is an important section because it will show 

how each demosaicing technique will handle a diverse image in low light conditions. The radio is 
a dark section of the image that tends to collect a lot of artifacts. 

 

 
 

Figure 6. Two small sections in Image 1 were selected for subjective comparisons. Green areas are the 

enlarged red areas. 
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3.2. Performance Metrics 
 

In this paper, five performance metrics were used to compare the different methods. 

 

• Peak Signal-to-Noise Ratio (PSNR) [31]: A higher PSNR means better quality. A 

combined PSNR (CPSNR) is the mean of the PSNRs of the R, G, and B bands. 

• Structural SIMilarity (SSIM): This metric was defined in [32] to reflect the similarity 

between two images. The SSIM index is computed on various blocks of an image. The 

ideal value of SSIM is 1 for perfect prediction. 

• Human Visual System (HVS) metric [33]: HVS is claimed to resemble human perception. 

• HVSm (HVS with masking): This metric is similar to HVS except that visual masking 

effects are taken into account. The inclusion of a block containing contrast masking is the 

only difference between HVS and HVSm. Details can be found in [34][35]. 

• In addition to PSNR, SSIM, HVS, and HVSm, we also used CIELAB [36] for assessing 

demosaicing performance. 
 

3.3. Results 
 

There are 14 methods in our study. The baseline and standard methods are similar to those in 

CFA 2.0. The three best methods used for F3 are Demonet + GSA, PCA, and GFPCA. The 

ATMF uses those three methods as well as GSA, GLP, GS, and PRACS. 
 

We first demonstrate that the pan interpolation using Demonet is better than that of a 

conventional method (LDI). From Table 1, we can see that interpolation using Demonet is 3 dBs 
better than that of LDI, which has been used in the standard approach in our studies for CFA 1.0 

and CFA 2.0. 

 
As can be seen in Table 2, the best performing method is the F3 method, which is 3 dBs better 

than the standard method. Moreover, F3 is 2 dBs better than that of the Demonet+GSA. 

Surprisingly, GFPCA also has decent performance. The bar charts in Figure 7 reveal that the blue 

band is worse than red and green bands. This is somewhat hard to understand, as the red and blue 
pixels have equal numbers. Figure 8 shows that Demonet + GSA is no longer the best performing 

method in CFA 3.0. 

 
In subjective comparisons shown in Figure 11 and Figure 12, we can see the performance of 

different methods varies a lot. Consequently, it is easier to observe artifacts in poor performing 

methods. One can easily compare the pixels inside the red circles in Figure 11 and Figure 12 to 
see which method is good or bad. In most of the CFA 3.0 approaches, it is easy to see color 

distortions around the lighter colored boxes and most notably the white box in the lower left 

corner. There are some artifacts found in the darker panel on the color tablet especially in SFIM 

and HPM. 
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Figure 7. Averaged PSNR scores for all the low light images using CFA 3.0 pattern. 

 

Table 1. Performance of pan interpolation between Demonet and LDI [37] for CFA 3.0 pattern. Bold 
numbers indicate the best performing method in each row. 

 

Image Metric Demonet LDI

Img 1 PSNR 49.29 42.02

HVSm 54.31 45.34

Img 2 PSNR 48.25 40.74

HVSm 52.76 42.84

Img 3 PSNR 43.33 41.41

HVSm 47.39 44.16

Img 4 PSNR 48.38 36.78

HVSm 53.43 39.92

Img 5 PSNR 51.35 50.99

HVSm 56.76 57.96

Img 6 PSNR 38.13 37.37

HVSm 44.24 42.99

Img 7 PSNR 36.90 38.52

HVSm 41.19 44.41

Img 8 PSNR 46.53 46.64

HVSm 52.80 54.28

Img 9 PSNR 49.10 47.70

HVSm 56.14 55.62

Img 10 PSNR 44.55 43.85

HVSm 50.15 48.43

Average PSNR 45.58 42.60

HVSm 50.92 47.59  
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Table 2. Performance metrics of 14 algorithms for CFA 3.0 pattern. Bold numbers indicate the best 

performing method in each row. 

 

Image Baseline Standard

Demonet + 

GSA GSA HCM SFIM PCA GFPCA GLP HPM GS PRACS F3 ATMF

Img1 C-PSNR 40.10 41.02 41.69 41.01 40.60 39.75 41.04 42.28 40.86 39.83 41.06 40.99 42.68 42.59

Cielab 2.57 2.43 2.39 2.44 2.49 2.53 2.45 2.22 2.46 2.54 2.44 2.45 2.18 2.20

SSIM 0.55 0.64 0.61 0.64 0.63 0.64 0.64 0.63 0.63 0.63 0.64 0.63 0.62 0.61

HVS 36.75 36.68 38.19 36.73 36.53 36.67 36.62 39.00 36.69 36.66 36.79 36.75 39.93 39.87

HVSm 38.27 38.23 40.05 38.24 38.06 38.20 38.11 40.94 38.21 38.19 38.31 38.26 42.39 42.31

Img2 C-PSNR 39.90 40.44 40.68 40.43 39.96 37.38 40.32 41.81 40.32 37.44 40.45 40.36 41.90 41.69

Cielab 3.52 3.35 3.41 3.37 3.49 3.89 3.41 3.10 3.40 3.89 3.36 3.42 3.11 3.16

SSIM 0.53 0.63 0.60 0.63 0.61 0.61 0.62 0.61 0.62 0.61 0.63 0.61 0.61 0.60

HVS 36.60 36.77 37.69 36.82 36.66 36.68 36.71 39.41 36.81 36.68 36.83 36.72 39.99 39.64

HVSm 38.06 38.23 39.39 38.28 38.14 38.16 38.14 41.48 38.28 38.16 38.29 38.17 42.47 41.93

Img3 C-PSNR 37.34 38.35 39.02 38.41 37.97 37.47 38.29 39.57 38.22 37.45 38.42 38.34 40.25 40.13

Cielab 4.24 3.99 4.03 3.99 4.08 4.10 4.04 3.72 4.03 4.11 4.01 4.05 3.64 3.66

SSIM 0.56 0.66 0.63 0.65 0.64 0.65 0.65 0.65 0.65 0.64 0.65 0.64 0.65 0.64

HVS 33.84 33.81 35.20 33.91 33.69 33.77 33.71 36.55 33.83 33.76 33.92 33.86 37.48 37.39

HVSm 35.18 35.20 36.80 35.26 35.07 35.13 35.03 38.29 35.18 35.11 35.28 35.20 39.72 39.63

Img4 C-PSNR 42.00 43.57 44.02 43.16 43.37 43.29 43.54 44.05 43.27 43.25 43.52 43.32 44.89 44.65

Cielab 1.34 1.24 1.22 1.30 1.26 1.26 1.25 1.15 1.27 1.27 1.25 1.28 1.11 1.13

SSIM 0.53 0.66 0.63 0.65 0.65 0.66 0.66 0.61 0.65 0.65 0.66 0.64 0.63 0.62

HVS 39.30 39.32 40.51 39.29 39.35 39.24 39.35 40.99 39.22 39.21 39.33 39.35 42.18 41.82

HVSm 41.13 41.14 42.71 41.10 41.17 41.06 41.17 43.17 41.04 41.03 41.14 41.15 44.96 44.46

Img5 C-PSNR 44.47 45.66 46.94 45.82 45.11 44.23 45.96 47.16 45.63 44.23 45.81 45.41 47.91 47.55

Cielab 3.86 3.59 3.64 3.57 3.68 3.69 3.59 3.15 3.62 3.69 3.58 3.74 3.08 3.19

SSIM 0.50 0.59 0.57 0.59 0.57 0.57 0.58 0.62 0.58 0.57 0.58 0.56 0.60 0.59

HVS 41.69 41.65 43.93 41.82 41.35 41.09 41.55 45.36 41.70 41.05 41.82 41.69 46.06 45.08

HVSm 43.09 43.13 45.76 43.23 42.72 42.57 42.93 47.52 43.10 42.51 43.23 43.09 48.67 47.36

Img6 C-PSNR 32.17 33.73 35.24 33.71 33.26 33.27 33.74 35.27 33.40 33.28 33.69 33.59 36.41 36.18

Cielab 4.94 4.61 4.02 4.62 4.76 4.67 4.62 3.85 4.72 4.68 4.62 4.64 3.47 3.50

SSIM 0.81 0.87 0.87 0.87 0.85 0.86 0.86 0.88 0.86 0.86 0.86 0.86 0.89 0.89

HVS 27.96 28.02 30.27 28.03 27.97 27.98 28.01 30.82 27.98 27.97 28.02 28.02 32.17 32.17

HVSm 29.60 29.67 32.67 29.66 29.61 29.64 29.63 33.16 29.63 29.62 29.64 29.65 35.24 35.29

Img7 C-PSNR 33.41 35.12 36.45 35.10 34.71 34.69 35.14 36.38 34.77 34.70 35.10 35.00 37.59 37.17

Cielab 4.56 4.19 3.80 4.22 4.30 4.27 4.23 3.61 4.29 4.28 4.22 4.25 3.36 3.47

SSIM 0.76 0.84 0.83 0.83 0.83 0.83 0.83 0.84 0.83 0.83 0.83 0.83 0.85 0.85

HVS 29.56 29.60 32.13 29.62 29.56 29.52 29.64 32.47 29.54 29.52 29.60 29.61 33.97 33.57

HVSm 31.16 31.21 34.60 31.23 31.17 31.15 31.25 34.75 31.15 31.14 31.20 31.21 37.10 36.53

Img8 C-PSNR 39.39 40.70 42.54 40.81 39.84 37.95 40.73 42.47 40.61 37.98 40.77 40.42 43.57 43.31

Cielab 6.11 5.73 4.92 5.68 6.05 6.36 6.00 4.58 5.78 6.37 5.72 5.89 4.32 4.49

SSIM 0.60 0.70 0.72 0.70 0.66 0.66 0.68 0.74 0.70 0.65 0.70 0.67 0.75 0.75

HVS 36.22 36.36 38.79 36.42 35.79 36.07 36.10 39.81 36.27 36.06 36.40 36.29 41.12 40.73

HVSm 37.66 37.85 40.66 37.87 37.21 37.53 37.50 41.68 37.73 37.51 37.84 37.72 43.71 43.29

Img9 C-PSNR 40.34 41.75 43.45 41.83 40.86 40.48 41.95 43.45 41.60 40.26 41.80 41.37 44.67 44.31

Cielab 5.18 4.77 4.47 4.74 4.92 4.88 4.80 4.02 4.84 4.90 4.78 5.01 3.78 3.93

SSIM 0.61 0.70 0.70 0.70 0.67 0.68 0.69 0.72 0.70 0.68 0.70 0.67 0.72 0.72

HVS 37.11 37.26 39.90 37.34 36.77 36.83 37.14 40.18 37.22 36.56 37.34 37.17 41.44 40.77

HVSm 38.72 38.92 42.16 38.97 38.35 38.46 38.73 42.33 38.85 38.20 38.97 38.77 44.26 43.37

Img10 C-PSNR 35.84 37.30 39.63 37.32 36.63 35.96 37.40 39.46 37.03 35.90 37.31 37.14 41.02 40.72

Cielab 4.49 4.18 3.83 4.16 4.25 4.59 4.23 3.55 4.26 4.59 4.18 4.22 3.35 3.45

SSIM 0.61 0.69 0.69 0.69 0.67 0.67 0.69 0.72 0.69 0.67 0.69 0.67 0.71 0.71

HVS 31.34 31.46 34.40 31.47 31.06 31.33 31.29 34.67 31.38 31.29 31.46 31.42 36.21 35.54

HVSm 32.82 32.96 36.54 32.95 32.52 32.81 32.75 36.69 32.84 32.77 32.94 32.88 38.90 38.04

Average C-PSNR 38.50 39.32 40.22 39.81 39.28 38.49 39.87 41.27 39.62 38.48 39.85 39.65 42.09 41.83

Cielab 4.07 3.92 3.63 3.82 3.94 4.03 3.88 3.30 3.88 4.04 3.84 3.89 3.14 3.22

SSIM 0.606 0.698 0.686 0.695 0.679 0.682 0.691 0.701 0.692 0.680 0.695 0.679 0.703 0.698

HVS 35.04 35.09 37.10 35.14 34.87 34.92 35.01 37.93 35.07 34.87 35.15 35.09 39.05 38.66

HVSm 36.57 36.65 39.14 36.68 36.40 36.47 36.52 40.00 36.60 36.43 36.68 36.61 41.74 41.22  
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Figure 8. Averaged CIELAB scores for all the low light images using CFA 3.0 pattern. 
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Figure 9. Averaged SSIM scores for all the low light images using CFA 3.0 pattern. 
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Figure 10. Averaged HVS and HVSm scores for all the low light images using CFA 3.0 pattern. 

 

 
(a) Ground Truth 

 
(b) Baseline 

 
(c) Standard 

 
(d) ATMF 

 
(e) Demonet + GSA 

 
(f) F3 
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(g) GFPCA 

 
(h) GLP 

 
(i) GS 

 
(j) GSA 

 
(k) HCM 

 
(l) HPM 

 
(m) PCA 

 
(n) PRACS 

 
(o) SFIM 

 

Figure 11. Visual comparison of the various demosaicing algorithms for CFA 3.0 (one part of image 1). 

 

 
(a) Ground Truth 

 
(b) Baseline 

 
(c) Standard 

 
(d) ATMF 

 
(e) Demonet + GSA 

 
(f) F3 
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(g) GFPCA 

 
(h) GLP 

 
(i) GS 

 
(j) GSA 

 
(k) HCM 

 
(l) HPM 

 
(m) PCA 

 
(n) PRACS 
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Figure 12. Visual comparison of the various demosaicing algorithms for 

 CFA 3.0 (another part of image 1). 

 

3.4. Best against the best comparison among the three CFA patterns 
 

Table 3. Best CFA pattern for each image. 

 
Images Best 

performing 

CFA  

Best 

demosaicing 

algorithm 

1 1.0 Demonet 

2 3.0 F3 

3 1.0 Demonet 

4 1.0 Demonet 

5 1.0 Demonet 

6 1.0 Demonet 

7 1.0 Demonet 

8 1.0 Demonet 

9 1.0 Demonet 

10 1.0 Demonet 

 

Now, we would like to compare the three CFA patterns. Since different algorithms are being used 

in each CFA, we think an appropriate way to compare the different CFAs is to compare the best 

against the best. That is, for each CFA, we select the best performing method and compare its 
results with best performing methods in other CFAs. 

 

We took some metrics related to CFA 1.0 and CFA 2.0 from our paper [12]. In terms of the 
PSNR, the best performing method for CFA 1.0 is Demonet, which yielded an averaged PSNR of 

43.18 dBs. The best performing method for CFA 2.0 is the combination of Demonet and GSA, 
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which yielded an averaged PSNR of 42.36 dBs. The best performing method for CFA 3.0 is F3, 
which achieved an averaged PSNR of 42.09 dBs. 

 

In short, CFA 1.0 is the best pattern for low light images. For images collected in normal 

illumination conditions, our earlier papers [11] and [29] also concluded that CFA 1.0 is better 
than CFA 2.0. 

 

3.4. Visual comparisons 
 

In short, CFA 1.0 is the best pattern for low light images. For images collected in normal 

illumination conditions, our earlier papers [11] and [29] also concluded that CFA 1.0 is better 
than CFA 2.0. 

 

The reason is because, in our objective metrics, we followed the same procedures in [7] in which 
the realistic low lighting images are treated as ground truth. This is inappropriate because the low 

lighting images are not noise free. Using noisy images as ground truth can lead to erroneous 

conclusions. 
  
For real low lighting images, one alternative performance metric is to adopt blind image quality 

assessment algorithms such as Naturalness Image Quality Evaluator (NIQE) in [25][38]. 

 

 
 

(a) Demonet for CFA 1.0 
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(b) Demonet+GSA: CFA 2.0 

 

 
 

(c) F3: CFA: 3.0 

 
Figure 13. Comparison of the best against the best. CFA 2.0 and CFA 3.0 appear to have lower 

noise than CFA 1.0. 

 

 
 

(a) Demonet for CFA 1.0 
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(b) Demonet+GSA: CFA 2.0 

 

 
 

(c) F3: CFA 3.0 

 

Figure 14. Comparison of the best against the best. CFA 2.0 and CFA 3.0 appear to have lower 

noise than CFA 1.0. 

 

4. CONCLUSIONS 
 

In this paper, we investigate the performance of CFA 3.0 using realistic low lighting images. 
More than ten algorithms have been applied. Using both objective and subjective evaluations, we 

observed that, despite the availability of more white pixels, the demosacing performance of CFA 

2.0 and CFA 3.0 was not as good as CFA 1.0 in our objective metrics. However, the performance 
does get better in CFA 2.0 and CFA 3.0 as compared to CFA 1.0 when using subjective 

evaluations. The above is a puzzling observation because we observed that CFA 3.0 and CFA 2.0 

are better than CFA 1.0 using emulated low lighting images in our earlier papers [8][10]. We 
offered an explanation for this phenomenon. 

 

In the future, we plan to work on two research directions. First, since there is noise in the 

demosaiced images of real low lighting images, we plan to investigate various denoising 
algorithms to further improve the image quality. Second, for CFA 3.0, we believe that if the 

panchromatic band is improved, the overall quality of demosaicing will be further improved. We 

plan to investigate some new ways to generate the panchromatic band. 
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