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ABSTRACT 
 
In modern digital cameras, the Bayer color filter array (CFA) has been widely used. It is also widely known 

as CFA 1.0. However, Bayer pattern is inferior to the red-green-blue-white (RGBW) pattern, which is also 

known as CFA 2.0, in low lighting conditions in which Poisson noise is present. It is well known that 

demosaicing algorithms cannot effectively deal with Poisson noise and additional denoising is needed in 

order to improve the image quality. In this paper, we propose to evaluate various conventional and deep 

learning based denoising algorithms for CFA 2.0 in low lighting conditions. We will also investigate the 

impact of the location of denoising, which refers to whether the denoising is done before or after a critical 

step of demosaicing. Extensive experiments show that some denoising algorithms can indeed improve the 

image quality in low lighting conditions. We also noticed that the location of denoising plays an important 

role in the overall demosaicing performance. 
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1. INTRODUCTION 
 

Bayer pattern [1] was invented in the early 1980’s and is still a very popular color filter array 

(CFA) for digital cameras. The Bayer pattern as shown in Figure 1(a) is also known as CFA 1.0 

in the literature. Even for planetary explorations, NASA has adopted the Bayer pattern in the 

Mastcam imagers onboard the Mars rover Curiosity [2]-[5].   

 

                
 

(a)                                                 (b) 

 

Figure 1. Two CFA patterns. (a) CFA 1.0; (b) CFA 2.0. 

 

Aiming to improve the Bayer pattern in low lighting conditions, Kodak researchers [6,7] invented 

a red-green-blue-white (RGBW) CFA pattern, which is also known as CFA 2.0, as shown in 

http://www.airccse.org/journal/sipij/vol11.html
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Figure 1(b). Half of the pixels in CFA 2.0 are white and the remaining pixels share the R, G, and 

B colors. Due to the presence of white pixels, the camera sensitivity is increased and hence the 

performance of CFA 2.0 in low lighting conditions should be better than CFA 1.0. Extensive 

experiments in [8] showed that CFA 2.0 is in indeed better than CFA 1.0 in low lighting 

conditions, where Poisson noise is dominant. Figure 2 shows a clean color image and two noisy 

images with different levels of Poisson noise. It can be seen that the noise can seriously affect the 

visual quality of the images. In low lighting conditions, demosaicing methods alone are not 

sufficient in suppressing the noise. Although there are some joint demosaicing and denoising 

algorithms such as [9] in the literature, those algorithms are tailored to only Gaussian noise. In an 

earlier paper [8], we developed new demosaicing algorithms for CFA 2.0. In the process, we also 

investigated the impact of denoising on the overall image quality. However, the denoising 

investigation in [8] was limited to only one method, the block matching in 3D (BM3D), even 

though the performance BM3D is reasonable. 

 

   
   

(a) Clean image (b) 10 dB Noisy image (c) 20 dB noisy image 

 

Figure 2. Comparison of clean and noisy images with different levels of Poisson noise. 

To the best of our knowledge, joint denoising and demosacing for CFA 2.0 is underdeveloped in 

the literature. In this paper, we will thoroughly investigate different algorithms in dealing with 

Poisson noise. We focus on CFA 2.0 because it was concluded in our earlier papers [8]10]-[12] 

that CFA 2.0 has better performance in low lighting conditions. Since only one denoising 

algorithm was used in [8], we would like to investigate how much performance we can further 

improve if we adopt other conventional and new denoising algorithms. In particular, we applied 

six conventional and one deep learning algorithms for suppressing Poisson noise. Two signal-to-

noise (SNR) levels (10 dB and 20 dB) of Poisson noise were introduced into clean Kodak images. 

Moreover, three denoising configurations were also investigated.  This is because, in our earlier 

paper [8], we observed that the location of denoising can have very different overall performance 

in the final demosaiced images.  

 

Our contributions are as follows. First, we thoroughly compared seven denoising algorithms for 

low lighting images. Some filters can improve the image quality quite significantly. Second, three 

denoising configurations were studied. One configuration works better than others. Third, we are 

the first team to carry out denoising and demosaicing studies for CFA 2.0. 

 

The rest of this paper is organized as follows. Section 2 summarizes the methods, data, and 

performance metrics. In Section 3, we present the denoising results for two noisy conditions. 

Finally, we conclude the paper with a few remarks and future directions. 

 

2. METHODS, DATA, AND PERFORMANCE METRICS 
 

2.1. Architecture 
 

Figure 3 shows the architecture of the proposed joint denoising and demosaicing system. Given 

an RGBW or CFA 2.0 image, we apply the Linear Directional Interpolation and Nonlocal 
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Adaptive Thresholding (LDI-NAT) [13] algorithm to demosaic a reduced resolution CFA 1.0 

image. Parallel to this activity, the same LDI-NAT is applied to panchromatic image with 50% 

pixels missing to generate a full resolution illuminance image. We use the term panchromatic or 

illuminance interchangeably to represent the intensity image in this paper. After the above two 

steps, a denoising procedure is performed on both the panchromatic image and the reduced 

resolution color image. The denoised image is then going through a pansharpening process to 

generate the demosaiced image. Finally, another post-filtering is performed. It should be noted 

that denoising can also be done simultaneously before and after pansharpening and we call this 

option the hybrid denoising scheme. 

 

Based on the above brief description, we can have three denoising configurations: 

 

• Pre-denoising: This means that denoising is done before pansharpening starts. As shown in 

Figure 3, there are two places for pre-denoising: one for reduced resolution color image and 

one for the full resolution illuminance or panchromatic band.  

 

• Post-Denoising: Here, denoising is done after the demosaiced image is obtained. 

 

• Hybrid Denoising: This configuration basically includes both pre-denoising and post-

denoising. 

 

 
 

Figure 3. Architecture of joint denoising and demosaicing system for CFA 2.0. 

 

2.2. Denoising Methods 
 

Although there are many denoising methods in the literature, in this paper, we evaluated the 

following algorithms: 

 

• Block Matching in 3 D (BM3D) [14]: This is a well-known denoising algorithm in the 

literature. The basic idea is to introduce exact unbiased inverses of the Anscombe and 

Generalized Anscombe transformations to deal with low-count (low photons) images. 

There are versions for Gaussian and Poisson noises. We used the version for Poisson and 

the codes can be found in [14]. 

 

• Wavelet [15]: The wavelet denoising consists of several steps. First, the input image is 

decomposed into several scales using discrete wavelet transform (DWT). Second, 

Pan-
sharpening

LDI-NAT

LDI-NAT

Pre-denoising
Post-denoising

Hybrid denoising
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thresholding is performed to the wavelet coefficients. Third, the denoising image is 

reconstructed from the thresholded DWT coefficients. We used the code in Matlab. 

 

• Diffusion: According to [16], is a technique aiming at reducing image noise without 

removing significant parts of the image content. We used the Matlab codes [17], which 

does not specify whether the filter is suitable for Gaussian or other types of noise. 

 

• Median Filter [18]: There are three variants of varying filter sizes (3x3, 5x5, 7x7). The 

reason for using median filters is because we observe that the noisy images have some 

resemblance to salt and pepper noise, which can be seen in those noisy images in Figure 2. 

 

• FFDNet [19]: This is a deep learning based filtering algorithm. The first layer is a 

reversible downsampling operator which reshapes a noisy image into four downsampled 

sub-images. The second step involves the use of CNN for denoising. It has performed well 

on real images. 

 

2.3. Demosaicing Methods 
 

For CFA 2.0, there are not that many algorithms. In this paper, we adopted Linear Directional 

Interpolation and Nonlocal Adaptive Thresholding (LDI-NAT), which can be used for both 

demosaicing as well as interpolation [13]. It has good performance in our earlier studies [8]. We 

also used LDI-NAT in another earlier paper of ours [10]. As shown in Figure 3, LDI-NAT is used 

in two places: demosaicing the reduced resolution Bayer pattern and interpolating the 

panchromatic band. 

 

In the paper [20] written by us, we proposed a pansharpening approach to demosaicing CFA 2.0. 

The missing pixels in the panchromatic band are interpolated. At the same time, the reduced 

resolution CFA is demosaiced. We then apply pansharpening to generate the full resolution color 

image. There are many pansharpening algorithms that can be used. Principal Component Analysis 

(PCA) [21], Smoothing Filter-based Intensity Modulation (SFIM) [22], Modulation Transfer 

Function Generalized Laplacian Pyramid (GLP) [23], MTF-GLP with High Pass Modulation 

(HPM) [24], Gram Schmidt (GS) [25], GS Adaptive (GSA) [26], Guided Filter PCA (GFPCA) 

[27], PRACS [28] and hybrid color mapping (HCM) [29]-[33] have been used in our 

experiments. The list is a representative, if not exhaustive, set of competitive pansharpening 

algorithms. Details of the above algorithms can be found in the corresponding papers and we omit 

the details in order to make our paper concise. 

 

2.4. Low Lighting Images 
 

We downloaded a benchmark data set (Kodak) from a website (http://r0k.us/graphics/kodak/) and 

selected 12 images, which are shown in Figure 4. It should be noted that this dataset is well-

known and has been used by many authors in the demosaicing community such as [34]-[38]. 

These clean images will be used as reference images for objective performance metrics 

generation. Moreover, they will be used for generating noisy images that emulate low lighting 

conditions. 
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Image 1 Image 2 Image 3 

 

   
   

Image 4 Image 5 Image 6 

 

   
   

Image 7 Image 8 Image 9 

 

   
   

Image 10 Image 11 Image 12 
 

Figure 4. Twelve clean images from the Kodak dataset. 

 

The process of how we introduced Poisson noise is adapted from code written by Erez Posner 

(https://github.com/erezposner/Shot-Noise-Generator). Details can be found in our recent paper 

[10]. We include the Poisson noisy 10 dB and 20 dB images in Figure 5 and Figure 6, 

respectively. 
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Image 1 Image 2 Image 3 

 

   
   

Image 4 Image 5 Image 6 

 

   
   

Image 7 Image 8 Image 9 

 

   
   

Image 10 Image 11 Image 12 

 
Figure 5. Twelve noisy images at 10 dB from the Kodak dataset. 
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Image 1 Image 2 Image 3 

   
   

Image 4 Image 5 Image 6 

 

   
   

Image 7 Image 8 Image 9 

 

   
   

Image 10 Image 11 Image 12 

 

Figure 6. Twelve noisy images at 20 dB from the Kodak dataset. 

 

2.5. Metrics 
 

We used the following four performance metrics to evaluate the various denoising algorithms: 

 

• Peak Signal-to-Noise Ratio (PSNR) [39] Separate PSNRs in dBs are computed for each 

band. A combined PSNR is the average of the PSNRs of the individual bands. Higher 

PSNR values imply higher image quality. 

• Human Visual System (HVS) metric Details of HVS metric in dB can be found in [40]. 

Higher values imply better results. 
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• HVSm (HVS with masking) [41] Similar to HVS, HVS incorporates the visual masking 

effects in computing the metrics. Higher values imply better results. 

• CIELAB 

 

We also used CIELAB [42] for assessing demosaicing and denoising performance in our 

experiments. Smaller values mean good results. 

 

It should be noted that the HVS and HVSm have better correlation with human perceptions than 

the other three metrics [43][44]. 

 

3. EXPERIMENTAL RESULTS 
 

In our experiments, we have used the default settings in all the denoising and pansharpening 

algorithms. 
 

3.1. 10 dB Noisy Images 
 

We first present the demosaicing results without denoising in Table 1. This will form as the 

baseline for comparing with those denoising results later. We observe that the averaged metrics in 

PSNR of all methods are all around 10 dB, meaning that demosaicing alone cannot enhance the 

image quality. 
 

Table 1. Demosaicing results without denoising for 10 dB Poisson noisy images. 
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68 

30.6

45 

30.3

11 

29.8

01 

30.2

04 

29.6

12 

27.0

68 

 

HV

S 5.447 5.446 

5.44

8 

5.44

2 

5.46

2 

5.37

3 
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HV

Sm 5.504 5.506 
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8 
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82 
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54 

29.2
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HV

S 5.414 5.417 
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2 
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5 

5.42

7 
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1 
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7 
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HV

Sm 5.463 5.469 

5.47

6 

5.46

6 
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5.48
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For the results obtained from different denoising filters, instead of showing big tables like Table 1 

above, we extracted the best performing results from those big tables and create summarized 

tables. Table 2 summarizes the best BM3D filtering results for three denoising configurations. It 

can be seen that the combination of GFPCA and post-denoising has the best performance. The 

PSNR value has been improved from 10 dB to 17.9 dB.  

 

Table 3 summarizes the best wavelet denoising results for three denoising configurations. We can 

see that hybrid denoising has slight edge over the other configurations. The PSNR value has been 

improved from 10 dB to 17 dB. Table 4 summarizes the best diffusion denoising results for the 

three denoising configurations. It can be seen that the results are worse than other denoising 

algorithms. Table 5 to Table 7 summarize the median filtering results. We can observe that the 

7x7 option achieved the best among the three median filters. Actually, the best performing 

method is the hybrid denoising using 7x7 median filter with GFPCA and the PSNR value has 

reached 22 dB from 10 dB. This is quite remarkable. Table 8 summarizes the FFDNET results. 

The performance is better than BM3D, wavelet, and diffusion, but worse than those median 

filters. 

 

We also include some denoised images for the pre-denoising case in Figure 7. The post-denoising 

and hybrid denoising results can be found in Fig. A1 and Fig. A2 of the Appendix. It can be seen 

that the median filter with 7x7 size has the closest intensity to the ground truth. BM3D, wavelet, 

and FFDNET all have smooth results, but somehow their images look darker than the ground 

truth.  

 
Table 2. Best performing BM3D denoising results for 10 dB noisy images. Bold numbers  

indicate the best in each row. 

 

Metrics 
Hybrid Denoising/ 

Best Algorithm 

Post-Denoising / Best 

Algorithm 

Pre-Denoising / Best 

Algorithm 

PSNR (dB) 17.565/GFPCA 17.901/GFPCA 15.768/GFPCA 

CIELAB 10.414/GFPCA 10.209/GFPCA 12.975/GFPCA 

HVS (dB) 12.847/GFPCA 13.228/GFPCA 11.058/GFPCA 

HVSm (dB) 13.038/GFPCA 13.436/GFPCA 11.203/GFPCA 
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Table 3. Best performing wavelet denoising results for 10 dB noisy images. Bold numbers  

indicate the best in each row. 

 

Metrics 
Hybrid Denoising/  

Best Algorithm 

Post-Denoising /  

Best Algorithm 

Pre-Denoising /  

Best Algorithm 

PSNR (dB) 17.012/Baseline 15.331/Standard 16.612/GFPCA 

CIELAB 11.997/GFPCA 12.860/GFPCA 11.887/GFPCA 

HVS (dB) 11.955/Baseline 10.511/GFPCA 11.599/GFPCA 

HVSm (dB) 12.177/Baseline 10.641/GFPCA 11.775/GFPCA 

 

Table 4: Best performing diffusion filter denoising results for 10 dB noisy images. Bold numbers 

 indicate the best in each row. 

 

Metrics 
Hybrid Denoising/  

Best Algorithm 

Post-Denoising /  

Best Algorithm 

Pre-Denoising /  

Best Algorithm 

PSNR (dB) 16.393/Baseline 15.353/Standard 14.822/GFPCA 

CIELAB 13.374/GFPCA 13.353/GFPCA 14.490/GFPCA 

HVS (dB) 11.318/Baseline 10.466/Standard 9.851/GFPCA 

HVSm (dB) 11.524/Baseline 10.652/Standard 9.969/GFPCA 

 

Table 5. Best performing median filter (3x3) denoising results for 10 dB noisy images. Bold numbers 

indicate the best in each row. 

 

Metrics 
Hybrid Denoising/  

Best Algorithm 

Post-Denoising /  

Best Algorithm 

Pre-Denoising /  

Best Algorithm 

PSNR (dB) 19.362/GFPCA 19.467/GFPCA 18.841/GFPCA 

CIELAB 8.905/GFPCA 8.475/GFPCA 9.438/GFPCA 

HVS (dB) 14.444/GFPCA 14.804/GFPCA 13.963/GFPCA 

HVSm (dB) 14.777/GFPCA 15.138/GFPCA 14.288/ GFPCA 

 

Table 6. Best performing median filter (5x5) denoising results for 10 dB noisy images. Bold numbers 

indicate the best in each row. 

 

Metrics 
Hybrid Denoising/  

Best Algorithm 

Post-Denoising /  

Best Algorithm 

Pre-Denoising /  

Best Algorithm 

PSNR (dB) 21.647/GFPCA 21.218/GFPCA 21.405/GFPCA 

CIELAB 7.312/GFPCA` 7.376/GFPCA 7.550/GFPCA 

HVS (dB) 16.791/GFPCA 16.531/GFPCA 16.632/GFPCA 

HVSm (dB) 17.399/GFPCA 17.069/GFPCA 17.266/GFPCA 

 

Table 7. Best performing median filter (7x7) denoising results for 10 dB noisy images. Bold numbers 

indicate the best in each row. 

 

Metrics 
Hybrid Denoising/  

Best Algorithm 

Post-Denoising /  

Best Algorithm 

Pre-Denoising /  

Best Algorithm 

PSNR (dB) 22.102/GFPCA 21.552/GFPCA 21.927/GFPCA 

CIELAB 7.035/GFPCA 7.140/GFPCA 7.257/GFPCA 

HVS (dB) 17.194/GFPCA 16.708/GFPCA 17.073/GFPCA 

HVSm (dB) 17.857/GFPCA 17.295/GFPCA 17.757/GFPCA 
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Table 8. Best performing FFDNET denoising results for 10 dB noisy images. Bold numbers  

indicate the best in each row. 

 

Metrics 
Hybrid Denoising/  

Best Algorithm 

Post-Denoising /  

Best Algorithm 

Pre-Denoising /  

Best Algorithm 

PSNR (dB) 17.761/GFPCA 18.131/GFPCA 17.020/HPM 

CIELAB 10.686/GFPCA 9.896/GFPCA 11.655/GFPCA 

HVS (dB) 13.123/GFPCA 13.572/GFPCA 12.309/HPM 

HVSm (dB) 13.342/GFPCA 13.797/GFPCA 12.506/HPM 
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Medfilt 5x5/GFPCA 
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FFDNET/HPM 

 

 

 

 

 

 

 

 

Figure 7. Demosaicing results using various pre-denoising approaches for 10 dB noisy images. 

For each image, a/b means the “a” is the denoising method and “b” is the pansharpening method. 
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3.2. 20 dB Noisy Images 
 

We first present the demosaicing results without denoising in Table 9. This will help the 

comparison among those denoising results later. We observe that the averaged metrics in PSNR 

of all methods are all less than 20 dB, meaning that demosaicing alone cannot enhance the image 

quality. 

 
Table 9. Demosaicing results without denoising for 20 dB Poisson noisy images. 

 

Image 

 

Baseline Standard GSA HCM SFIM PCA GFPCA GLP HPM GS PRACS LSLCD 

Best  

Score 

Img1 PSNR 19.977 20.037 20.038 20.011 19.934 19.933 19.856 20.023 19.943 19.932 20.050 19.557 20.050 

 
Cielab 7.721 7.767 7.771 7.841 8.106 7.713 7.976 7.854 8.108 7.745 7.706 9.384 7.706 

 

HVS 14.529 14.558 14.558 14.541 14.547 14.384 14.376 14.557 14.548 14.470 14.562 13.590 14.562 

 

HVSm 14.620 14.638 14.638 14.627 14.635 14.461 14.457 14.643 14.637 14.549 14.641 13.669 14.643 

Img2 PSNR 18.519 18.973 18.967 18.954 18.948 18.791 18.750 18.955 18.962 18.814 18.925 19.088 19.088 

 

Cielab 7.730 7.595 7.603 7.685 7.649 7.542 7.074 7.650 7.648 7.520 7.631 7.434 7.074 

 

HVS 14.106 14.363 14.377 14.368 14.393 14.185 14.109 14.385 14.392 14.196 14.355 14.114 14.393 

 

HVSm 14.334 14.505 14.513 14.506 14.531 14.317 14.298 14.527 14.533 14.332 14.503 14.232 14.533 

Img3 PSNR 20.181 20.301 20.302 20.271 20.310 20.165 20.183 20.327 20.324 20.167 20.297 20.105 20.327 

 

Cielab 7.956 7.968 7.896 8.119 8.083 7.849 7.779 7.980 8.084 7.854 7.933 8.441 7.779 

 

HVS 15.101 15.176 15.177 15.175 15.212 15.041 15.045 15.211 15.216 15.050 15.173 14.713 15.216 

 

HVSm 15.245 15.292 15.292 15.290 15.324 15.158 15.164 15.324 15.328 15.168 15.292 14.824 15.328 

Img4 PSNR 18.011 19.443 19.438 19.420 19.420 18.993 18.654 19.402 19.451 19.003 19.312 19.498 19.498 

 
Cielab 8.009 7.417 7.440 7.429 7.413 7.284 6.832 7.608 7.416 7.282 7.421 7.394 6.832 

 
HVS 14.118 14.942 14.952 14.957 15.050 14.468 14.090 15.016 15.054 14.467 14.866 14.770 15.054 

 

HVSm 14.726 15.290 15.296 15.299 15.416 14.823 14.551 15.379 15.423 14.825 15.252 15.081 15.423 

Img5 PSNR 20.048 20.211 20.209 20.196 20.200 20.052 20.151 20.204 20.208 20.068 20.212 20.031 20.212 

 
Cielab 6.604 6.585 6.566 6.593 6.591 6.571 6.348 6.606 6.592 6.567 6.569 6.802 6.348 

 
HVS 15.873 16.000 16.001 15.997 16.019 15.787 15.866 16.016 16.018 15.824 15.996 15.892 16.019 

 

HVSm 16.044 16.126 16.127 16.123 16.144 15.911 15.998 16.145 16.146 15.951 16.126 16.027 16.146 

Img6 PSNR 20.041 20.433 20.431 20.402 20.423 20.237 20.228 20.433 20.437 20.240 20.393 20.362 20.437 

 

Cielab 8.710 8.668 8.620 8.756 8.645 8.369 7.628 8.744 8.653 8.385 8.629 8.495 7.628 

 

HVS 15.852 16.095 16.080 16.105 16.153 15.946 15.785 16.121 16.157 15.919 16.046 15.884 16.157 

 

HVSm 16.159 16.321 16.311 16.325 16.377 16.181 16.030 16.352 16.382 16.151 16.293 16.091 16.382 

Img7 PSNR 19.969 20.154 20.154 20.141 20.136 20.002 20.098 20.139 20.144 20.010 20.152 20.110 20.154 

 

Cielab 7.741 7.691 7.693 7.752 7.717 7.677 6.996 7.724 7.716 7.666 7.705 7.341 6.996 

 

HVS 15.752 15.874 15.875 15.875 15.880 15.711 15.805 15.866 15.878 15.720 15.870 15.852 15.880 

 

HVSm 15.908 15.997 15.997 15.996 16.006 15.829 15.938 15.994 16.005 15.839 15.994 15.968 16.006 

Img8 PSNR 19.518 20.122 20.120 20.090 20.103 19.849 19.767 20.107 20.110 19.865 20.039 20.090 20.122 

 
Cielab 7.622 7.473 7.419 7.580 7.468 7.370 6.919 7.500 7.472 7.361 7.507 7.316 6.919 

 

HVS 14.901 15.295 15.310 15.317 15.357 15.015 14.918 15.334 15.349 15.032 15.257 14.869 15.357 

 

HVSm 15.181 15.473 15.483 15.486 15.531 15.189 15.142 15.514 15.527 15.210 15.453 15.030 15.531 

Img9 PSNR 15.927 15.998 15.998 15.991 15.982 15.919 15.981 16.003 15.986 15.917 15.995 15.951 16.003 

 

Cielab 8.286 8.227 8.187 8.254 8.587 8.100 7.971 8.262 8.607 8.095 8.190 8.484 7.971 

 

HVS 11.458 11.503 11.502 11.502 11.519 11.431 11.469 11.516 11.522 11.428 11.498 11.284 11.522 

 

HVSm 11.529 11.555 11.555 11.554 11.571 11.483 11.522 11.567 11.573 11.480 11.553 11.336 11.573 

Img10 PSNR 19.541 20.006 20.004 19.985 20.003 19.793 19.801 20.006 20.017 19.789 19.949 19.968 20.017 

 

Cielab 7.567 7.421 7.415 7.477 7.406 7.333 6.861 7.519 7.406 7.351 7.427 7.331 6.861 

 

HVS 15.738 16.043 16.024 16.057 16.110 15.856 15.737 16.075 16.114 15.822 15.982 16.037 16.114 

 

HVSm 16.060 16.248 16.238 16.253 16.309 16.078 15.984 16.283 16.314 16.042 16.217 16.233 16.314 

Img11 PSNR 19.862 20.142 20.141 20.111 20.121 19.983 19.959 20.134 20.132 19.981 20.115 20.019 20.142 

 
Cielab 7.759 7.710 7.703 7.815 7.765 7.660 7.476 7.760 7.762 7.656 7.675 8.033 7.476 

 

HVS 14.955 15.074 15.075 15.070 15.093 14.940 14.875 15.086 15.093 14.936 15.064 14.610 15.093 

 

HVSm 15.126 15.203 15.203 15.200 15.223 15.068 15.021 15.217 15.224 15.064 15.199 14.730 15.224 

Img12 PSNR 19.405 20.032 20.031 19.998 20.017 19.818 19.720 20.030 20.039 19.820 19.970 20.208 20.208 

 

Cielab 7.571 7.473 7.468 7.538 7.483 7.277 6.947 7.522 7.483 7.279 7.462 7.322 6.947 

 

HVS 15.389 15.636 15.636 15.638 15.675 15.426 15.380 15.660 15.681 15.429 15.620 15.471 15.681 

 

HVSm 15.704 15.844 15.844 15.843 15.887 15.634 15.617 15.873 15.894 15.637 15.840 15.639 15.894 

Ave- 

rage PSNR 19.250 19.654 19.653 19.631 19.633 19.461 19.429 19.647 19.646 19.467 19.618 19.582 19.654 

 

Cielab 7.773 7.666 7.649 7.737 7.743 7.562 7.234 7.727 7.746 7.563 7.655 7.815 7.234 

 

HVS 14.814 15.047 15.047 15.050 15.084 14.849 14.788 15.070 15.085 14.858 15.024 14.757 15.085 

 

HVSm 15.053 15.208 15.208 15.208 15.246 15.011 14.977 15.235 15.249 15.021 15.197 14.905 15.249 
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Table 10 summarizes the best BM3D filtering results for three denoising configurations. It can be 

seen that pre-denoising has the best performance. The PSNR value has been improved from 20 

dB to 27.128 dB. Table 11 summarizes the best wavelet denoising results for three denoising 

configurations. We can see that hybrid denoising has slight edge over the other configurations. 

The PSNR value has been improved from 20 dB to 27 dB. Table 12 summarizes the best 

diffusion denoising results for the three denoising configurations. It can be seen that the results 

are worse than other denoising algorithms. Table 13 to Table 15 summarize the median filtering 

results. We can observe that the 3x3 option achieved the best among the three median filters. 

However, the median filter results are worse than BM3D and wavelet approaches. Table 16 

summarizes the FFDNET results. The performance is better than BM3D, wavelet, and diffusion, 

but worse than those median filters. 

 

We include some denoised images for the pre-denoising case in Figure 8. The post-denoising and 

hybrid denoising results can be found in Fig. A3 and Fig. A4 of the Appendix. It can be seen that 

the BM3D and medial filters have close resemblance to the ground truth. The wavelet and 

diffusion filter look dark as compared to the ground truth. Finally, FFDNET has over smoothed 

results.  

 
Table 10. Best performing BM3D denoising results for 20 dB noisy images. Bold numbers  

indicate the best in each row. 

 

Metrics 
Hybrid Denoising/  

Best Algorithm 

Post-Denoising /  

Best Algorithm 

Pre-Denoising /  

Best Algorithm 

PSNR (dB) 27.122/Standard 24.963/GFPCA 27.128/GSA 

CIELAB 3.845/Standard 4.326/GFPCA 3.680/GFPCA 

HVS (dB) 23.002/Standard 20.623/GFPCA 23.071/SFIM 

HVSm (dB) 23.895/Standard 21.394GFPCA 23.992/SFIM 

 

Table 11. Best performing wavelet denoising results for 20 dB noisy images. Bold numbers  

indicate the best in each row. 

 

Metrics 
Hybrid Denoising/  

Best Algorithm 

Post-Denoising /  

Best Algorithm 

Pre-Denoising /  

Best Algorithm 

PSNR (dB) 26.830/Standard 23.364/GFPCA 26.830/Standard 

CIELAB 4.793/GFPCA 4.936/GFPCA 4.722/GFPCA 

HVS (dB) 22.581/GSA 18.783/GFPCA 22.559/SFIM 

HVSm (dB) 23.477/SFIM 21.394/GFPCA 23.469/SFIM 

 

Table 12. Best performing diffusion filter denoising results for 20 dB noisy images. Bold numbers  

indicate the best in each row. 

 

Metrics 
Hybrid Denoising/  

Best Algorithm 

Post-Denoising /  

Best Algorithm 

Pre-Denoising /  

Best Algorithm 

PSNR (dB) 25.519/GSA 23.178/GFPCA 25.367/Standard 

CIELAB 5.415/GFPCA 5.016/GFPCA 5.242/GFPCA 

HVS (dB) 20.887/GSA 18.614/GFPCA 20.702/GSA 

HVSm (dB) 21.511/GSA 19.047/GFPCA 21.298/GSA 
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Table 13. Best performing median filter (3x3) denoising results for 20 dB noisy images. Bold numbers 

indicate the best in each row. 

 

Metrics 
Hybrid Denoising/  

Best Algorithm 

Post-Denoising /  

Best Algorithm 

Pre-Denoising /  

Best Algorithm 

PSNR (dB) 26.654/Standard 25.282/GFPCA 26.661/GSA 

CIELAB 3.644/GFPCA 3.929/GFPCA 3.580/GFPCA 

HVS (dB) 23.094/HCM 21.221/GFPCA 23.169/Standard 

HVSm (dB) 24.419/Standard 22.219/GFPCA 24.505/SFIM 

 

Table 14. Best performing median filter (5x5) denoising results for 20 dB noisy images. Bold numbers 

indicate the best in each row. 

 

Metrics 
Hybrid Denoising/  

Best Algorithm 

Post-Denoising /  

Best Algorithm 

Pre-Denoising /  

Best Algorithm 

PSNR (dB) 24.962/Standard 24.889/GFPCA 25.001/GLP 

CIELAB 3.994/GFPCA 3.886/GFPCA 3.907/GFPCA 

HVS (dB) 21.247/Standard 20.735/GFPCA 21.377/SFIM 

HVSm (dB) 22.493/Standard 21.889/GFPCA 22.648/SFIM 

 

Table 15. Best performing median filter (7x7) denoising results for 20 dB noisy images. Bold numbers 

indicate the best in each row. 

 

Metrics 
Hybrid Denoising/  

Best Algorithm 

Post-Denoising /  

Best Algorithm 

Pre-Denoising /  

Best Algorithm 

PSNR (dB) 23.710/Standard 24.346/Baseline 23.768/GLP 

CIELAB 4.453/GFPCA 4.057/GFPCA 4.344/GFPCA 

HVS (dB) 19.445/Standard 19.963/Baseline 19.550/GLP 

HVSm (dB) 20.438/Standard 21.027/Baseline 20.558/GLP 

 

Table 16. Best performing FFDNET denoising results for 20 dB noisy images. Bold numbers  

indicate the best in each row. 

 

Metrics 
Hybrid Denoising/  

Best Algorithm 

Post-Denoising /  

Best Algorithm 

Pre-Denoising /  

Best Algorithm 

PSNR (dB) 26.674/Standard 24.686/GFPCA 26.676/GSA 

CIELAB 3.916/Standard 4.533/GFPCA 3.914/GSA 

HVS (dB) 22.854/Standard 20.444/GFPCA 22.960/SFIM 

HVSm (dB) 23.994/Standard 21.161/GFPCA 24.124/SFIM 
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Figure 8. Demosaicing results using various pre-denoising approaches for 20 dB noisy images. 

For each image, a/b means the “a” is the denoising method and “b” is the pansharpening method. 

 

3.3. Discussions 
 

3.3.1. 10 dB case 

 

From the results in Sections 3.1 and 3.2, we have following observations: 

 

• All filters improved over the no filtering case. 

• Median filter with 7x7 has the best performance in all four metrics. It has improved the 

PSNR by more than 10 dBs. 
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• Median filter with 5x5 is the second best. 

• The worst filter is the diffusion filter. 

• Pre-filtering is better than post-filtering in wavelet, and median filters with 5x5 and 7x7 

sizes. However, other filters have opposite behavior. 

• FFDNET did not yield better performance than conventional filers. 

• Hybrid did not yield additional gains over either pre-filtering or post-filtering.   
 

 
 

 

(a) PSNR 

 

(b) CIELAB 

 

 
 

  

(c) HVS (d) HVSm 

 

Figure 9. Comparison of different denoising methods for the 10 dB noisy images. 
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3.3.2. 20 dB case 

 

For the 20 dB case, we have following observations: 

• All filters improved over the no filtering case. 

• BM3D filter has the best performance in all four metrics. It has improved the PSNR by 

more than 7 dBs. 

• Wavelet, median filter with 3x3, and FFDNET have close performance. 

• The worst filter is the median filter with 7x7. It appears that small filter size should be 

used for less noisy images. 

• Pre-filtering is better than post-filtering in all cases except the median filter with 7x7 size.  

• Hybrid did not yield any gains over either pre-filtering or post-filtering. 
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Figure 10. Comparison of different denoising methods for the 20 dB noisy images 
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4. CONCLUSIONS 

 

Low light images have serious Poisson noise that affects the visual quality of images. In this 

paper, we present a thorough investigation of the various combination of denoising and 

demosaicing algorithms for low light images. Two noise levels (10 dB and 20 dB) were 

investigated using six conventional and one deep learning denoising algorithms. It was observed 

that, in serious low lighting conditions (10 dB), a conventional median filter can yield better 

performance than more advanced algorithms whereas in mild lighting conditions (20 dB), some 

modern algorithms such as BM3D and FFDNet start to have better results. One potential future 

direction is to look for some better deep learning based algorithms that can specifically deal with 

Poisson noise. 
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Fig. A1. Demosaicing results using various post-denoising approaches for 10 dB noisy images. 

For each image, a/b means the “a” is the denoising method and “b” is the pansharpening method. 
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Fig. A2. Demosaicing results using various hybrid-denoising approaches for 10 dB noisy images. 

For each image, a/b means the “a” is the denoising method and “b” is the pansharpening method. 
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Fig. A3. Demosaicing results using various post-denoising approaches for 20 dB noisy 

images. For each image, a/b means the “a” is the denoising method and “b” is the 

pansharpening method. 
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Fig. A4. Demosaicing results using various hybrid-denoising approaches for 20 dB noisy images. 

For each image, a/b means the “a” is the denoising method and “b” is the pansharpening method. 
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