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ABSTRACT 
 
Color Filter Array (CFA) has been widely used in digital cameras. There are many variants of CFAs in the 

literature. Recently, a new CFA known as CFA 3.0 was proposed by us and has been shown to yield 

reasonable performance as compared to some standard ones. In this paper, we investigate the use of 

inpainting algorithms to further improve the demosaicing performance of CFA 3.0. Six conventional and 

deep learning based inpainting algorithms were compared. Extensive experiments demonstrated that one 

algorithm improved over other approaches. 
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1. INTRODUCTION 
 

Bayer pattern [1] was invented in the early 1980’s and is still a very popular color filter array 
(CFA) for digital cameras. The Bayer pattern as shown in Figure 1(a) is also known as CFA 1.0 

in the literature. Even for planetary explorations, NASA has adopted the Bayer pattern in the 

Mastcam imagers onboard the Mars rover Curiosity [2]-[5].  
  

Aiming to improve the Bayer pattern in low lighting conditions, Kodak researchers [6,7] invented 

a red-green-blue-white (RGBW) CFA pattern, which is also known as CFA 2.0, which is shown 
in Figure 1(b). Half of the pixels in CFA 2.0 are white and the remaining pixels share the R, G, 

and B colors. Due to the presence of white pixels, the camera sensitivity is increased and hence 

the performance of CFA 2.0 in low lighting conditions should be better than CFA 1.0. Extensive 

experiments in [8] showed that CFA 2.0 is in indeed better than CFA 1.0 in low lighting 
conditions, where Poisson noise is dominant. Some additional studies were also carried out for 

CFA 2.0 [9]. 

 
In a recent paper by us [12], a new CFA pattern known as CFA 3.0 was proposed. In CFA 3.0 as 

shown in Figure 1(c), even more white pixels are introduced, hoping that the demosaicing 

performance will be further improved in low lighting conditions. Unfortunately, having more 
white pixels means that fewer color pixels will be present in the color filter array. Consequently, 

the overall performance of CFA 3.0 for low lighting images is slightly inferior to CFA 2.0 but 

still better than CFA 1.0 [10][11]. 

 

http://www.airccse.org/journal/sipij/vol11.html
https://doi.org/10.5121/sipij.2020.11601
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(a)                                     (b)                                      (c) 
 

Figure 1. Three CFA patterns. (a) CFA 1.0; (b) CFA 2.0; (c) CFA 3.0. 

 

In [12], we used an interpolation method known as local directional interpolation and nonlocal 
adaptive thresholding (LDI-NAT) [13] to create the luminance or panchromatic (pan) band. After 

that, the full resolution luminance band is then fused with the low resolution color image via 

pansharpening techniques to create the full resolution color image. The whole process is 

summarized in Figure 2. The luminance image is also termed the panchromatic image and we use 
them interchangeably in this paper. 

 

 
 

Figure 2. A pansharpening approach for CFA 3.0. 

 

From Figure 2, it is natural to ask several research questions. First, are there any methods that can 

further enhance the performance of the luminance image? As we will see in the experiments, the 

demosaicing performance can be improved quite a lot if the ground truth panchromatic image is 
used. This means that if one can apply a high performing interpolation method to fill in the 

missing pixels in the panchromatic band, then the overall demosaicing performance will be 

increased. Second, if there does exist a good interpolation/inpainting algorithm, how much 
performance gain can we achieve?  

 

In this paper, we will focus on answering the two aforementioned questions. In particular, we 
propose to investigate various inpainting methods to create the panchromatic band. In addition to 

the LDI-NAT method, we also applied five other methods, including conventional and deep 

learning algorithms. After the inpainting is done, we then apply various pansharpening 

algorithms to generate the final demosaiced images. We extensively evaluate the different 
combinations using the Kodak benchmark images. 

 

There are three major contributions in this paper: 
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• We are the first ones to apply various inpainting methods to generate the pan band for 
demosaicing CFA 3.0. 

• We are also the first team to investigate the combination of inpainting and pansharpening 

in demosaicing CFA 3.0. 

• The combination of inpainting and pansharpening results are better than before, but there is 
still room for further improvement. 

 

The rest of our paper is organized as follows. Section 2 summarizes the methods, data, and 
performance metrics. Section 3 presents all the experimental results. Finally, some concluding 

remarks and future directions will be given. 

 

2. METHODS, DATA, AND PERFORMANCE METRICS 
 

2.1. Architecture of Demosaicing CFA 3.0 with Inpainting and Pansharpening 
 

In our earlier paper [12], we presented a standard approach to demosaicing CFA 3.0. For 

completeness, that architecture is depicted in Figure 3. The R, G, and B pixels in the CFA 3.0 are 

extracted to form a reduced resolution CFA image. A demosaicing algorithm (LDI-NAT) is used 

to demosaic it and generate a reduced resolution color image. Parallel to this activity, the 
white/panchromatic pixels in the CFA 3.0 are also interpolated to form the luminance image 

using the same LDI-NAT algorithm. The luminance image is then downsampled by two times via 

averaging and the reduced resolution luminance image is subtracted from the reduced resolution 
color image to generate the chrominance-luminance image. A simple upsampling via bicubic 

interpolation is then performed to generate the full resolution chrominance-luminance image. 

Finally, the luminance image and the chrominance-luminance image are added together to form 
the final demosaicing image. This simple architecture is very simple to understand and 

implement. Although there are many algorithms in the literature that could be used in the 

interpolation and demosaicing steps, we chose LDI-NAT in [12] simply because it has reasonable 

performance. 
 

 
 

Figure 3. Standard demosaicing framework for CFA 3.0. 

 
In this paper, we propose the architecture shown in Figure 4, which is essentially the same as the 

architecture shown in Figure 2 except the interpolation step. In Figure 4, we emphasize on the use 
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of inpainting algorithms for generating the luminance image and the other parts are exactly the 
same as Figure 2. The difference between interpolation and inpainting is very subtle. Normally, 

interpolation is used to fill in missing pixels in images that have regular missing patterns. On the 

other hand, inpainting is referring to missing pixels with free form patterns. That is, the missing 

patterns can have arbitrary shapes. As can be seen from Figure 4, the pansharpening step is to 
utilize the high resolution luminance image to sharpen the reduced resolution color image and the 

final pansharpened image will be the demosaiced image. 

 

 
 

Figure 4. Proposed architecture for the combined inpainting and pansharpening demosaicing approach. 

 

2.2. Inpainting Methods 
 

In recent years, there are many new developments in inpainting. In this paper, we have evaluated 

the following six techniques: 

 
• Linear Directional Interpolation and Nonlocal Adaptive Thresholding (LDI-NAT): This 

algorithm is a demosaicing algorithm. However, it can be used for both demosaicing as 

well as interpolation [13]. It has good performance in our earlier studies [8]. We used LDI-
NAT in our earlier paper [12] and this will be the baseline for our inpainting investigations. 

• Laplacian: This method [14] fills in each missing pixel using the Laplacian interpolation 

formula by finding the mean of the surrounding known values.  

• Bilinear: This method simply uses the average of neighboring pixels to fill in the missing 
pixels. Bilinear and Laplacian have similar performance. 

• Inpaint_nans: We denote this as “inpaint” in our later experiments. This method was 

developed by D’Errico[15]. This is a very simple method that only uses the neighboring 
pixels to estimate the missing pixels which will be referred as NaNs (not a number).  

• FOE: The Field of Experts method (FOE) was developed by Roth [16]. This method uses 

pre-trained models that are used to filter out noise and obstructions in images. 
• Generative Inpainting (GenIn)[17]: A new inpainting method, Generative Inpainting 

(GenIn), which is a deep learning-based method [17], was considered in our research. It 

was developed at the University of Illinois that aims to outperform typical deep learning 

methods that use convolutional neural network (CNN) models. GenIn builds on CNN and 
Generative Adversarial Networks (GAN) in an effort to encourage cohesion between 

created and existing pixels. GenIn ranked the first in one Github page 

(https://github.com/1900zyh/Awesome-Image-Inpainting), which contains many 
conventional and deep learning based algorithms. This is the reason we chose GenIn in this 

paper. 
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2.3. Pansharpening Methods 
 

In the paper [18] written by us, we proposed a pansharpening approach to demosaicing CFA 2.0. 

This approach is illustrated in Figure 4. The missing pixels in the panchromatic band are 

interpolated. At the same time, the reduced resolution CFA is demosaiced. We then apply 
pansharpening to generate the full resolution color image. There are many pansharpening 

algorithms that can be used. Principal Component Analysis (PCA) [19], Smoothing Filter-based 

Intensity Modulation (SFIM) [20], Modulation Transfer Function Generalized Laplacian Pyramid 
(GLP) [21], MTF-GLP with High Pass Modulation (HPM) [22], Gram Schmidt (GS) [23], GS 

Adaptive (GSA) [24], Guided Filter PCA (GFPCA) [25], PRACS [26] and hybrid color mapping 

(HCM) [27]-[31] have been used in our experiments. The list is a representative, if not 
exhaustive, set of competitive pansharpening algorithms. 
 

2.4. Data 
 

We downloaded a benchmark data set (Kodak) from a website (http://r0k.us/graphics/kodak/) and 

selected 12 images, which are shown in Figure 5. It should be noted that this dataset is well-

known and has been used by many authors in the demosaicing community such as [32]-[36]. 

These clean images will be used as reference images for objective performance metrics 
generation. Moreover, they will be used for generating noisy images that emulate low lighting 

conditions. 

 

   
 

Image 1 
 

Image 2 

 

Image 3 

 

   
 

Image 4 

 

 

Image 5 
 

Image 6 

   
 

Image 7 
 

Image 8 
 

Image 9 
 

   
 

Image 10 
 

Image 11 
 

Image 12 

 

Figure 5. Twelve clean images from the Kodak dataset. 
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2.5. Metrics 
 

Five performance metrics were used in our experiments to compare the different methods and 

CFAs. These metrics are well-known in the literature.  
 

• Peak Signal-to-Noise Ratio (PSNR) [37] 

 
Separate PSNRs in dBs are computed for each band. A combined PSNR is the average of the 

PSNRs of the individual bands. Higher PSNR values imply higher image quality. 

 

• Structural SIMilarity (SSIM) 
In [38], SSIM was defined to measure the closeness between two images. An SSIM value 

of 1 means that the two images are the same. 

• Human Visual System (HVS) metric 
Details of HVS metric in dB can be found in [39]. Higher values imply better results. 

• HVSm (HVS with masking) [40] 

Similar to HVS, HVS incorporates the visual masking effects in computing the metrics. 
Higher values imply better results. 

• CIELAB 

 

We also used CIELAB [41] for assessing demosaicing and denoising performance in our 
experiments. Smaller values mean good results. 

 

It should be noted that the HVS and HVSm have better correlation with human perceptions than 
the other three metrics [42][43]. 

 

3. EXPERIMENTAL RESULTS 
 

In this section, we will first compare the performance of different inpainting algorithms on the 
generation of panchromatic bands. This step is critical for the overall performance of the 

demosaicing process. We will then focus on several case studies based on the performance of the 

inpainting results. In particular, we will generate the demosaicing results using the best inpainting 
method, the previous interpolation method of LDI-NAT in our earlier paper [12], and the ideal 

case of using the ground truth panchromatic band for inpainting.  

  

3.1. Comparing Different Inpaintingmethods for Pan Band Generation 
 

Here, we will focus on comparing the six different inpainting methods on each image from the 
KODAK dataset using the CFA3 pattern. For ease of exposition, we only used PSNR. The PSNR 

is calculated by comparing each inpainted result with the Ground Truth (Reference) pan image, 

which is generated by taking the average of the RGB bands in the original Kodak image. Table 1 

summarizes the PSNR metrics of six inpainting algorithms using the 12 Kodak images. The 
missing pattern is the CFA 3.0 where 25% of the pixels in the panchromatic bands are missing. 

Figure 6 shows the averaged PSNR metrics of the five inpainting algorithms. We have the 

following observations: 
 

• The method of LDI (LDI-NAT), which was used in our earlier paper [12], did not yield the 

best performance. It is 0.92 dB lower than the best performance algorithm (FOE). 
• The deep learning method (GenIn) has a mediocre performance, which may be a little 

surprising because we had high expectation for it. We think that GenIn may be more 
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suitable for free-form missing clusters where big chunks of missing blocks with irregular 
shapes are present in images. 

• FOE yielded the best performance, which is somewhat surprising because it was developed 

long time ago. 

 
Table 1. Bilinear is the same as Laplacian. Inpainting results for 12 panchromatic images  

using five algorithms. 

 

 
Inpaint FOE Laplace LDI Bilinear Generative 

Img1 47.93 48.00 46.64 45.54 46.64 45.19 

Img2 41.06 42.09 39.75 40.61 39.75 41.34 

Img3 46.01 46.50 44.45 44.50 44.45 43.85 

Img4 39.16 40.47 37.83 39.56 37.83 39.27 

Img5 45.44 46.23 43.74 44.20 43.74 45.92 

Img6 42.53 43.08 41.35 41.87 41.35 41.19 

Img7 43.72 44.76 42.15 42.62 42.15 42.01 

Img8 41.78 42.76 40.56 41.79 40.57 41.43 

Img9 44.10 44.45 43.29 43.32 43.29 42.44 

Img10 41.62 41.68 40.88 41.13 40.88 41.21 

Img11 42.85 42.83 42.05 42.08 42.05 42.04 

Img12 41.10 40.88 40.32 40.70 40.33 40.16 

Average 43.11 43.25 41.92 42.33 41.92 42.17 

 

 
 

Figure 6. Averaged PSNR of five inpainting algorithms. 

 

3.2. Pansharpening Results using Different Inpaintingmethods 
 

In this section, we will summarize three representative case studies. First, we will summarize the 

demosaicing results of an earlier approach in which applied LDI-NAT for interpolation the pan 

band. This will form the baseline for comparisons. Second, we will summarize the demosaicing 
results using the best inpainting method (FOE) based on results in Section 3.1. Third, we will 

summarize the ideal demosaicing results where the ground truth pan images are used in the 

demosaicing process. 
 

3.2.1. LDI-NAT + Pansharpening 

 

Here, the pan images were generated using LDI-NAT. After that, 11 pansharpening algorithms 
were applied to demosaic the 12 Kodak images.  Table 2 summarizes all the performance metrics 
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of those 12 images. For easier interpretation of those numbers in Table 2, Figure 7 shows the bar 
charts of the averaged performance metrics. In terms of PSNR, the best performing method is the 

GSA method. However, GFPCA achieved the highest performance in CIELAB, HVS, and 

HVSm. In particular, GFPCA is 3 dBs better than all the other methods in terms HVS and 

HVSmand this is remarkable. The “standard” method has the best score in terms of SSIM. 
However, the difference is very small between the “standard” method and others.  

As mentioned earlier in Section 2, the PSNR and SSIM metrics do not necessarily match well 

with human perception. This turns out to be indeed the case. From those images in Figure 8, one 
can easily conclude that the GFPCA results have less artifacts and look closer to the ground truth 

images. The HVS and HVSm metrics corroborate the above subjective evaluations results. 

 
Table 2.Demosaicing results of Kodak images. LDI-NAT was used to generate the pan images. 

 

Image 

 

Baselin

e 

Standar

d GSA HCM 

SFI

M PCA 

GFPC

A GLP HPM GS 

PRAC

S 

Best 

Score 

Img1 

PSN

R 31.936 33.894 

34.12

6 

33.52

6 

33.12

3 

33.82

8 33.158 

33.81

0 

33.06

6 

34.13

0 33.466 34.130 

 

Ciela

b 2.659 2.374 2.393 2.481 2.699 2.445 2.773 2.429 2.724 2.351 2.453 2.351 

 

SSIM 0.739 0.859 0.854 0.831 0.838 0.845 0.806 0.853 0.834 0.858 0.820 0.859 

 

HVS 28.233 27.610 

28.43

8 

28.30

9 

28.45

3 

28.48

1 27.947 

28.35

3 

28.46

8 

28.40

3 28.407 28.481 

 

HVS

m 29.767 29.031 

29.88

1 

29.83

0 

29.97

5 

29.93

4 28.834 

29.82

2 

29.98

3 

29.83

6 29.868 29.983 

Img2 

PSN

R 26.771 30.585 

30.58

1 

30.21

1 

29.91

8 

30.40

6 30.136 

30.08

9 

29.89

6 

30.52

1 30.230 30.585 

 

Ciela

b 4.860 3.766 3.803 3.874 3.901 3.891 3.219 3.906 3.904 3.830 3.903 3.219 

 

SSIM 0.685 0.868 0.867 0.856 0.856 0.845 0.823 0.857 0.853 0.850 0.852 0.868 

 

HVS 23.976 24.331 

24.48

6 

24.30

4 

24.26

4 

24.72

6 27.637 

24.39

8 

24.22

8 

24.40

3 24.445 27.637 

 

HVS

m 25.515 25.629 

25.80

3 

25.66

5 

25.66

6 

26.07

6 29.840 

25.72

1 

25.61

3 

25.70

3 25.762 29.840 

Img3 

PSN

R 30.815 33.017 

32.99

7 

32.15

6 

32.42

0 

32.99

5 34.055 

32.69

8 

32.39

5 

33.03

7 32.648 34.055 

 

Ciela

b 3.758 3.378 3.313 3.535 3.432 3.324 2.949 3.345 3.459 3.303 3.398 2.949 

 

SSIM 0.786 0.888 0.884 0.870 0.879 0.877 0.873 0.878 0.873 0.877 0.870 0.888 

 

HVS 27.087 27.099 

27.26

6 

27.08

1 

27.21

1 

27.40

3 29.897 

27.19

2 

27.21

8 

27.36

6 27.221 29.897 

 

HVS

m 28.861 28.734 

28.92

8 

28.89

4 

28.97

6 

29.06

5 31.435 

28.87

0 

28.97

3 

29.02

3 28.900 31.435 

Img4 

PSN

R 22.762 26.980 

27.49

6 

27.09

0 

26.80

8 

26.88

4 26.873 

26.76

2 

26.77

1 

26.88

4 26.933 27.496 

 

Ciela

b 7.484 5.434 5.327 5.178 5.314 5.662 4.841 5.664 5.364 5.644 5.371 4.841 

 

SSIM 0.752 0.925 0.925 0.919 0.915 0.901 0.891 0.913 0.911 0.903 0.913 0.925 

 

HVS 20.315 20.370 

21.07

7 

21.06

4 

21.16

0 

20.98

6 24.117 

21.09

5 

21.20

3 

20.86

7 20.918 24.117 

 

HVS

m 21.997 21.682 

22.47

6 

22.52

6 

22.65

6 

22.37

7 26.303 

22.54

7 

22.70

6 

22.24

0 22.337 26.303 

Img5 

PSN

R 30.816 34.107 

33.95

2 

33.68

6 

33.55

8 

33.82

5 34.541 

33.69

4 

33.46

9 

34.13

2 33.766 34.541 

 

Ciela

b 2.568 2.100 2.172 2.054 2.107 2.180 1.914 2.132 2.123 2.070 2.136 1.914 

 

SSIM 0.668 0.868 0.852 0.859 0.859 0.845 0.798 0.855 0.852 0.859 0.838 0.868 

 

HVS 27.733 27.824 

28.15

5 

28.08

3 

28.08

3 

28.34

4 30.514 

28.15

4 

28.08

3 

28.13

2 28.146 30.514 

 

HVS

m 29.444 29.335 

29.70

7 

29.67

6 

29.77

2 

29.91

2 32.085 

29.75

0 

29.77

5 

29.66

2 29.688 32.085 

Img6 

PSN

R 27.706 30.874 

31.03

1 

30.39

1 

30.38

2 

30.98

0 31.381 

30.64

7 

30.27

8 

30.92

6 30.601 31.381 

 

Ciela

b 5.555 4.605 4.721 4.528 4.464 4.657 3.797 4.619 4.544 4.698 4.575 3.797 

 

SSIM 0.711 0.896 0.879 0.877 0.881 0.864 0.848 0.882 0.873 0.860 0.869 0.896 

 

HVS 24.678 24.823 

25.11

4 

24.87

7 

25.03

1 

25.03

4 27.599 

25.15

9 

25.04

7 

25.09

7 24.967 27.599 

 

HVS

m 26.353 26.293 

26.60

6 

26.47

0 

26.60

3 

26.52

0 29.306 

26.66

5 

26.61

1 

26.59

1 26.495 29.306 

Img7 

PSN

R 30.446 34.517 

34.46

9 

34.08

1 

33.70

1 

34.35

1 33.767 

33.91

7 

33.68

0 

34.39

1 34.183 34.517 

 

Ciela 3.639 2.751 2.773 2.809 2.855 2.799 2.501 2.854 2.857 2.785 2.841 2.501 
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b 

 

SSIM 0.731 0.904 0.903 0.896 0.894 0.897 0.853 0.894 0.891 0.897 0.892 0.904 

 

HVS 27.968 28.395 

28.40

9 

28.32

3 

28.19

9 

28.49

7 32.017 

28.32

1 

28.15

9 

28.41

1 28.415 32.017 

 

HVS

m 29.538 29.687 

29.69

6 

29.66

1 

29.57

9 

29.80

0 34.461 

29.62

8 

29.51

7 

29.70

6 29.727 34.461 

Img8 

PSN

R 26.939 30.748 

31.07

8 

30.41

9 

30.25

3 

30.56

8 30.319 

30.39

0 

30.12

3 

30.67

0 30.439 31.078 

 

Ciela

b 4.697 3.707 3.566 3.769 3.704 3.758 3.200 3.746 3.734 3.707 3.812 3.200 

 

SSIM 0.733 0.900 0.899 0.885 0.890 0.883 0.860 0.891 0.886 0.888 0.877 0.900 

 

HVS 24.460 24.087 

25.01

3 

24.85

4 

24.96

9 

25.03

9 28.845 

25.00

4 

24.99

6 

24.86

6 24.883 28.845 

 

HVS

m 26.141 25.461 

26.45

3 

26.37

8 

26.49

6 

26.47

3 30.948 

26.47

6 

26.51

9 

26.27

7 26.335 30.948 

Img9 

PSN

R 29.775 32.268 

32.68

2 

32.11

7 

31.74

2 

32.67

6 33.783 

32.31

6 

31.66

9 

32.66

8 32.318 33.783 

 

Ciela

b 3.062 2.705 2.592 2.601 2.911 2.561 2.202 2.669 2.974 2.566 2.595 2.202 

 

SSIM 0.508 0.634 0.637 0.623 0.623 0.582 0.615 0.577 0.564 0.582 0.616 0.637 

 

HVS 26.329 26.028 

26.75

3 

26.63

2 

26.80

8 

26.74

8 30.150 

26.82

3 

26.82

0 

26.77

9 26.621 30.150 

 

HVS

m 27.955 27.482 

28.23

4 

28.18

1 

28.36

2 

28.22

8 31.987 

28.33

1 

28.36

5 

28.26

4 28.115 31.987 

Img10 

PSN

R 27.054 30.354 

30.54

7 

29.97

0 

29.88

5 

30.35

0 31.177 

30.01

4 

29.82

2 

30.30

9 30.118 31.177 

 

Ciela

b 4.808 3.975 3.930 3.927 3.915 3.991 3.223 4.075 3.940 3.959 3.936 3.223 

 

SSIM 0.687 0.867 0.867 0.856 0.857 0.832 0.802 0.858 0.853 0.855 0.848 0.867 

 

HVS 24.184 24.135 

24.51

7 

24.44

0 

24.45

9 

24.45

0 28.393 

24.50

8 

24.44

1 

24.51

5 24.458 28.393 

 

HVS

m 25.796 25.521 

25.92

8 

25.96

3 

25.96

9 

25.86

7 30.357 

25.93

1 

25.93

6 

25.93

5 25.910 30.357 

Img11 

PSN

R 29.027 32.011 

32.23

4 

31.70

3 

31.70

7 

32.12

1 31.682 

31.83

5 

31.65

5 

32.14

3 31.687 32.234 

 

Ciela

b 4.282 3.556 3.529 3.654 3.606 3.545 3.412 3.628 3.627 3.543 3.605 3.412 

 

SSIM 0.722 0.882 0.883 0.866 0.875 0.875 0.840 0.875 0.871 0.876 0.862 0.883 

 

HVS 26.763 26.320 

27.14

3 

27.13

4 

27.17

5 

27.08

0 28.744 

27.17

7 

27.21

5 

27.08

5 27.089 28.744 

 

HVS

m 28.417 27.778 

28.62

6 

28.70

8 

28.72

4 

28.54

8 30.402 

28.69

3 

28.76

2 

28.55

2 28.586 30.402 

Img12 

PSN

R 25.845 28.451 

29.11

5 

28.77

9 

28.76

9 

28.79

6 29.171 

28.80

7 

28.73

3 

28.78

2 28.712 29.171 

 

Ciela

b 4.525 3.669 3.558 3.610 3.621 3.786 3.176 3.707 3.649 3.783 3.620 3.176 

 

SSIM 0.770 0.909 0.910 0.903 0.902 0.880 0.883 0.891 0.889 0.880 0.902 0.910 

 

HVS 24.168 23.290 

24.59

0 

24.67

4 

24.65

8 

24.38

4 27.561 

24.58

4 

24.65

2 

24.38

5 24.521 27.561 

 

HVS

m 25.807 24.728 

26.10

0 

26.21

9 

26.22

7 

25.84

2 29.625 

26.11

5 

26.21

1 

25.84

3 26.026 29.625 

Averag

e 

PSN

R 28.324 31.484 
31.69

2 

31.17

8 

31.02

2 

31.48

2 31.670 

31.24

8 

30.96

3 

31.55

0 31.258 31.692 

 

Ciela

b 4.325 3.502 3.473 3.502 3.544 3.550 3.101 3.564 3.575 3.520 3.520 3.101 

 

SSIM 0.708 0.867 0.863 0.853 0.856 0.844 0.824 0.852 0.846 0.849 0.846 0.867 

 

HVS 25.491 25.359 

25.91

3 

25.81

5 

25.87

2 

25.93

1 28.618 

25.89

7 

25.87

8 

25.85

9 25.841 28.618 

 

HVS

m 27.132 26.780 

27.37

0 

27.34

7 

27.41

7 

27.38

7 30.465 

27.37

9 

27.41

4 

27.30

3 27.312 30.465 
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     (a) PSNR                                                    (b) CIELAB 

 

  
 

    (c) SSIM                                                 (d) HVS and HVSm 

 

Figure 7. Averaged performance metrics of all the demosaicing results for the LDI-DAT case. 

 

Bird  

imag

e 

  
  

Ligh

t-

hous

e 
imag

e 
 

  
 

 (a) GT (b) GSA (c) GFPCA (d) Standard 

 

Figure 8. The ground truth image and three selected demosaiced images using the LDI-NAT inpainting 

method for pan band. 

 

3.2.2. FOE + Pansharpening 
 

In Section 3.1, we observed that the FOE algorithm yielded the best inpainting performance. 

Here, we show the demosaicing results of the 12 Kodak images by a combination of FOE and 
various pansharpening algorithms. Table 3 summarizes all the performance metrics of those 12 

images. Figure 7 shows the bar charts of the averaged performance metrics. It can be seen that 

GFPCA achieved the highest performance in PSNR, CIELAB, HVS, and HVSm. Similar to the 

LDI-NAT case, GFPCA is 3 dBs better than all the other methods in terms HVS and HVSm. 
From those images in Figure 10, one can easily conclude that the GFPCA results have less 

artifacts and look closer to the ground truth images.  
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Table 3.Demosaicing results of Kodak images. FOE was used to generate the pan images. 

 

Image 

 

Baselin

e 

Standar

d GSA HCM SFIM PCA 

GFPC

A GLP HPM GS 

PRAC

S 

Best 

Score 

Img1 PSNR 32.004 33.988 

34.24

1 

33.62

1 

33.15

0 

33.99

0 33.320 

33.89

7 

33.09

0 
34.29

5 33.591 

34.29

5 

 

Ciela

b 2.651 2.347 2.387 2.460 2.700 2.412 2.756 2.408 2.728 2.321 2.434 2.321 

 

SSIM 0.741 0.858 0.851 0.830 0.833 0.847 0.807 0.849 0.829 0.858 0.821 0.858 

 

HVS 28.147 27.283 

28.23

9 

28.06

4 

28.20

6 
28.29

1 28.034 

28.09

6 

28.18

3 

28.22

0 28.264 

28.29

1 

 

HVS

m 29.690 28.717 

29.69

4 

29.60

6 

29.74

1 
29.75

6 28.878 

29.58

9 

29.72

0 

29.66

5 29.735 

29.75

6 

Img2 PSNR 26.836 30.908 

30.85

5 

30.44

6 

30.11

2 

30.74

7 30.393 

30.11

9 

29.87

6 

30.86

7 30.569 

30.90

8 

 

Ciela

b 4.834 3.636 3.693 3.745 3.791 3.751 3.145 3.848 3.845 3.688 3.777 3.145 

 

SSIM 0.690 0.879 0.879 0.867 0.865 0.858 0.831 0.863 0.860 0.862 0.865 0.879 

 

HVS 23.926 24.215 

24.32

2 

24.12

5 

24.02

3 

24.57

7 27.851 

24.11

0 

23.87

7 

24.25

3 24.344 

27.85

1 

 

HVS

m 25.455 25.458 

25.61

3 

25.45

9 

25.39

8 

25.88

6 29.896 

25.43

4 

25.27

0 

25.51

9 25.615 

29.89

6 

Img3 PSNR 30.836 33.074 

32.98

2 

32.14

7 

32.42

4 

33.11

2 34.350 

32.72

3 

32.31

2 

33.15

3 32.656 

34.35

0 

 

Ciela

b 3.748 3.328 3.316 3.492 3.434 3.243 2.901 3.292 3.469 3.223 3.376 2.901 

 

SSIM 0.788 0.887 0.880 0.869 0.877 0.881 0.875 0.877 0.871 0.881 0.869 0.887 

 

HVS 26.942 26.720 

26.87

7 

26.63

5 

26.78

9 

27.04

8 30.071 

26.79

4 

26.75

2 

27.01

5 26.941 

30.07

1 

 

HVS

m 28.725 28.377 

28.56

4 

28.47

9 

28.57

7 

28.73

1 31.491 

28.50

5 

28.54

1 

28.69

4 28.639 

31.49

1 

Img4 PSNR 22.785 27.014 

27.53

0 

27.12

4 

26.80

6 

26.93

8 26.852 

26.69

6 

26.67

7 

26.93

9 27.069 

27.53

0 

 

Ciela

b 7.453 5.324 5.249 5.054 5.216 5.552 4.810 5.638 5.315 5.534 5.246 4.810 

 

SSIM 0.754 0.930 0.929 0.923 0.919 0.907 0.894 0.916 0.914 0.908 0.918 0.930 

 

HVS 20.284 20.307 

21.03

8 

20.98

2 

21.08

0 

20.94

1 24.156 

21.02

7 

21.07

8 

20.82

3 20.890 

24.15

6 

 

HVS

m 21.962 21.621 

22.42

4 

22.44

4 

22.56

5 

22.31

2 26.236 

22.47

4 

22.57

8 

22.17

7 22.287 

26.23

6 

Img5 PSNR 30.856 34.218 

33.82

1 

33.78

5 

33.58

8 

33.98

0 34.732 

33.67

5 

33.42

0 

34.30

5 33.835 

34.73

2 

 

Ciela

b 2.559 2.075 2.240 2.027 2.105 2.136 1.892 2.134 2.134 2.025 2.142 1.892 

 

SSIM 0.670 0.863 0.840 0.853 0.850 0.844 0.798 0.846 0.843 0.857 0.832 0.863 

 

HVS 27.696 27.709 

28.05

0 

28.01

7 

27.96

4 

28.30

9 30.640 

28.06

8 

27.92

4 

28.09

7 28.107 

30.64

0 

 

HVS

m 29.403 29.199 

29.58

5 

29.60

1 

29.65

2 

29.86

4 32.091 

29.66

0 

29.62

7 

29.61

3 29.629 

32.09

1 

Img6 PSNR 27.731 30.919 

31.04

6 

30.40

1 

30.34

8 

31.09

6 31.422 

30.59

7 

30.13

8 

31.03

1 30.702 

31.42

2 

 

Ciela

b 5.532 4.540 4.814 4.458 4.441 4.505 3.772 4.588 4.562 4.551 4.531 3.772 

 

SSIM 0.716 0.903 0.880 0.884 0.885 0.878 0.853 0.885 0.874 0.874 0.875 0.903 

 

HVS 24.581 24.559 

24.92

9 

24.60

8 

24.78

6 

24.86

8 27.678 

24.94

2 

24.75

5 

24.92

2 24.830 

27.67

8 

 

HVS

m 26.256 26.028 

26.41

0 

26.22

5 

26.36

8 

26.34

3 29.303 

26.44

9 

26.33

7 

26.40

5 26.348 

29.30

3 

Img7 PSNR 30.510 34.925 

34.82

0 

34.37

6 

33.90

2 

34.78

8 34.014 

33.96

2 

33.64

8 

34.82

7 34.604 

34.92

5 

 

Ciela

b 3.618 2.651 2.683 2.705 2.770 2.686 2.454 2.815 2.814 2.669 2.738 2.454 

 

SSIM 0.736 0.912 0.910 0.904 0.901 0.907 0.859 0.899 0.896 0.908 0.901 0.912 

 

HVS 27.928 28.319 

28.31

3 

28.14

8 

27.99

2 

28.42

0 32.321 

28.11

1 

27.82

2 

28.33

3 28.377 

32.32

1 

 

HVS

m 29.493 29.546 

29.54

2 

29.45

7 

29.33

3 

29.65

8 34.585 

29.38

8 

29.17

2 

29.56

5 29.622 

34.58

5 

Img8 PSNR 26.974 30.834 

31.21

9 

30.49

3 

30.30

9 

30.79

7 30.476 

30.40

2 

30.10

4 

30.90

0 30.598 

31.21

9 

 

Ciela

b 4.685 3.669 3.517 3.725 3.669 3.681 3.179 3.728 3.714 3.626 3.761 3.179 

 

SSIM 0.735 0.900 0.900 0.886 0.889 0.887 0.860 0.890 0.884 0.892 0.879 0.900 

 

HVS 24.405 23.909 

24.90

4 

24.70

4 

24.81

8 

24.95

4 28.973 

24.85

0 

24.80

9 

24.78

7 24.798 

28.97

3 

 

HVS

m 26.086 25.295 

26.35

7 

26.25

9 

26.36

5 

26.40

0 30.940 

26.35

3 

26.37

0 

26.21

1 26.246 

30.94

0 

Img9 PSNR 29.800 32.236 32.67 32.07 31.57 32.73 33.914 32.25 31.44 32.72 32.338 33.91
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2 8 5 5 5 7 8 4 

 

Ciela

b 3.052 2.674 2.587 2.570 2.927 2.506 2.174 2.648 2.998 2.506 2.576 2.174 

 

SSIM 0.511 0.634 0.637 0.623 0.622 0.587 0.615 0.578 0.563 0.588 0.621 0.637 

 

HVS 26.255 25.799 

26.58

6 

26.41

0 

26.60

4 

26.59

7 30.276 

26.65

2 

26.58

5 

26.62

9 26.500 

30.27

6 

 

HVS

m 27.881 27.266 

28.06

2 

27.97

8 

28.16

1 

28.07

3 31.999 

28.16

7 

28.14

1 

28.11

0 27.988 

31.99

9 

Img10 PSNR 27.087 30.381 

30.56

4 

29.94

4 

29.83

9 

30.47

4 31.298 

29.92

8 

29.66

3 

30.42

7 30.217 

31.29

8 

 

Ciela

b 4.788 3.932 3.912 3.872 3.883 3.899 3.190 4.071 3.936 3.874 3.879 3.190 

 

SSIM 0.690 0.867 0.867 0.855 0.855 0.838 0.806 0.855 0.849 0.858 0.849 0.867 

 

HVS 24.051 23.775 

24.23

8 

24.03

6 

24.06

6 

24.20

1 28.526 

24.17

5 

23.97

6 

24.25

8 24.241 

28.52

6 

 

HVS

m 25.663 25.177 

25.64

3 

25.60

3 

25.59

9 

25.60

9 30.328 

25.60

9 

25.51

4 

25.66

8 25.688 

30.32

8 

Img11 PSNR 29.048 32.024 
32.24

5 

31.67

9 

31.69

9 

32.22

2 31.708 

31.77

9 

31.55

7 

32.24

4 31.757 

32.24

5 

 

Ciela

b 4.268 3.513 3.500 3.617 3.577 3.476 3.394 3.603 3.611 3.473 3.560 3.394 

 

SSIM 0.726 0.886 0.887 0.870 0.878 0.883 0.843 0.877 0.873 0.884 0.867 0.887 

 

HVS 26.669 26.089 

26.90

7 

26.81

7 

26.90

5 

26.87

5 28.814 

26.88

4 

26.88

7 

26.88

2 26.905 

28.81

4 

 

HVS

m 28.329 27.577 

28.41

4 

28.43

6 

28.48

6 

28.36

8 30.422 

28.43

5 

28.47

7 

28.37

4 28.416 

30.42

2 

Img12 PSNR 25.869 28.419 

29.10

6 

28.71

5 

28.70

3 

28.86

9 29.150 

28.73

2 

28.62

0 

28.85

5 28.744 

29.15

0 

 

Ciela

b 4.506 3.609 3.494 3.555 3.569 3.662 3.149 3.669 3.613 3.660 3.558 3.149 

 

SSIM 0.773 0.915 0.917 0.908 0.907 0.891 0.888 0.895 0.893 0.892 0.908 0.917 

 

HVS 24.036 22.977 

24.30

1 

24.32

6 

24.34

2 

24.14

5 27.476 

24.24

4 

24.28

5 

24.15

0 24.266 

27.47

6 

 

HVS

m 25.658 24.416 

25.77

6 

25.84

8 

25.87

8 

25.57

9 29.381 

25.75

0 

25.81

7 

25.58

4 25.732 

29.38

1 

Averag

e PSNR 28.361 31.578 

31.75

8 

31.23

4 

31.03

8 

31.64

6 31.802 

31.23

0 

30.87

9 

31.71

4 31.390 

31.80

2 

 

Ciela

b 4.308 3.441 3.449 3.440 3.507 3.459 3.068 3.537 3.561 3.429 3.465 3.068 

 

SSIM 0.711 0.870 0.865 0.856 0.857 0.851 0.827 0.852 0.846 0.855 0.851 0.870 

 

HVS 25.410 25.138 

25.72

5 

25.57

3 

25.63

1 

25.76

9 28.735 

25.66

3 

25.57

8 

25.69

7 25.705 

28.73

5 

 

HVS

m 27.050 26.556 

27.17

4 

27.11

6 

27.17

7 

27.21

5 30.463 

27.15

1 

27.13

0 

27.13

2 27.162 

30.46

3 

 

  
 

(a) PSNR                                            (b) CIELAB 
 

  
 

  (c) SSIM                                                        (d) HVS and HVSm 
 

Figure 9. Averaged performance metrics of all the demosaicing results for the FOE inpainting case. 
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Bird  

imag
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-
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e 
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Figure 10. The ground truth image and three selected demosaiced images using the FOE inpainting  

method for pan band. 

 

3.2.3. REF + Pansharpening 

 

It will be important to show the best achievable demosaicing performance of those 12 Kodak 
images using CFA 3.0. The gap between this ideal case and what we have so far will indicate the 

room for further improvement. To generate the ideal demosaicing results, we used the ground 

truth pan images, which are generated by taking the average of the RGB bands in the original 
clean Kodak images. Table 4 summarizes the performance metrics for all the demosaicing results. 

Figure 11 plots the averaged metrics. The GFPCA has the best metrics in CIELAB, HVS, and 

HVSm. GSA has the best performance in terms of PSNR and the Standard method achieved the 

best in SSIM. From Figure 12, it is quite obvious that GFPCA has the least artifacts.  
 

Table 4.Demosaicing results of Kodak images. Ground truth pan images were used in the  

pansharpening process. 

 

Image 

 

Baselin

e 

Standar

d GSA HCM 

SFI

M PCA 

GFPC

A GLP HPM GS 

PRAC

S 

Best 

Score 

Img1 

PSN

R 32.056 34.252 

34.53

9 

33.87

8 

33.38

5 

34.27

3 33.601 

34.11

9 

33.21

8 
34.59

7 33.816 34.597 

 

Ciela

b 2.635 2.261 2.311 2.382 2.635 2.333 2.688 2.340 2.673 2.236 2.376 2.236 

 

SSIM 0.746 0.896 0.888 0.866 0.873 0.885 0.837 0.891 0.869 0.896 0.848 0.896 

 

HVS 28.179 27.292 

28.31

3 

28.13

0 

28.26

0 
28.36

3 28.112 

28.14

5 

28.23

2 

28.29

1 28.332 28.363 

 

HVS

m 29.715 28.701 

29.73

0 

29.64

2 

29.76

2 
29.78

9 28.899 

29.61

0 

29.74

3 

29.69

8 29.771 29.789 

Img2 

PSN

R 26.887 31.613 

31.55

1 

31.05

3 

30.66

9 

31.43

2 30.835 

30.62

4 

30.33

9 

31.56

1 31.213 31.613 

 

Ciela

b 4.810 3.436 3.499 3.548 3.608 3.568 3.040 3.691 3.684 3.501 3.594 3.040 

 

SSIM 0.695 0.906 0.906 0.893 0.892 0.881 0.851 0.890 0.886 0.886 0.890 0.906 

 

HVS 23.982 24.346 

24.46

4 

24.26

9 

24.14

6 

24.72

3 28.156 

24.22

5 

23.98

9 

24.38

7 24.496 28.156 

 

HVS

m 25.505 25.515 

25.67

9 

25.54

1 

25.45

8 

25.94

7 30.070 

25.48

6 

25.33

1 

25.57

8 25.692 30.070 

Img3 

PSN

R 30.887 33.356 

33.25

5 

32.33

3 

32.62

1 

33.40

7 34.886 

32.95

1 

32.47

6 

33.45

1 32.908 34.886 

 

Ciela

b 3.734 3.248 3.236 3.412 3.341 3.161 2.819 3.217 3.384 3.141 3.308 2.819 

 

SSIM 0.792 0.920 0.913 0.900 0.910 0.911 0.899 0.910 0.904 0.911 0.898 0.920 

 

HVS 26.958 26.684 

26.88

0 

26.62

2 

26.74

6 

27.05

8 30.303 

26.77

3 

26.69

7 

27.02

5 26.971 30.303 

 

HVS

m 28.736 28.311 

28.53

9 

28.44

9 

28.50

6 

28.71

1 31.578 

28.45

9 

28.46

6 

28.67

3 28.641 31.578 

Img4 

PSN

R 22.850 27.850 
28.54

7 

28.01

1 

27.60

9 

27.71

8 27.470 

27.37

8 

27.36

8 

27.70

9 27.906 28.547 
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Ciela

b 7.419 5.037 4.972 4.729 4.929 5.327 4.629 5.412 5.052 5.306 4.978 4.629 

 

SSIM 0.758 0.953 0.952 0.946 0.942 0.927 0.913 0.939 0.936 0.929 0.940 0.953 

 

HVS 20.336 20.427 

21.25

3 

21.21

8 

21.30

6 

21.13

3 24.531 

21.23

1 

21.30

7 

21.01

1 21.081 24.531 

 

HVS

m 22.007 21.670 

22.55

4 

22.60

6 

22.70

7 

22.41

8 26.453 

22.60

3 

22.73

3 

22.28

1 22.401 26.453 

Img5 

PSN

R 30.918 34.782 

34.33

7 

34.28

5 

34.07

2 

34.51

4 35.281 

34.12

6 

33.83

3 

34.87

4 34.328 35.281 

 

Ciela

b 2.539 1.955 2.146 1.903 1.990 2.033 1.817 2.034 2.031 1.917 2.049 1.817 

 

SSIM 0.677 0.928 0.903 0.917 0.917 0.907 0.831 0.914 0.910 0.920 0.890 0.928 
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      (a) PSNR                                                        (b) CIELAB 

 

   
 

          (c) SSIM                                             (d) HVS and HVSm 

 

Figure 11. Averaged performance metrics of all the demosaicing results for the ground truth pan case. 
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Figure 12. The ground truth image and three selected demosaiced images using the ground truth pan case. 
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3.3. Discussions and Comparisons 
 

We summarize the key results in Tables 2 to 4 and put them into Table 5 and Figure 13. We have 

the following observations: 
 

• In terms of PSNR, the combination of FOE and GFPCA improved over the combination of 

LDI-NAT and GSA by 0.11 dB. There is still a somewhat big gap of 0.635 dB between 
FOE/GFPCA and GT/GSA.  

• In terms of CIELAB, the difference between the FOE/GFPCA and LDI-NAT/GSA is 0.033 

whereas the difference between GT/GFPCA and FOE/GFPCA is 0.119. Relatively 

speaking, there is still a gap for further improvement. 
• In terms of SSIM, the difference between FOE/Standard and LDI-NAT/Standard is 0.003 

and the difference between GT/Standard and FOE/Standard is 0.035.  

• In terms of HVS, the difference between FOE/GFPCA and LDI-NAT/GFPCA is 0.117 dB 
and the difference between GT/GFPCA and FOE/GFPCA is 0.351 dB. 

• In terms of HVSm, the difference between FOE/GFPCA and LDI-NAT/GFPCA is 0.002 

dB and the difference between GT/GFPCA and FOE/GFPCA is 0.175 dB. 
 

The above observations also answer the two questions raised in Section 1. First, after some 

extensive experiments, it was found that there do exist better algorithms (FOE and inpaint-nans) 

than the LDI-NAT method. Second, we also quantify the performance gain of the better 
algorithms. In short, it appears that the best inpainting algorithm (FOE) closes the gap between 

the FOE and the ideal case. However, even the demosaicing results with GT pan may still have 

room for improvement, which will be a future topic to pursue. 
 

Table 5.Demosaicing results 

 

 LDI-NAT for Pan FOE for Pan Reference (GT) Pan 

Metrics Metric/ Best PS Metric/ Best PS Metric/Best PS 

PSNR (dB) 31.692/GSA 31.802/GFPCA 32.437/GSA 

CIELAB 3.101/GFPCA 3.068/GFPCA 2.949/GFPCA 

SSIM 0.867/Standard 0.870/Standard 0.905/Standard 

HVS (dB) 28.618/GFPCA 28.735/GFPCA 29.086/GFPCA 

HVSm (dB) 30.465/GFPCA 30.463/GFPCA 30.638/GFPCA 
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(a) PSNR                                                          (b) CIELAB 

 

    
 

   (c) SSIM                                                                    (d) HVS and HVSm 

 
Figure 13. Comparison of the demosaicing results of using different combinations of inpainting and 

pansharpening algorithms. 

 

4. CONCLUSIONS 
 

In this paper, we focus on further improving the demosaicing performance of CFA 3.0. Our idea 
is to see if newer inpainting algorithms can help improve the overall demosaicing performance. 

Six conventional and deep learning based methods were compared and the FOE method yielded 

slight better performance than others. One key observation is that there is still room for 
improvement because, when we used the ground truth pan band, the overall demosaicing 

performance is much better than what we have right now. Hence, one future direction is to seek 

better inpainting methods. Another direction is to develop an end-to-end deep learning approach 
to demosaicing CFA 3.0. 

 

CONFLICT OF INTEREST 
 

The authors declare no conflict of interest. 
 

ACKNOWLEDGEMENTS 
 

This work was partially supported by NASA Jet Propulsion Laboratory under contract # 

80NSSC17C0035. The views, opinions and/or findings expressed are those of the author(s) and 
should not be interpreted as representing the official views or policies of NASA or the U.S. 

Government. 

 

REFERENCES 
 

[1]   B. E. Bayer, Color imaging array. US Patent 3,971,065, July 20, 1976. 



Signal & Image Processing: An International Journal (SIPIJ) Vol.11, No.6, December 2020 

18 
 

[2] J. F. Bell III, et al., “The Mars Science Laboratory Curiosity Rover Mast Camera (Mastcam) 

Instruments: Pre-Flight and In-Flight Calibration, Validation, and Data Archiving,” AGU Journal 

Earth and Space Science, 2017. 

[3]   M. Dao, C. Kwan, B. Ayhan, and J. F. Bell, “Enhancing Mastcam Images for Mars Rover Mission,” 

14th International Symposium on Neural Networks, pp. 197-206, 2017. 
[4]   C. Kwan, B. Budavari, M. Dao, B. Ayhan, and J. F. Bell, “Pansharpening of Mastcam images,” IEEE 

International Geoscience and Remote Sensing Symposium, pp. 5117-5120, Fort Worth, Texas, 2017. 

[5]  B. Ayhan, M. Dao, C. Kwan, H. Chen, J. F. Bell, and R. Kidd, “A Novel Utilization of Image 

Registration Techniques to Process Mastcam Images in Mars Rover with Applications to Image 

Fusion, Pixel Clustering, and Anomaly Detection,” IEEE Journal of Selected Topics in Applied Earth 

Observations and Remote Sensing, 10(10), pp. 4553-4564, 2017. 

[6]   J. Hamilton and J. Compton, Processing color and panchromatic pixels. U.S. Patent 20070024879A1, 

2007. 

[7]  T. Kijima, H. Nakamura, J. T. Compton, J. F.; Hamilton, and T. E. DeWeese, Image sensor with 

improved light sensitivity. U.S. Patent 0 268 533, Nov., 2007. 

[8] C. Kwan and J. Larkin, “Demosaicing of Bayer and CFA 2.0 Patterns for Low Lighting Images,” 

Electronics, 8, 1444, 2019. 
[9]  C. Kwan and J. Larkin, “Comparison of Denoising Algorithms in Demosacing Low Lighting Images 

Using CFA 2.0,”Signal & Image Processing: An International Journal (SIPIJ), vol. 11, no. 5, October 

29, 2020. 

[10]  C. Kwan and J. Larkin, “Demosaicing for Mastcam Images Using A New Color Filter Array,” Signal 

& Image Processing: An International Journal (SIPIJ), Vol. 11, No. 3, May 31, 2020. 

[11]  C. Kwan, J. Larkin, and B. Budavari, “Demosaicing of Real Low Lighting Images Using CFA 3.0,” 

Signal & Image Processing: An International Journal (SIPIJ), vol. 11, no. 4, August 2020. 

[12]  C. Kwan, J. Larkin, and B. Ayhan, “Demosaicing of CFA 3.0 with Application to Low Lighting 

Images,” Sensors, 20(12), 3423, June 22, 2020. 

[13] L. Zhang, X. Wu, A. Buades, and X. Li, “Color demosaicking by local directional interpolation and 

nonlocal adaptive thresholding,” J. Electron. Imaging, 20, 2011. 
[14]  D. Doshkov, P. Ndjiki-Nya, H. Lakshman, M. Köppel, and T. Wiegand, “Towards efficient intra 

prediction based on image inpainting methods,” 28th Picture Coding Symposium. IEEE, 2010. 

[15]  Inpaint_nans, https://www.mathworks.com/matlabcentral/fileexchange/4551-inpaint_nans, accessed 

on October 29, 2020. 

[16]  S. Roth and M. J. Black, “Fields of Experts,” Int J Comput Vis., 82: 205, 2009. 

[17]  J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, and T. Huang, “Generative Image Inpainting with Contextual 

Attention,” arXiv:1801.07892 [cs.CV]. 2018. 

[18] C. Kwan, B. Chou, L. M. Kwan, and B. Budavari, “Debayering RGBW Color Filter Arrays: A 

Pansharpening Approach,” IEEE Ubiquitous Computing, Electronics & Mobile Communication 

Conference, pp. 94-100, New York City, 2017. 

[19] G. Vivone, et al.,“A Critical Comparison Among Pansharpening Algorithms,” IEEE Trans. 

Geoscience and Remote Sensing, 53(5), 2015. 
[20]  J. G. Liu, “Smoothing filter based intensity modulation: A spectral preserve image fusion technique 

for improving spatial details,” Int. J. Remote Sens., 21, 18, 2000. 

[21] B. Aiazzi, et al.,“MTF-tailored multiscale fusion of high-resolution MS and pan imagery,” 

Photogramm. Eng. Remote Sens., 72(5), pp. 591–596, 2006. 

[22]  G. Vivone, et al., “Contrast and error-based fusion schemes for multispectral image pansharpening,” 

IEEE Trans. Geosci. Remote Sensing Lett., 11(5), pp. 930–934, 2014. 

[23]  C. Laben and B. Brower, Process for enhancing the spatial resolution of multispectral imagery using 

pan-sharpening. U.S. Patent 6 011 875, Jan. 4, 2000. 

[24]  B. Aiazzi, et al., “Improving component substitution pansharpening through multivariate regression 

of MS+pan data,” IEEE Trans. Geosci. Remote Sensing, 45(10), pp. 3230–3239, 2007. 

[25]  W. Liao, et al., “Processing of multiresolution thermal hyperspectral and digital color data: Outcome 
of the 2014 IEEE GRSS data fusion contest,” IEEE J. Select. Top. Appl. Earth Observ. Remote 

Sensing,  8, 6, 2015. 

[26]  J. Choi, et al., “A new adaptive component-substitution based satellite image fusion by using partial 

replacement,” IEEE Trans. Geosci. Remote Sens., 49, 1, 2011. 



Signal & Image Processing: An International Journal (SIPIJ) Vol.11, No.6, December 2020 

19 
 

[27]  J. Zhou, C. Kwan, and B. Budavari, “Hyperspectral image super-resolution: A hybrid color mapping 

approach,” Journal of Applied Remote Sensing, 10, 3, article 035024, 2016. 

[28]  C. Kwan, J. H. Choi, S. Chan, J. Zhou, and B. Budavai, “Resolution Enhancement for Hyperspectral 

Images: A Super-Resolution and Fusion Approach,” IEEE International Conference on Acoustics, 

Speech, and Signal Processing, pp. 6180 – 6184, New Orleans, 2017. 
[29]  C. Kwan, B. Budavari, and G. Feng, “A Hybrid Color Mapping Approach to Fusing MODIS and 

Landsat Images for Forward Prediction,” Remote Sensing, 10(4), 520, 2017. 

[30]  C. Kwan, B. Budavari, A. Bovik, and G. Marchisio, “Blind Quality Assessment of Fused 

WorldView-3 Images by Using the Combinations of Pansharpening and Hypersharpening 

Paradigms,” IEEE Geoscience and Remote Sensing Letters, vol. 14, no. 10, pp. 1835-1839, Oct. 

2017. 

[31]  C. Kwan, B. Ayhan, and B. Budavari, “Fusion of THEMIS and TES for Accurate Mars Surface 

Characterization,” IEEE International Geoscience and Remote Sensing Symposium, pp. 3381-3384, 

Fort Worth, Texa, 2017. 

[32]  L. Zhang and X. Wu, “Colordemosaicking via directional linear minimum mean square-error 

estimation,” IEEE Trans. Image Processing, 14, 2167–2178, 2005. 

[33] W. Lu and Y. P. Tan, “Color filter array demosaicking: New method and performance measures,” 
IEEE Trans. on Image Processing, 12, 1194–1210, 2003. 

[34] E. Dubois, “Frequency-domain methods for demosaicking of Bayer-sampled color images,” IEEE 

Signal Proc. Letters, 12, 847–850, 2005. 

[35] B. Gunturk, Y. Altunbasak, and R. M. Mersereau, “Color plane interpolation using alternating 

projections,”  IEEE Transactions on Image Processing, 11, 997–1013, 2002. 

[36] X. Wu and N. Zhang, “Primary-consistent soft-decision color demosaicking for digital cameras,” 

IEEE Trans. on Image Processing, 13, 1263-1274, 2004. 

[37] C. Kwan, X. Zhu, F. Gao, B. Chou, D. Perez, J. Li, Y. Shen, and K. Koperski, 

“AssessmentofSpatiotemporalFusionAlgorithmsforPlanetandWorldviewImages,” Sensors,18,1051, 

2018. 

[38]  SSIM.Availableonline:https://en.wikipedia.org/wiki/Structural_similarity.(Accessedon26April2019). 
[39] K. Egiazarian, J. Astola, N. Ponomarenko, V. Lukin, F. Battisti, and M. Carli, “New full quality 

metrics based on HVS,” Second International Workshop on Video Processing and Quality Metrics, 

Scottsdale, AZ, USA, 22–24 January 2006. 

[40] N. Ponomarenko,F.Silvestri,K.Egiazarian,M. Carli, J. Astola, and V. Lukin, “Onbetween-

coefficientcontrastmaskingofDCTbasisfunctions,”Third International Workshop on Video Processing 

and Quality Metrics for Consumer Electronics VPQM-07,Scottsdale,AZ,USA,25–26January2007. 

[41] X. Zhang and B. A. Wandell, “A spatial extension of cielab for digital color image reproduction,” 

SID Journal, 1997. 

[42]  C. Kwan, J. Larkin, B. Budavari, B. Chou, E. Shang, and T. D. Tran, “A comparison of compression 

codecs for maritime and sonar images in bandwidth constrained applications,” Computers, 8(2), 32, 

April 28, 2019. 

[43]  C. Kwan, J. Larkin, B. Budavari, E. Shang, and T. Tran, “Perceptually Lossless Compression with 
Error Concealment for Periscope and Sonar Videos,” Signal & Image Processing: An International 

Journal (SIPIJ), vol. 10(02); pages 01-14, April 30, 2019. 

 

AUTHORS  
 

Chiman Kwan received his Ph.D. degree in electrical engineering from the University of Texas at 
Arlington in 1993. He has written one book, four book chapters, 15 patents, 70 invention disclosures, 380 

technical papers in journals and conferences, and 550 technical reports. Over the past 25 years, he has been 

the PI/Program Manager of over 120 diverse projects with total funding exceeding 36 million dollars. He is 

also the founder and Chief Technology Officer of Signal Processing, Inc. and Applied Research LLC. He 

received numerous awards from IEEE, NASA, and some other agencies and has given several keynote 

speeches in several international conferences. 

 

Jude Larkin received his B.S. in Computer Science from Franciscan University of Steubenville in 2015. 

He is a software engineer at ARLLC. He has been involved in diverse projects, including mission planning 

for UAVs, image fusion, image demosaicing, and remote sensing. 


