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ABSTRACT 
 
It is challenging to detect vehicles in long range and low quality infrared videos using deep learning 

techniques such as You Only Look Once (YOLO) mainly due to small target size. This is because small 

targets do not have detailed texture information. This paper focuses on practical approaches for target 

detection in infrared videos using deep learning techniques. We first investigated a newer version of You 

Only Look Once (YOLO v4). We then proposed a practical and effective approach by training the YOLO 

model using videos from longer ranges. Experimental results using real infrared videos ranging from 1000 

m to 3500 m demonstrated huge performance improvements. In particular, the average detection 

percentage over the six ranges of 1000 m to 3500 m improved from 54% when we used the 1500 m videos 

for training to 95% if we used the 3000 m videos for training. 
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1. INTRODUCTION 
 

For infrared videos, people have normally applied two groups of target detection algorithms. The 

first group of methods [1]-[6] requires target locations in the first frame of the videos to be 

known and then those target features in the first frame are used to detect the targets in subsequent 

frames. The second group uses deep learning algorithms such as You Only Look Once (YOLO) 

for target detection in optical and infrared videos [7]-[21]. Target locations in the first frame are 

no longer required. However, some training videos are needed in these algorithms. Some deep 

learning algorithms [6]-[16] use compressive measurements directly without time consuming 

reconstruction of compressive measurements for target detection and classification. As a result, 

fast target detection and classification can be achieved.  

 

In long range infrared videos, the target size is small, the resolution is low, and the video quality 

such as contrast is also poor. It is therefore extremely important to develop practical methods that 

can improve the detection performance using deep learning methods. In [22], we proposed the 

incorporation of video super-resolution (VSR) techniques to enhance target detection 

performance in infrared videos. The resolution of the video frame is improved by two to four 

times. The target detection and classification performance using actual infrared videos was 

observed to be improved. In another paper [23], low contrast videos were enhanced using 16-bit 

videos and we also observed improved performance in target detection and classification. In [24], 

target motion information has been utilized using optical flow techniques. We observed that 

target detection performance has been improved significantly. In some videos, if the targets are 

moving towards or away from the imager, target motion may be difficult to extract. In such 
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scenarios, target detection using single frames can be applied. In [25][26], target detection 

techniques based on single frames were proposed and evaluated. There are also many recent 

papers discussing various methods for target detection (no classification) in infrared 

images/videos [27]-[39].  

 

In our early target detection and classification papers [7]-[10], YOLO v3 [40] was used. 

Recently, there are new YOLO versions in the public domain. In this paper, we present practical 

approaches to enhancing the detection performance in long range infrared videos. First, we 

investigated target detection performance enhancement using YOLO v4 [42]. YOLO v4 has more 

layers than YOLO v3. However, after running some experiments, the improvement in target 

detection is observed to be slight, but noticeable. For instance, for 2000 m videos, the average 

precision improved from 52% to 56%. Second, we investigated target detection performance 

enhancement using a new training strategy. In our previous papers, we used videos at 1500 m to 

train the YOLO. Although target detection performance is good for videos at 1000 m and 2000 m 

ranges, the performance drops significantly for 2500 m to 3500 m videos. After some extensive 

experiments, we observed that using videos at 2500 m or 3000 m to train the YOLO model 

actually performed the best across all ranges. For example, the average detection percentage is 

54% over the six ranges of 1000 m to 3500 m when we used the 1500 m video for training. 

However, if we used the 3000 m videos for training, the average detection percentage over six 

ranges became 95%. This is a dramatic improvement. 

 

Our key contribution is the following. We propose a practical training strategy to improve target 

detection in long range infrared videos. Instead of using near range videos to train the YOLO 

model, the best strategy is to use far range videos for training. Although the idea is simple, we 

observed dramatic performance improvement. 

 

The remainder of this paper is organized as follows. Section 2 briefly summarizes the target 

detection algorithm, performance metrics for target detection, and data. Section 3 shows that a 

new YOLO version 4 improves over an older version 3 using actual long range infrared videos. 

Section 4 summarizes a new training strategy that can improve detection performance in all 

ranges. We also compared with a two-model approach. Section 5 concludes the paper with a few 

remarks. 

 

2. ALGORITHMS, METRICS, AND DATA 
 

2.1. YOLOv3 versus YOLOv4 
 

Here, we would like to briefly compare the YOLO v3 and v4 models. In general, they are largely 

the same. They share the same general framework around it to encourage an accurate model. The 

Input and Backbone as shown in Fig. 1, are exactly the same except for the Darknet model used. 

In v3, the Darknet model used is Darknet53, a 53 layer model depicted in Fig. 2, while the 

Darknet model used for v4 is a 137 layer model. 
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Figure 1. YOLO V4 Block diagram. Input is the images; Backbone is the base Darknet model; Dense 

Prediction is the YOLO model; Sparse Prediction is Faster R-CNN [41]. 

 

 
 

Figure 2. Diagram showing construction of the layers in the Darknet53 model. 

 

According to paper [42] put out by the authors of YOLO v4, it is faster and more accurate than 

YOLO v3. The improvement denoted in Fig. 3 is about a 10 percent improvement in Average 

Precision at the same frame per second (FPS). 
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Figure 3. Comparison of YOLO v4, YOLO v3, and other strong object detectors [42]. 

 

2.2. Performance Metrics for Assessing Target Detection Performance 

 

The five different performance metrics to assess the detection performance are:Center Location 

Error (CLE), Distance Precision at 10 pixels (DP@10), Estimates in Ground Truth (EinGT), 

Intersection over Union (IoU), and number of frames with detection. These metrics are 

summarized as follows: 

 

• Center Location Error (CLE): This is the error between the center of the bounding box and 

the ground-truth bounding box. Smaller means better. CLE is calculated by measuring the 

distance between the ground truth center location (𝐶𝑥,𝑔𝑡 , 𝐶𝑦,𝑔𝑡) and the detected center 

location (𝐶𝑥,𝑒𝑠𝑡 , 𝐶𝑦,𝑒𝑠𝑡). Mathematically, CLE is given by 

 

𝐶𝐿𝐸 =  √(𝐶𝑥,𝑒𝑠𝑡 − 𝐶𝑥,𝑔𝑡)
2

+ (𝐶𝑦,𝑒𝑠𝑡 − 𝐶𝑦,𝑔𝑡)
2
.                                                      (1) 

 

• Distance Precision (DP):  This is the percentage of frames where the centroids of detected 

bounding boxes are within 10 pixels of the centroid of ground-truth bounding boxes. Close 

to 1 or 100% indicates good results. 

 

• Estimates in Ground Truth (EinGT): This is the percentage of the frames where the 

centroids of the detected bounding boxes are inside the ground-truth bounding boxes. It 

depends on the size of the bounding box and is simply a less strict version of the DP metric. 

Close to 1 or 100% indicates good results.  

 

• Intersection over the Union (IoU): It is the ratio of the intersected area over the union of the 

estimated and ground truth bounding boxes. 

 

𝐼𝑜𝑈 =  
𝐴𝑟𝑒𝑎 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛
     (2) 

 

Number of frames with detection: This is the total number of frames that have detection. 
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2.3. Defense Systems Information Analysis Center (DSIAC) Data 
 

DSIAC is more challenging than MOT [43] because the targets in MOT are large and the image 

resolution is also better in MOT. We selected five vehicles in the DSIAC videos for experiments. 

There are optical and mid-wave infrared (MWIR) videos collected at distances ranging from 

1000 m to 5000 m with 500 m increments. The five types of vehicles are shown in Figure 4. 

These videos are challenging for several reasons. First, the target sizes are small due to long 

ranges. This is very different from some benchmark datasets such as MOT Challenge [43] where 

the range is short and the targets are big. Second, the target orientations also change drastically. 

Third, the illuminations in different videos are also different. Fourth, the cameras also move in 

some videos.  

 

In this research, MWIR night-time videos were used because MWIR is more effective for 

surveillance during the nights than optical videos. The video frame rate is 7 frames/second and 

the image size is 640x512. The total number of frames is 1800 per video. All frames are contrast 

enhanced using some reference frames in the 1500 m range videos. We also used 16-bit videos in 

all of our experiments in this paper due to improved performance of using 16-bit videos in our 

earlier paper [23]. 

 

   
 

                   (a)   (b)      (c)   

  

 
 

              (d)    (e)   

 
Figure 4. Five vehicles in DSIAC: (a) BTR70; (b) BRDM2; (c) BMP2; (d) T72; and (e) ZSU23-4. 

 

2.3.1. Further Subsections 

 

Further sub-sectioning, if required, is indicated using 1.1.1. Qqq, etc. headings with 11 pt. bold 

Times New Roman font with a 6pt line spacing following. 

 

3. ENHANCING TARGET DETECTION PERFORMANCE USING A NEW 

VERSION OF YOLO (YOLOV4) 
 

In our past papers [7]-[10], we used YOLO v3 in our experiments. In the course of our research, 

we found that there is a new version of YOLO. The objective of this section is to summarize our 

study on how YOLO v4 is better than YOLO v3. 

    
                      (a)                                    (b)                                   (c)                                    (d)  

      
          (e)                                             (f)                                          (g) 

    
                      (a)                                    (b)                                   (c)                                    (d)  

      
          (e)                                             (f)                                          (g) 

    
                      (a)                                    (b)                                   (c)                                    (d)  
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Statistically, the comparison will be done by using several performance metrics. Center Location 

Error (CLE) is the average pixel distance of the guessed center of the vehicle bounding box from 

the ground truth center location. Distance Precision (DP) is the percentage of detections that fall 

within a certain number or pixels of the ground truth center location, for this project that distance 

is 20 pixels. Estimated in Ground Truth (EinGT) is the percentage of centroid values that fall 

within the ground truth bounding box. Intersection over Union (IoU) is the average area of 

intersection between the detected and ground truth bounding box divided by the area of union of 

that bounding box, that value is then reduced to a percentage. The final metric, Percent Detection 

(%det), is the percentage of frames that have any kind of detection within the frame. Table 1 and 

Table 2 contain the metrics used to judge how well the model is trained. The red numbers 

indicate the detection metrics using 1500 m videos, which were also used for training. Table 1 

has the average results for each distance for YOLO v3 while Table 2 has the average results for 

each distance for YOLO v4 trained at the 1500 meter distance. Detection metrics for individual 

vehicles at various ranges can be found in Appendix 1. 

 

We used 1500 m videos for training the YOLOs. There are five videos in this range and 1800 

frames per video. Comparing the two versions of YOLO shows in general that there is not a huge 

difference between the two. For YOLO v4, the first three distances are largely improved in 

reference to YOLO v3. Therefore, distances adjacent to the trained distance have a higher degree 

of accuracy. However, the further distances, 2500 through 3500 m ranges, have a much steeper 

degradation of detection. The accuracy metrics still improve but only slightly and it is not 

universally better performing. 

 
Table 1. Average performance metrics for each distance using a 1500 m trained YOLO v3 model. Detailed 

metrics for each individual vehicle at various ranges can be found in Table 6 of Appendix 1. 

 

Distance (m) CLE DP EinGT IoU % det. 

1000 3.645 100.00% 100.00% 71.79% 94.15% 

1500 1.368 100.00% 100.00% 83.99% 100.00% 

2000 2.009 99.99% 99.99% 52.24% 90.64% 

2500 6.810 98.37% 98.20% 20.14% 44.03% 

3000 3.924 100.00% 78.33% 11.54% 11.48% 

3500 3.481 100.00% 49.83% 2.94% 6.19% 

Avg. 3.540 99.73% 87.73% 40.44% 57.75% 

 

Table 2. Average performance metrics for each distance using a 1500 m trained YOLO v4 model. Detailed 

metrics for each individual vehicle at various ranges can be found in Table 7 of Appendix 1. 

 

Distance (m) CLE DP EinGT IoU % det. 

1000 2.968 100.0% 100.0% 72.59% 100.0% 

1500 1.100 100.0% 99.99% 89.40% 100.0% 

2000 1.557 100.0% 100.0% 56.47% 100.0% 

2500 8.612 97.43% 97.43% 27.21% 54.33% 

3000 2.148 100.0% 100.0% 15.78% 6.32% 

3500 1.022 40.00% 24.42% 4.43% 0.76% 

Avg. 2.901 89.57% 86.97% 44.31% 50.20% 
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4. VEHICLE DETECTION PERFORMANCE IMPROVEMENT USING A NEW 

TRAINING STRATEGY 
 

In the previous section, we observed that the target detection performance has not improved 

much in the long ranges, except in the ranges of 1000 and 2000 m even we used a new version of 

YOLO. After analyzing the earlier results, we speculate that the YOLO model trained using a 

certain range will be effective only for videos collected close to the range of the training data. 

This observation led us to a new training strategy for long range videos.  

 

Here, we summarize a new training strategy for training YOLO for target detection. The goal is 

to minimize false positives and missed detections. 

 

4.1. A New Strategy for Target Detection 
 

The reason for this investigation stems from a pattern we see in Table 1 and Table 2. That pattern 

is that the 1000 m distance is better performing than the other adjacent distance of 2000 m. The 

hypothesis is that the YOLO model is better at accurately detecting the vehicles when the trained 

distance is greater than the tested distance. We can see if this is true in the next few tables.  

 

The results for the 2000 m trained model in Table 3 show that clearly the 2000 m distance greatly 

improved. This is expected because that is the same distance the model was trained on. However, 

there is little degradation in performance to the 1000 m distance as well as a vast improvement to 

the 3000 m results. The improvement for 3500 m is much more tepid but it is clear that there is 

improved performance across all distances when the YOLO model is trained on the further 

distance videos. 

 
Table 3. Average performance metrics for 2000 m YOLO v4 trained model. Detailed metrics for each 

individual vehicle at various ranges can be found in Table 8 of Appendix 2. Red numbers  

indicate testing results using the same training data. 

 

Distance (m) CLE DP EinGT IoU % det. 

1000 3.501 99.9% 100.0% 64.30% 99.6% 

1500 2.077 99.88% 99.89% 63.25% 99.6% 

2000 1.023 100.0% 100.0% 89.19% 100.0% 

2500 13.955 94.75% 94.75% 49.14% 80.44% 

3000 1.951 99.5% 99.3% 31.20% 45.40% 

3500 1.742 99.67% 94.66% 9.07% 10.90% 

Avg. 4.042 98.95% 98.10% 51.03% 72.66% 

 

One anomaly that should be noted is the poor value for CLE at the 2500 m distance. At first, it 

looks like an error or poor testing results. Further inspection of the BMP2 video revealed that for 

some reason there is a second vehicle driving in circles in the background of that video. Fig. 5 

contains a frame of that video, showing both vehicles—the correct BMP2 vehicle in the center of 

the frame and another vehicle. YOLO detects the background vehicle and, because all detections 

are measured and considered when generating metrics, it greatly affects the CLE results. This 

will become very apparent in Table 4 when the training distance is 2500 m. 
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Figure 5. One frame of 2500 m video of BMP2 vehicle. Red box around background vehicle and  

green box around BMP2 vehicle. 

 

Table 4. Average performance metrics for 2500 m YOLO v4 trained model. Detailed metrics for each 

individual vehicle at various ranges can be found in Table 9 of Appendix 2. Red numbers  

indicate testing results using the same training data. 

 

Distance (m) CLE DP EinGT IoU % det. 

1000 3.148 99.9% 100.0% 49.89% 97.3% 

1500 2.024 100.0% 100.0% 49.26% 100.0% 

2000 1.665 100.0% 100.0% 71.93% 99.5% 

2500 1.071 100.0% 100.0% 71.77% 100.0% 

3000 1.603 100.0% 100.0% 42.19% 91.42% 

3500 1.881 99.79% 94.45% 9.28% 47.29% 

Avg. 1.899 99.96% 99.08% 49.05% 89.25% 

 

We continue to see little losses for the closer distances as we move further away in training 

distance. There is also a huge improvement in the CLE results in Table 4 for the 2500 m distance. 

This was expected because, now that the model is trained on that distance, only the foreground 

and relevant vehicle is detected as a possible match. In relation to average statistics, this trained 

distance is the best performing distance. While 3500 m video still does not have great detection 

results and IoU is still quite poor, each other value is close to the best results we see in other 

training distance. 
 

Table 5. Average performance metrics for 3000 m YOLO v4 trained model. Detailed metrics for each 

individual vehicle at various ranges can be found in Table 10 of Appendix 2. Red numbers  

indicate testing results using the same training data. 

 

Distance (m) CLE DP EinGT IoU % det. 

1000 4.071 99.2% 100.0% 27.29% 83.8% 

1500 1.954 100.0% 100.0% 30.44% 97.2% 

2000 1.522 100.0% 100.0% 49.85% 95.4% 

2500 24.089 90.5% 90.5% 65.25% 96.7% 

3000 0.950 100.0% 100.0% 80.41% 100.0% 

3500 1.330 99.95% 96.20% 23.38% 95.11% 

Avg. 5.653 98.28% 97.78% 46.10% 94.7% 
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There is, however, one more training distance to observe, 3000 meters. In Table 5, we see the 

greatest number of detections for any trained model. There is a large decrease in the CLE metric 

for 2500 m, 24.089 is by far the worst result for any YOLO model. If the explanation for why 

that number is so poor is accepted, then the results for every other value in comparison to each 

other trained model is the most consistent. It is not perfect, as seen by the 23% values for IoU, 

but it is certainly better performing than most if not all others. 

 

When looking at all distance models trained using YOLO v4, we certainly see a pattern of 

improvement as we move the training dataset further and further away. An argument can be made 

for which distance is best whether it be the 2500 m or 3000 m model. The biggest negative of the 

2500 m model is that the 3500 m videos have an average detection of just 47.29% and the IoU is 

rather low. The biggest negative of the 3000 m model is that the CLE for 2500 m is extremely 

poor because of the vehicle interfering with the detections for the BMP2 vehicle. 

 

Our study shows that using longer range videos (2500 or 3000 m) to train YOLO can achieve 

good detection results in all ranges. A simple explanation for this is that YOLO has built-in data 

augmentation capability, which can generate targets with different sizes. In our experiments, it is 

clear that YOLO is more capable of generating training images that are larger than the original 

images than the opposite case.  

 

4.2. Comparison with a Two-Model Approach 
 

In Section 3 and Section 4.1, we used a single model trained on videos from a single range. One 

may wonder what the performance will be if one utilizes a two-model approach, which 

essentially uses two separate models trained using videos from two separate ranges.  

 

Here, we first show the detection performance of using two models. One model is obtained by 

using videos from the 1500 m range and another model is using videos from the 3000 m range. 

The 1500 m model is only used for 1000 to 2000 m ranges and the 3000 m model is only for 

2500 m to 3500 m ranges. The combined model results are shown in Table 6. Comparing with the 

detection results in Table 5, the two-model performance is indeed better. The cost is that two 

models are needed that takes longer time to train. 

 
Table 6. Average performance metrics using two trained models at 1500 m and 3000 m YOLO v4 trained 

model. Red numbers indicate testing results using the same training data. 

 

Distance (m) CLE DP EinGT IoU % det. 

1000 2.968 100.0% 100.0% 72.59% 100.0% 

1500 1.100 100.0% 99.99% 89.40% 100.0% 

2000 1.557 100.0% 100.0% 56.47% 100.0% 

2500 24.089 90.5% 90.5% 65.25% 96.7% 

3000 0.950 100.0% 100.0% 80.41% 100.0% 

3500 1.330 99.95% 96.20% 23.38% 95.11% 

Avg. 5.333 98.41% 97.78% 64.5% 98.64% 

 

5. CONCLUSIONS AND FUTURE DIRECTIONS 
 

In this paper, we have presented some practical and high performance methods to enhance target 

detection performance in long range infrared videos. We observed that using a new version of 

YOLO improves slightly the performance. Moreover, we demonstrated that using a new training 



Signal & Image Processing: An International Journal (SIPIJ) Vol.12, No.3, June 2021 

10 

 

strategy, which simply uses longer range videos for training, can significantly improve the 

detection performance in all ranges. Finally, we observed that if we used a two-model approach, 

the performance will be even better at the cost of requiring more training data and training time. 

 

One future research direction is to investigate target detection based on changes between frames. 

Such a detection strategy is useful when there is motion in the targets. Another future direction is 

to integrate super-resolution videos with the idea proposed in this paper. 
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APPENDIX 1: SUPPORTING MATERIALS FOR SECTION 3.1 
 

Table 7. Accuracy statistics for 1500 m trained YOLO v3. 

 

1000 m CLE DP EinGT IoU % det. 

BTR70 3.677 100.00% 100.00% 67.89% 99.89% 

BRDM2 3.829 100.00% 100.00% 72.02% 92.22% 

BMP2 3.762 100.00% 100.00% 70.52% 99.22% 

T72 3.638 100.00% 100.00% 72.90% 85.17% 

ZSU23-4 3.316 100.00% 100.00% 75.61% 94.28% 

Avg 3.645 100.00% 100.00% 71.79% 94.15% 

1500 m CLE DP EinGT IoU % det. 

BTR70 1.401 100.00% 100.00% 83.00% 100.00% 

BRDM2 1.266 100.00% 100.00% 83.16% 100.00% 

BMP2 1.293 100.00% 100.00% 86.42% 100.00% 

T72 1.491 100.00% 100.00% 85.90% 100.00% 

ZSU23-4 1.387 100.00% 100.00% 81.45% 100.00% 

Avg 1.368 100.00% 100.00% 83.99% 100.00% 

2000 m CLE DP EinGT IoU % det. 

BTR70 2.039 100.00% 100.00% 46.21% 91.72% 

BRDM2 2.328 100.00% 100.00% 52.79% 99.39% 

BMP2 2.005 100.00% 100.00% 59.22% 68.61% 

T72 1.467 100.00% 100.00% 51.99% 94.44% 

ZSU23-4 2.208 99.95% 99.95% 50.97% 99.06% 

Avg 2.009 99.99% 99.99% 52.24% 90.64% 

2500 m  CLE DP EinGT IoU % det. 

BTR70 2.804 99.89% 99.89% 16.85% 36.61% 

BRDM2 3.193 100.00% 99.12% 18.85% 71.44% 

BMP2 22.030 91.97% 91.97% 21.60% 28.78% 

T72 2.978 100.00% 100.00% 24.18% 45.44% 

ZSU23-4 3.046 100.00% 100.00% 19.23% 37.89% 

Avg 6.810 98.37% 98.20% 20.14% 44.03% 

3000 m CLE DP EinGT IoU % det. 

BTR70 1.843 100.00% 100.00% 8.44% 10.33% 
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BRDM2 4.367 100.00% 98.52% 11.16% 13.94% 

BMP2 5.242 100.00% 0.00% 11.80% 0.11% 

T72 5.033 100.00% 93.14% 14.12% 18.00% 

ZSU23-4 3.137 100.00% 100.00% 12.15% 15.00% 

Avg 3.924 100.00% 78.33% 11.54% 11.48% 

3500 m CLE DP EinGT IoU % det. 

BTR70 1.860 100.00% 71.05% 2.50% 1.83% 

BRDM2 3.795 100.00% 45.24% 2.79% 2.28% 

BMP2 n/a n/a n/a n/a 0.00% 

T72 4.692 100.00% 25.43% 3.51% 16.06% 

ZSU23-4 3.578 100.00% 57.61% 2.98% 10.78% 

Avg 3.481 100.00% 49.83% 2.94% 6.19% 

 

Table 8. Accuracy statistics for 1500 m trained YOLO v4. 

 

1000 m CLE DP EinGT IoU % det. 

BTR70 2.970 100.0% 100.0% 79.40% 100.0% 

BRDM2 2.423 100.0% 100.0% 65.20% 100.0% 

BMP2 3.633 100.0% 100.0% 72.20% 100.0% 

T72 3.149 100.0% 100.0% 61.07% 100.0% 

ZSU23-4 2.667 100.0% 100.0% 85.07% 100.0% 

Avg 2.968 100.0% 100.0% 72.59% 100.0% 

1500 m CLE DP EinGT IoU % det. 

BTR70 1.233 100.0% 99.94% 89.14% 100.0% 

BRDM2 0.999 100.0% 100.0% 90.66% 100.0% 

BMP2 1.014 100.0% 100.0% 90.61% 100.0% 

T72 1.182 100.0% 100.0% 89.85% 100.0% 

ZSU23-4 1.074 100.0% 100.0% 86.75% 100.0% 

Avg 1.100 100.0% 99.99% 89.40% 100.0% 

2000 m CLE DP EinGT IoU % det. 

BTR70 1.166 100.0% 100.0% 54.98% 100.0% 

BRDM2 2.154 100.0% 100.0% 54.47% 100.0% 

BMP2 1.286 100.0% 100.0% 69.69% 100.0% 

T72 1.366 100.0% 100.0% 51.63% 100.0% 

ZSU23-4 1.811 100.0% 100.0% 51.60% 100.0% 

Avg 1.557 100.0% 100.0% 56.47% 100.0% 

2500 m CLE DP EinGT IoU % det. 

BTR70 1.331 100.0% 100.0% 25.93% 64.44% 

BRDM2 1.804 100.0% 100.0% 25.74% 86.56% 

BMP2 36.233 87.13% 87.13% 29.64% 35.89% 

T72 2.243 100.0% 100.0% 28.97% 71.17% 

ZSU23-4 1.451 100.0% 100.0% 25.75% 13.61% 

Avg 8.612 97.43% 97.43% 27.21% 54.33% 

3000 m CLE DP EinGT IoU % det. 

BTR70 1.211 100.0% 100.0% 22.03% 8.61% 

BRDM2 2.268 100.0% 100.0% 10.76% 10.78% 

BMP2 n/a n/a n/a n/a 0.00% 

T72 1.997 100.0% 100.0% 15.43% 5.78% 

ZSU23-4 3.118 100.0% 100.0% 14.89% 0.11% 

Avg 2.148 100.0% 100.0% 15.78% 6.32% 

3500 m CLE DP EinGT IoU % det. 

BTR70 1.207 100.0% 100.0% 6.03% 0.11% 

BRDM2 n/a n/a n/a n/a 0.00% 

BMP2 n/a n/a n/a n/a 0.00% 
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T72 3.904 100.0% 22.08% 2.82% 3.67% 

ZSU23-4 n/a n/a n/a n/a 0.00% 

Avg 1.022 40.00% 24.42% 4.43% 0.76% 

 

APPENDIX 2: SUPPORTING MATERIALS FOR SECTION 4 
 

Table 9. YOLO v4 accuracy statistics for 2000 m trained model. 

 

1000 m CLE DP EinGT IoU % det. 

BTR70 3.862 100.0% 100.0% 71.19% 99.7% 

BRDM2 3.939 100.0% 100.0% 50.13% 100.0% 

BMP2 3.368 100.0% 100.0% 67.32% 98.7% 

T72 3.294 99.70% 100.0% 62.72% 99.8% 

ZSU23-4 3.039 100.0% 100.0% 70.15% 99.9% 

Avg 3.501 99.9% 100.0% 64.30% 99.6% 

1500 m CLE DP EinGT IoU % det. 

BTR70 1.503 100.0% 100.0% 69.37% 100.0% 

BRDM2 2.362 100.0% 100.0% 55.15% 100.0% 

BMP2 1.401 100.0% 100.0% 54.41% 98.1% 

T72 2.527 100.0% 100.0% 64.85% 100.0% 

ZSU23-4 2.590 99.41% 99.46% 72.49% 100.0% 

Avg 2.077 99.88% 99.89% 63.25% 99.6% 

2000 m CLE DP EinGT IoU % det. 

BTR70 0.910 100.0% 100.0% 90.44% 100.0% 

BRDM2 0.965 100.0% 100.0% 87.92% 100.0% 

BMP2 0.984 100.0% 100.0% 90.32% 100.0% 

T72 1.082 100.0% 100.0% 87.45% 100.0% 

ZSU23-4 1.176 100.0% 100.0% 89.84% 100.0% 

Avg 1.023 100.0% 100.0% 89.19% 100.0% 

2500 m CLE DP EinGT IoU % det. 

BTR70 1.414 100.0% 100.0% 42.32% 97.94% 

BRDM2 1.413 100.0% 100.0% 44.56% 95.33% 

BMP2 62.823 73.93% 73.93% 52.13% 41.00% 

T72 2.440 99.8% 99.8% 60.33% 96.94% 

ZSU23-4 1.683 100.0% 100.0% 46.34% 71.00% 

Avg 13.955 94.75% 94.75% 49.14% 80.44% 

3000 m CLE DP EinGT IoU % det. 

BTR70 1.312 100.0% 100.0% 30.63% 65.44% 

BRDM2 1.820 100.0% 100.0% 26.79% 76.56% 

BMP2 1.876 100.0% 100.0% 37.47% 0.33% 

T72 1.546 100.0% 100.0% 33.29% 55.11% 

ZSU23-4 3.201 97.6% 96.4% 27.79% 29.56% 

Avg 1.951 99.5% 99.3% 31.20% 45.40% 

3500 m CLE DP EinGT IoU % det. 

BTR70 1.266 100.0% 99.5% 10.98% 10.89% 

BRDM2 2.011 98.68% 98.41% 8.47% 20.50% 

BMP2 n/a n/a n/a n/a 0.00% 

T72 2.313 100.0% 81.33% 6.65% 3.50% 

ZSU23-4 1.378 100.0% 99.39% 10.19% 8.72% 

Avg 1.742 99.67% 94.66% 9.07% 10.90% 
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Table 10. YOLO v4 accuracy statistics for 2500 m trained model. 

 

1000 m CLE DP EinGT IoU % det. 

BTR70 2.809 100.0% 100.0% 63.52% 96.7% 

BRDM2 3.221 100.0% 100.0% 44.58% 98.1% 

BMP2 3.526 99.6% 100.0% 40.01% 99.6% 

T72 3.462 100.0% 100.0% 45.37% 98.0% 

ZSU23-4 2.720 100.0% 100.0% 55.95% 94.2% 

Avg 3.148 99.9% 100.0% 49.89% 97.3% 

1500 m CLE DP EinGT IoU % det. 

BTR70 1.607 100.0% 100.0% 60.92% 100.0% 

BRDM2 2.011 100.0% 100.0% 44.12% 100.0% 

BMP2 1.710 100.0% 100.0% 40.03% 100.0% 

T72 1.937 100.0% 100.0% 43.46% 100.0% 

ZSU23-4 2.857 100.0% 100.0% 57.77% 99.9% 

Avg 2.024 100.0% 100.0% 49.26% 100.0% 

2000 m CLE DP EinGT IoU % det. 

BTR70 1.242 100.0% 100.0% 73.35% 99.8% 

BRDM2 1.721 100.0% 100.0% 74.87% 99.3% 

BMP2 1.582 100.0% 100.0% 64.41% 99.3% 

T72 2.062 100.0% 100.0% 67.95% 100.0% 

ZSU23-4 1.717 100.0% 100.0% 79.04% 99.3% 

Avg 1.665 100.0% 100.0% 71.93% 99.5% 

2500 m CLE DP EinGT IoU % det. 

BTR70 0.920 100.0% 100.0% 66.68% 100.0% 

BRDM2 1.138 100.0% 100.0% 79.39% 100.0% 

BMP2 0.795 100.0% 100.0% 77.29% 100.0% 

T72 1.356 100.0% 100.0% 67.68% 100.0% 

ZSU23-4 1.143 100.0% 100.0% 67.80% 100.0% 

Avg 1.071 100.0% 100.0% 71.77% 100.0% 

3000 m CLE DP EinGT IoU % det. 

BTR70 1.399 100.0% 100.0% 32.26% 98.17% 

BRDM2 1.556 100.0% 100.0% 43.22% 81.89% 

BMP2 1.363 100.0% 100.0% 52.86% 98.50% 

T72 1.948 100.0% 100.0% 42.75% 84.56% 

ZSU23-4 1.750 100.0% 99.9% 39.85% 94.00% 

Avg 1.603 100.0% 100.0% 42.19% 91.42% 

3500 m CLE DP EinGT IoU % det. 

BTR70 1.817 100.0% 84.0% 6.54% 66.44% 

BRDM2 1.726 98.97% 98.97% 8.38% 26.67% 

BMP2 1.897 100.0% 95.36% 13.41% 25.17% 

T72 2.650 100.0% 94.70% 9.14% 48.56% 

ZSU23-4 1.316 100.0% 99.20% 8.93% 69.61% 

Avg 1.881 99.79% 94.45% 9.28% 47.29% 

 

Table 11. YOLO v4 accuracy statistics for 3000 m trained model. 

 

1000 m CLE DP EinGT IoU % det. 

BTR70 3.412 99.9% 100.0% 34.79% 83.3% 

BRDM2 6.965 97.8% 100.0% 21.12% 93.9% 

BMP2 2.874 100.0% 100.0% 23.44% 64.2% 

T72 3.996 98.3% 100.0% 26.86% 86.8% 

ZSU23-4 3.107 100.0% 100.0% 30.22% 91.0% 

Avg 4.071 99.2% 100.0% 27.29% 83.8% 
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1500 m CLE DP EinGT IoU % det. 

BTR70 1.936 100.0% 100.0% 39.93% 93.6% 

BRDM2 1.430 100.0% 100.0% 27.19% 99.6% 

BMP2 1.510 100.0% 100.0% 24.40% 94.4% 

T72 2.168 100.0% 100.0% 27.67% 100.0% 

ZSU23-4 2.724 100.0% 100.0% 33.01% 98.4% 

Avg 1.954 100.0% 100.0% 30.44% 97.2% 

2000 m CLE DP EinGT IoU % det. 

BTR70 1.221 100.0% 100.0% 54.21% 98.3% 

BRDM2 1.748 100.0% 100.0% 44.17% 100.0% 

BMP2 1.476 100.0% 100.0% 43.86% 91.1% 

T72 1.482 100.0% 100.0% 45.70% 100.0% 

ZSU23-4 1.683 100.0% 100.0% 61.34% 87.8% 

Avg 1.522 100.0% 100.0% 49.85% 95.4% 

2500 m CLE DP EinGT IoU % det. 

BTR70 1.155 100.0% 100.0% 63.71% 99.8% 

BRDM2 1.920 100.0% 100.0% 73.95% 95.4% 

BMP2 113.347 52.6% 52.6% 41.28% 100.0% 

T72 2.305 100.0% 100.0% 75.16% 99.9% 

ZSU23-4 1.720 100.0% 100.0% 72.16% 88.4% 

Avg 24.089 90.5% 90.5% 65.25% 96.7% 

3000 m CLE DP EinGT IoU % det. 

BTR70 0.922 100.0% 100.0% 83.74% 100.00% 

BRDM2 1.027 100.0% 100.0% 72.76% 100.00% 

BMP2 0.885 100.0% 100.0% 82.95% 100.00% 

T72 1.100 100.0% 100.0% 79.87% 100.00% 

ZSU23-4 0.817 100.0% 100.0% 82.75% 100.00% 

Avg 0.950 100.0% 100.0% 80.41% 100.00% 

3500 m CLE DP EinGT IoU % det. 

BTR70 1.047 100.0% 99.1% 21.36% 99.61% 

BRDM2 1.535 99.73% 99.73% 23.91% 97.39% 

BMP2 1.036 100.0% 100.00% 28.05% 96.17% 

T72 1.568 100.0% 98.38% 20.80% 87.83% 

ZSU23-4 1.463 100.0% 83.78% 22.77% 94.56% 

Avg 1.330 99.95% 96.20% 23.38% 95.11% 
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