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ABSTRACT 

This paper investigates the design of reduced order controllers for the stabilization of large scale linear 

discrete-time control systems. Sufficient conditions are derived for the design of reduced order 

controllers by obtaining a reduced order model of the original large scale linear system using the 

dominant state of the system. The reduced order controllers are assumed to use only the state of the 

reduced order model of the original plant. 
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1. INTRODUCTION 

During the past four decades, a significant attention has been paid to the construction of reduced 

order observers and stabilization using reduced-order controllers for linear control systems [1-

10]. In the recent decades, there has been a good attention paid to the control problem of large 

scale linear systems. This is due to the practical and technical issues like information transfer 

networks, data acquisition, sensing, computing facilities and the associated cost involved which 

stem from using full order controller design. Thus, there is a great demand for the control of 

large scale linear systems with the use of reduced-order controllers rather than full-order 

controllers. 

In this paper, we present the design of reduced-order controllers for large scale linear discrete-

time control systems. Our design is carried out by first deriving a reduced-order model of the 

large scale linear discrete-time plant retaining only the dominant state of the given system.  The 

dominant state of a linear control system corresponds to the slow modes of the linear system, 

while the non-dominant state of the control system corresponds to the fast modes of the linear 

system [3-10]. 

As an application of our recent work [9-10], we first derive the reduced-order model of the 

given linear discrete-time control system. Using the reduced-order model obtained, we 

characterize the existence of a reduced-order controller that stabilizes the full linear system, 

using only the dominant state of the system.  
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This paper is organized as follows. In Section 2, we derive sufficient conditions for the 

derivation of reduced order model for the original large scale linear system. In Section 3, we 

deploy the reduced order model obtained in Section 2 to derive conditions for the existence of 

reduced order controllers for the original system that uses only the state of the reduced-order 

model. In Section 4, a numerical example is shown to verify the result. Conclusions are 

contained in the final section. 

 

2. REDUCED ORDER MODEL FOR LARGE SCALE LINEAR SYSTEMS 

In this section, we consider a large scale linear discrete-time control system given by 

           ( 1) ( ) ( )x k Ax k Bu k+ = +                                                    (1) 

where 
n

x R∈ is the state and 
m

u R∈ is the control input. Our goal is to derive a reduced-order 

model for the large scale linear plant (1). 

We assume that A  and B are constant matrices with real entries of dimensions n n× and 

n m× respectively.  

First, we suppose that we have performed an identification of the dominant (slow) and 

non-dominant (fast) states of the original linear system (1) using the modal approach as 

described in [9]. 

Without loss of generality, we may assume that  

         ,
s

f

x
x

x

 
=  
 

 

where r

sx R∈ represents the dominant state and 
n r

fx R
−∈ represents the non-dominant 

state.  

Then the system (1) takes the form 

        
( 1) ( )

( )
( 1) ( )

s ss sf s s

f fs ff f f

x k A A x k B
u k

x k A A x k B

+       
= +       

+       
                 (2) 

For the sake of simplicity, we shall assume that the matrix A  has distinct eigenvalues. We note 

that this condition is usually satisfied in most practical situations. Then it follows that A  is 

diagonalizable. 

Thus, we can find a nonsingular (modal) matrix M consisting of the n  linearly independent 

eigenvectors of A  so that the linear transformation  

         ( )  ( )x k M z k=                                                                    (3) 

results in the original system (2) being transformed into the following diagonal form 

        ( 1)  ( )  ( )z k z k u k+ = Λ + Γ                                                 (4) 
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where  

          
1

0

0

s

f

M AM
−

Λ 
Λ = =  

Λ 
                                               (5) 

is a diagonal matrix consisting of the n eigenvalues of A  and 

           
1 s

f

M B
−

Γ 
Γ = =  

Γ 
.                                                           (6) 

Thus, the plant (4) can be written as 

          
( 1) 0 ( )

( )
( 1) 0 ( )

s s s s

f f f f

z k z k
u k

z k z k

+ Λ Γ       
= +       

+ Λ Γ       
                 (7) 

Next, we make the following assumptions: 

(H1) As ,k → ∞  ( 1) ( ),f fz k z k+ ≈ i.e. fz takes a constant value in the steady-state. 

(H2) The matrix 
fI − Λ is invertible. 

Then it follows from (7) that for large values of ,k we have 

         ( ) ( )  ( )f f f fz k z k u k≈ Λ + Γ                                                 (8) 

i.e. 

         
1( ) ( )   ( )f f fz k I u k−≈ − Λ Γ                                                 (9) 

The inverse of the linear transformation (3) is given by 

         
1( ) ( )  ( )z k M x k G x k

−= =                                                   (10) 

i.e.  

        
( ) ( )

( ) ( )

s ss sf s

f fs ff f

z k G G x k

z k G G x k

     
=     

     
                                           (11) 

Next, we assume the following: 

(H3) The matrix ffG is invertible. 

Using the assumption (H3), we derive the following equation from (11): 

       
1 1( )  ( )  ( )f ff fs s ff fx k G G x k G z k− −= − +                                      (12) 
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Substituting (8) into (12), we get 

      ( )  ( )  ( ),f sx k P x k Q u k= +                                                      (13) 

where 

       
1

ff fsP G G−= −      and     ( )
1

1

ff f f
Q G I

−
−= − − Λ Γ                       (14) 

Substituting (13) into (2), we get the reduced order model of the original linear system as 

       ( 1)  ( )  ( )s s s sx k A x k B u k
∗ ∗+ = +                                                (15) 

where 

        s ss sfA A A P∗ = +       and   s s ffB B A Q∗ = +                                 (16) 

Thus, under the assumptions (H1)-(H3), the original linear system (1) can be expressed in a 

simplified form as  

         
( 1) ( )0

( )
( 1) ( )0

s ss s

f ff f

x k x kA B
u k

x k x kA B

∗ ∗

∗ ∗

+       
= +      

+          
                        (17) 

3. REDUCED ORDER CONTROLLER DESIGN 

In this section, we consider the design of reduced order controller for the linear system (17) 

using only the dominant state sx of the system. Thus, for the linear system (17), we investigate 

the problem of finding a state feedback controller of the form 

         
( )

( ) 0  ( )
( )

s

s s s

f

x k
u k K K x k

x k

∗ ∗
 

 = − = −  
 

                               (18) 

so that the resulting closed-loop system governed by the equations  

        
( )

( )

( 1) ( )

( 1) ( )

s s s s s

f f f f s

x k A B K x k

x k A B K x k

∗ ∗ ∗

∗ ∗ ∗

+ = −

+ = −
                                               (19) 

is exponentially stable. [Note that the stabilizing feedback control law (18), if it exists, will also 

stabilize the reduced-order linear system (15).] 

From the first equation of (19), it follows that 

           ( )( ) (0)
k

s s s s sx k A B K x
∗ ∗ ∗= −                                                      (20) 

which shows that ( ) 0sx k →  as k → ∞ if and only if the system pair ( ),
s s

A B
∗ ∗

is stabilizable. 
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Especially, if the system pair ( ),
s s

A B
∗ ∗

is controllable, then the eigenvalues of the closed-loop 

system matrix 
s s sA B K
∗ ∗ ∗−  can be arbitrarily placed in the complex plane. In particular, we 

can always find a gain matrix sF
∗  such that the closed-loop system matrix s s sA B K

∗ ∗ ∗−  is 

convergent. Hence, we obtain the following result 

 

Theorem 1. Under the assumptions (H1)-(H3), the system (15) is a reduced-order 

model for the original linear system (1). Also, the original linear system (1) can be 

expressed by the equations (20). Next, the feedback control law (18) that uses only the 

dominant state of the linear system (1) stabilizes the system (17) if and only if it 

stabilizes the reduced-order linear system (15). Thus, the reduced order feedback 

controller problem for the given linear system (1) is solvable if and only if the system 

pair ( ),
s s

A B
∗ ∗

 is stabilizable, i.e. there exists a feedback gain matrix sK
∗  such that the closed-

loop system matrix s s sA B K
∗ ∗ ∗−  is convergent. If the system pair ( ),

s s
A B

∗ ∗
is controllable, 

then we can always find eigenvalues inside the unit circle of the complex plane and hence we 

can construct the feedback control law (18) that stabilizes the full linear system (17). � 

4. NUMERICAL EXAMPLE 

We consider the fourth order linear discrete-time control system described by 

             ( 1)  ( )  ( )x k A x k B u k+ = +                                                                                       (21) 

where 

             

2.6966 0.8948 0.1310 0.2093

0.3557 1.3681 0.9408 0.4551

0.0490 0.2512 0.5124 0.0811

0.7553 0.9327 0.8477 0.8511

A

 
 
 =
 
 
 

 and  

0.9126

0.4523
.

0.6721

0.3895

B

 
 
 =
 
 
 

                        (22) 

The eigenvalues of the matrix A  are  

        1 2 3 43.1402,  1.5550,  0.4280,  0.3050λ λ λ λ= = = =  

Thus, we note that 1 2,λ λ are unstable (slow) eigenvalues and 3 4,λ λ are stable (fast) eigenvalues 

of the system matrix .A   

The dominance measure of the eigenvalues is calculated as in [9] and obtained as 

        

0.5232 0.6021 0.0018 0.1814

0.1922 0.6495 0.0243 0.4396
    

0.0363 0.1598 0.0247 0.7480

0.2644 0.4070 0.0999 0.6610

− 
 

− − − Ω =
 − − −
 
− − − − 
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To determine the dominance of the k th eigenvalues in all the states, we use the measure  

                     
4

1

=     k ik

i=

Θ Ω∑  

Thus, we obtain 

                  [ ]1.0161 0.6143 0.0527 0.1713Θ = − − −  

Thus, it is clear that the first two states ( )1 2,x x are the dominant (slow) states, while the last 

two states ( )3 4,  x x are the non-dominant (fast) states of the linear system (21). 

Using the procedure described in Section 2, the reduced-order linear model for the given linear 

system (21) is obtained as  

              ( 1) ( ) ( )s s s sx k A x k B u k
∗ ∗+ = +                                                            (23) 

where 

             
2.7375 1.0961

0.4343 1.9577
sA
∗  

=  
 

   and  
0.2628

.
0.1301

sB
∗  

=  
− 

 

Clearly, the system pair ( ),
s s

A B
∗ ∗

 is completely controllable. Thus, the eigenvalues of the 

closed-loop system matrix s s sA B K
∗ ∗ ∗−  can be placed arbitrarily inside the unit circle. 

In particular, we choose the control law 

              s su K x
∗= −                                                                                           (24) 

such that the closed-loop system matrix s s sA B K
∗ ∗ ∗−  has the eigenvalues 1 20.1, 0.1.λ λ∗ ∗= = A 

simple calculation in MATLAB (using Ackermann’s formula) gives 

              [ ]38.8383 43.9036sK ∗ =  

Upon substitution of the control law (24) into the reduced-order linear system (23), we obtain 

the closed-loop linear system 

                ( )( 1) ( )
s s s s s

x k A B K x k
∗ ∗ ∗+ = −                                                    (25) 

which has the stable eigenvalues 1 0.1λ∗ =  and 2 0.1.λ∗ =  

Thus, the closed-loop system (25) is globally exponentially stable.  
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The general solution of the system (25) is given by the equation 

( )( ) (0).
k

s s s s sx k A B K x
∗ ∗ ∗= −  

The response ( )sx k of the closed-loop system (25) for the initial state  

                   
10

(0)
10

sx
 

=  
 

 

is depicted in Figure 1.    

 

Figure 1. Time Responses of the Closed-Loop System (25) 

4. CONCLUSIONS 

In this paper, sufficient conditions are derived for the design of reduced order controllers by 

obtaining a reduced order model of the original plant using the dominant state of the system. 

The reduced order controllers are assumed to use only the state of the reduced order model of 

the original plant. An example has been presented to illustrate the effectiveness of the proposed 

design of reduced order controllers for a four-dimensional linear discrete-time control system. 
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