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ABSTRACT 

Smaller feature size, higher clock frequency and lower power consumption are of core concerns of today’s 

nano-technology, which has been resulted by continuous downscaling of CMOS technologies. The resultant 

‘device shrinking’ reduces the soft error tolerance of the VLSI circuits, as very little energy is needed to 

change their states. Safety critical systems are very sensitive to soft errors. A bit flip due to soft error can 

change the value of critical variable and consequently the system control flow can completely be changed 

which leads to system failure. To minimize soft error risks, a novel methodology is proposed to detect and 

recover from soft errors considering only ‘critical code blocks’ and ‘critical variables’ rather than 

considering all variables and/or blocks in the whole program. The proposed method shortens space and 

time overhead in comparison to existing dominant approaches. 
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1. INTRODUCTION 

In recent Times, performance of microprocessors has been increasing remarkably due to 

improved fabrication technology. Smaller feature sizes, lower operating voltage levels, and 

reduced noise margins have also helped to improve the performance and lower the power 

consumption of today’s microprocessors. On the other hand, these advancements have made chips 

more prone to transient faults, which are temporary unintended changes of states resulting from 

the latching of single-event transient (transient voltage fluctuations); consequences of external 

particle strikes or process-related parametric variation. These transient faults when executed in 

the system create soft error. Unlike manufacturing or design error, soft error does not occur 
consistently rather these are transitory. Soft error involves changes to data by altering signal 

transfers and stored values - the charge in a storage circuit, as instance, and thereby, resulting in 

incorrect program execution. These do not cause permanent physical damage to the chip. 
 

The undesired change due to these errors may alter the control flow of the system and may be 
catastrophic for the desired functionalities of the system. Specially, they are matters of great 

concern in those systems where high reliability is necessary [4], [5], [6]. Space programs (where a 

system cannot malfunction while in flight), banking transaction (where a momentary failure may 

cause a huge difference in balance), automated railway system (where a single bit flip can  
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cause a drastic accident) [7], mission critical embedded applications, and so forth, are a few 

examples where soft errors are severe. 
 

Soft errors mitigating techniques mostly focuses on post design phases i.e. circuit level solutions, 

logic level solutions, error correcting code, spatial redundancy, etc., and some software based 

solutions evolving duplication of the whole program or duplication of instructions [8], Critical 

Variable re-computation in whole program [9], etc. are concerns of prior research. Duplication 
seems to provide high-coverage at runtime for soft errors; it makes a comparison after every 

instruction leaving high performance overhead to prevent error-propagation and resulting system 

crashes. It compares the results of replicated instructions at selected program points such as stores 

and branches [4]. While this reduces the performance overhead, it sacrifices coverage as the 

program may crash before reaching the comparison point [9]. Error Detection by Diverse Data 

and Duplicated Instruction [8] is a software-based diverse execution technique in which original 

program is transformed into a different program where each data operand is multiplied by a 

constant value. The same processor executes the original program and the transformed one and 

the results are compared. Error Detection by Diverse Data and Duplicated Instruction can’t detect 

errors in instruction issue and decode logic as it introduces diversity only in the data values used 

in the program and not in the instructions that compute the data values.  
 

For soft errors, designers often reimburse by adding hardware redundancy and making circuit and 

process-level adjustments. However, different types of applications have different data integrity 

and availability demands, which make hardware approaches such as these too costly for many 

markets. In this respect, software techniques can provide fault tolerance at a lower cost and with 

superior flexibility since they can be selectively deployed in the field even after the hardware has 

been manufactured. Most existing software-only techniques use recompilation, requiring access to 

program source code. Regardless of the code transformation method, existing techniques also 

sustain unnecessary momentous performance penalties by uniformly protecting the entire 

program without taking into account the varying susceptibility of different program regions and 

state elements to soft errors. Software based approaches can significantly improve dependability 

without requiring hardware modifications. This criterion makes software redundancy techniques 

significantly cheaper and easier to deploy than hardware based approaches, working even on 

machines already in the field. Exploitation of redundancy techniques in the field may become 

important because of poor estimates of the severity of the soft-error rate by designers and because 

of the uncertainty in the usage condition of the machine. Changes to the operating environment of 
the hardware can also have a noticeable effect on reliability, requiring the deployment of software 

redundancy techniques.  
 

Many static approaches [67], [68] have been proposed so far to find soft errors in programs, 

which have proven effective in finding errors of known types only. But there is still a large gap in 

providing high-coverage and low-latency (rapid) error detection to protect systems from soft error 

while the system is in operation. Hence, this paper proposed a new approach for soft error 

detection and recovery technique, which lessen time and memory overhead by working with 
critical blocks and variables within program code.  
 

The paper is organized as follows: Section 2 describes related works. Section 3 outlines the 

methodology. Experimental Analysis is shown in Section 4. Finally in Section 5, conclusions are 
stated. 

 

2. Related Work 

A good number of works have been performed on soft errors mitigation. Three types of soft errors 

mitigation techniques are highlighted so far; that are ‘Software based’ approach, ‘Hardware 
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based’ solutions and ‘Hardware and software combined’ approach which may be stated as 

‘hybrid’. 
 

Software based approaches to tolerate soft errors include redundant programs to detect and/or 
recover from the problem, duplicating instructions [13], [14], task duplication [15], dual use of 

super scalar data paths, and Error detection and Correction Codes (ECC) [16]. Chip level 

Redundant Threading (CRT) [12] used a load value queue such that redundant executions can 

always see an identical view of memory. Walcott et al. [56] used redundant multi threading to 

determine the architectural vulnerability factor, and Shye et al. [57] used process level 

redundancy to detect soft errors. In redundant multi threading, two identical threads are executed 

independently over some period and the outputs of the threads are compared to verify the 

correctness. EDDI [54] and SWIFT [55] duplicated instructions and program data to detect soft 

errors. Both redundant programs and duplicating instructions create higher memory requirements 

and increase register pressure. Error detection and Correction Codes (ECC) [16] adds extra bits 

with the original bit sequence to detect error. Using ECC to combinational logic blocks is 

complicated, and requires additional logic and calculations with already timing critical paths. 
 

Hardware solutions for soft errors mitigation mainly emphasize circuit level solutions, logic level 

solutions and architectural solutions. At the circuit level, gate sizing techniques [17], [18], [19] 

increasing capacitance [20], [21], resistive hardening [22] are commonly used to increase the 

critical charge (Qcrit) of the circuit node as high as possible. However, these techniques tend to 

increase power consumption and lower the speed of the circuit. Logic level solutions [58], [59], 

[60] mainly propose detection and recovery in combinational circuits by using redundant or self-

checking circuits. Architectural solutions mainly introduce redundant hardware in the system to 

make the whole system more robust against soft errors. They include dynamic implementation 

verification architecture (DIVA) [23]. 
 

Hardware and software combined approaches [24], [25], [29], [26], [30], [27] use the parallel 

processing capacity of chip multiprocessors (CMPs) and redundant multi threading to detect and 

recover the problem. Mohamed et al. [62] shows Chip Level Redundantly Threaded 

Multiprocessor with Recovery (CRTR), where the basic idea is to run each program twice, as two 

identical threads, on a simultaneous multithreaded processor. One of the more interesting matters 

in the CRTR scheme is that there are certain faults from which it cannot recover. If a register 

value is written prior to committing an instruction, and if a fault corrupts that register after the 

committing of the instruction, then CRTR fails to recover from that problem. In Simultaneously 

and Redundantly Threaded processors with Recovery (SRTR) scheme [65], there is a probability 

of fault corrupting both threads since the leading thread and trailing thread execute on the same 

processor. Others [61], [66], [63], [64] have followed similar approaches. However, in all cases 

the system is vulnerable to soft error problems in key areas.                                 
 

In contrast, the complex use of threads presents a difficult programming model in software-based 

approaches while in hardware-based approaches, duplication suffer not only from overhead due to 

synchronizing duplicate threads but also from inherent performance overhead due to additional 

hardware. Moreover, these post-functional design phase approaches can increase time delays and 

power overhead without offering any performance gain.  

 3. The Methodology to Mitigate Soft Errors Risks 

A novel methodology has been proposed to mitigate soft error risk. In this method, the major 

working phenomenon consists of two-phases. During 1st phase, the proposed method detects soft 

errors at critical blocks and critical variables. At 2
nd

 phase, the recovery mechanism goes to action 

by replacing the erroneous variable or code block with originals. The overall methodology is 

depicted in Figure 2. 
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The program that is to be executed is split into blocks; among them, ‘critical blocks’ are 

identified. Critical Blocks (CB) provide high coverage for data value errors. These include 

decisive programming code fragments and treated as special program-segments besides other 

blocks or segments. Advancing with program continuation depends on these blocks. The code 

blocks that determine branching of the program control flow are termed as critical-blocks. The 

dashed block in Figure 1 is example of CB within a program code segment. Critical blocks make 
decision which of the distinctive paths will be followed. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 
 

 

Critical variables (CV) provide high coverage for data value errors. Variables in a program that 

exhibit high sensitivity to random data errors in the application are critical variables. Placing 

checks on critical variables achieves high detection coverage. Critical variables are defined as 

those, which assume great sensitivity to errors, and deriving error detectors for these variables 

provides great exposure for errors in any data value used in the program. 
 

As Figure 2 illustrates, while the program is being executed, if critical blocks are encountered, 

they are treated specially. To meet these circumstances, a computational procedure is invoked and 

then the critical variables within the block are computed twice to get two outcomes. If the 

comparing-mechanism finds the results identical, the ordinary execution flow of the program 

continues from the next block. Otherwise, the variable or block is noticed to be affected by soft 

error.  
 

At the 2
nd

 phase, the recovery process responses. The task includes replacing the found erroneous 

critical block or variable with the original program-block/variable. To serve the purpose, a backup 
of the original program is managed earlier. 

 

 

 

 

 

 

    while (i>1) 

   { 

     a = a-1; 

     b = b+1; 

     x = x-y+b; 

     y = y+z; 

     z = z+1; 

    } 

       if (x>0)     path A 

          else        path B 

 

  path A 

call run(x) 
  path B 

call stop(x) 

if (x= =1) call right(x) 

if (x= =0)  call  left(x) 

 

Figure 1. Critical Block 
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3.1. Creation and Storing Back up of operational program  
 

It is the 1st and crucial step of the methodology. A backup of the examinee program is created and 

later on, the backup of that functioning program is kept in memory for further functioning. This 

backup is assumed to be soft error free. Diverse technique - ECC, Parity, RAID, and CRC or 

other techniques can be adopted to ensure soft error free back up.  
 

3.2. Critical Variables and Blocks Identification 
 

All variables or blocks are not equally responsible or susceptible to system failure in a computer 

program. These can be analyzed according to their significance level and responsibility to system 

mal-function or failure. Variables are of higher levels of significance are considered most 

vulnerable. 
 

Critical variables (CV) and Critical Blocks (CB) provide high coverage for data value errors. By 

dint of CV and CB, program execution flow is determined and assuming erroneous values 
diversified from originals, these lead to erroneous outcome of program. Variables are determined 

as ‘critical’ through adopting and considering some phenomenon like number of recursion, 

dependencies, etc. Criticality ranges higher with respect to more dependencies. 
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Figure 2. Soft Error Detection and Recovery 
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Figure 3.  An Example Program-segment to show Variable Dependency 
 

Different ways of variable dependence-relationships exist. As instance, a variable can be ‘data 

dependent’ or ‘control dependent’ on other variables. Data dependency uses pairs of program 

points.  A variable v defined at n is said to be ‘data dependent’ on another variable v0 at n0 if the 

latter is used in n and there exists an execution path from n0 to n on which v0 is not customized. 

Conversely, control dependency arises from branching in program due to statements that are 

conditional or from function calls. A variable v defined at n is said to be ‘control dependent’ on 
another variable v0 at n0 if the execution or non-execution of n depends on the truth-value of the 

expression involving v0 at n0. The program code fragment shown in Figure 3, which depicts a 

simple program with a single while-loop, narrates ideas of variable dependence relationships. At 

the end of the program, variable x depends upon the initial values of the variables i, z, y, b, x. 

Here, the way is shown in which variable dependence can be circular or loop carried (x’s 

dependence upon y) and involves control dependence (x’s dependence upon i) as well as data 

dependence (other dependences stated here).  
 

Besides, variable dependencies may be classified as ‘forward dependencies’, and ‘backward 

dependencies’. 
 

 

 

 

 

 

 

 

 

 

 

 

                                               

                                         
 

 

 

 

                                            Figure 4. Backward dependency graph 

 

 

 

 

 

    while (i>1) 

   { 

     a = a-1; 

     b = b+1; 

     x = x-y+b; 

     y = y+z; 

     j = j+1; 

     z = z+1; 

    } 

 

 

 
Var1 Var2 

rslt1 

rslt
2 

Var3 

Var0 

Var4 

rslt1=var1+var2

; 

rslt2=rslt1+var

3; 

var =rslt +var
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Figure  5. Forward dependency graph 
 

Figure 4 and Figure 5 shows the variable dependency graphs for backward and forward 

dependencies respectively. In the figures, three statements are considered and assumed as part of 

a program code segment and seven variables are deployed. As shown in Figure 4, while 

executing, value determination of variable ‘rslt2‘ of statement 2 will depend on statement 1 for 

result of the variable ‘rslt1’  , statement 3 will depend on statement 2 to calculate ’var0‘ since 

‘var0‘is the summation of ‘rslt2‘and ‘var4’. Hence, ‘var0‘is dependent on the variables at the back 

e.g., ‘rslt2‘, ‘var4’, ‘rslt1’ etc. This is called ‘back ward dependency’.  Any error in rslt2, var1, rslt1 

etc. will be propagated to var0.  If soft errors occur in any of the variables, it can be detected by 

comparing and checking only var0. 
 

As shown in Figure 5, statement 2 and statement 3 are dependent on ‘rslt0‘ in statement 1. Hence, 
the variables at the forward e.g., rslt2, rslt1 etc. are dependent on ‘rslt0’. This dependency is called 

‘forward dependency’. Considering the assignment statements, the tree in Figure 5 is formed and 

the root node (rslt0) is determined. It is seen that the root node is more critical among others 

because it is (root node) decisive in those respect. If soft errors occurred in any node other than 

root, that will ultimately be propagated to the root node.  
 

So, to detect soft errors, the critical variable comparison will be more efficient rather than 

consider all variables to be compared. This significantly reduces the execution time of program as 

well as memory utilization. Thus it may considerably increase the efficiency of error detection 

process. 
   
Critical Blocks (CB) are programming segments; the program control flow depends highly on 

these blocks. Identification of these blocks and advancing with the critical blocks and/or variables 

noticed within it, is the key concept of the proposed method. 
 

The code blocks responsible for branching the program control flow are recognized to be critical-

blocks.  

3.3 Soft Error Detection and Recovery 

The critical variables found in specific critical block are computed twice each and then compared 

two distinct outcome to determine whether they are identical or not. As Figure 1, while executing 
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 a full program code, faced critical block is executed twice and the result is compared. If the 

values found are identical then program execution flow continues to the next (next block). If the 

result of the two computations is distinct, the total block of program is marked and replaced by 

the relevant program code block that is in original. And program execution is continued from the 

current code block.  

The basic steps can be stated as follows: 

Step 1: Each critical block is recomputed. It is executed twice and received outcomes are stored 
individually. 

 
Step 2:  Recomputed results are then compared to make sure that they are identical / consistent. 

 
Step 3: If recomputed values show consistency, program will be continued from the next code 

block and no soft error will be reported. 

 
Step 4: If recomputed values show inconsistency, particular program block will be identified as 

erroneous and soft error will be reported; and then the recovery procedure will be called for. With 

the block replacing procedure, the significant erroneous critical block will be replaced by the 

relevant original program’s critical block. And the program execution will be continued from 

current block. 

4. Experimental Analysis 

The methodology is experimented through a multi phases simulation process. The simulation 

procedure mainly evolves ‘error-detection’ phase and ‘error-recovery’ phase. It detects the soft 

error occurred through the detection phase and duly recovers it in order to lead the program 

towards expected output with its counterpart; the recovery process. Through a backup creation 

phase, a backup of the operational program is created and kept in memory for soft error recovery 
process. A candidate program is checked through the simulator to detect soft error and duly 

reports it if there is any. Block wise execution of core program along with twin computation of 

critical one is helped by this backup to go to the desired end by supporting the blocks to be actual 

valued. A binary representation of the executable program is formed and lunched on the simulator 

editor as hexadecimal format. They are sequence of bit stream to negotiate with. Fault is injected 

manually that is flipping a bit/ bits to change the original code sequence.  

4.1 Injection of Faults 

In ‘fault injection’ phase, fault is injected manually through a fault-injection wizard of the 

simulator. Fault injection evolves bit flipping; this is to change a binary ‘0’ (zero) to a binary ‘1’ 

(one) and vice-versa at any bit position of a particular byte. Fault is injected at variables and/ or at 

any random position (instructions or variables) of the program’s binary file to change the value of 

the variables or the instructions. If binary representation of a variable’s value is 01000110, bit 

flipping may occur at any bit position due to error. If bit position 5 (say) will be flipped from 0 to 

1, the value of the variable will be 01001110 what will cause a huge difference for value of the 

variable. It is done so that in detection-phase, how the mechanism treats the fact - whether any 

crucial change on output of the program takes place due to injected fault(s) and that is detected; or 

minor change occurs having less significance to output of the program and detector ignores it 
treating it as benign fault(s) that is the program may run and produce a relatively realistic output. 
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4.2 Detection of Soft Errors 

After fault-injection at random position of the candidate program’s new representation as shown 

in following figure, detection process is to go ahead. The critical blocks come into main focus 

among all other program-blocks. While executing, they are computed twice and compared by 

values they contain. The error detection tool detects the mismatch(es) as error (as shown in Figure 

6) if the comparison is distinguished-valued. 

 

  

 
 

 
 

As soft error is transitory, it has neither repetitive occurrence nor long lasting effect. Hence, 

consecutive computation of variables results different result if any of them assumes erroneous 

value that should not to be. If no such case is encountered, ‘no soft error’ is reported by the 

utility. 

4.3 Recovery from Soft Errors 

In recovery phase, the previously noticed erroneous critical variable and its location are traced; 
and then, the backup is invoked to replace the erroneous critical code block with relevant 

originals. Soft error recovery tool in the interface activates the mechanism to perform recovery 

process. 
 

4.4 Result Analysis 

 
The proposed methodology has gone through an experimental simulation process. It exhibits 

some optimistic result-oriented outcomes.   

 

The methodology is found to have to deal with some constant amounts of critical variables in 

recognized critical blocks other than to go through considering all the variables in the critical 

system program code. This makes it less time consuming to perform computation as shown in 

Figure 7. 

 
 

 

Figure 6. Simulator interface 
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In contrast, treating with fewer variables (only in critical blocks) will definitely require some 

lower memory space (as shown in Figure 8) and hence, the overall program execution time will 

be reduced significantly. More over, if the critical variables-recomputed values are stored in L1 

cache, memory access latency will be a great issue to be noticed.   

 

 

 

 

 

Some other well-established methods like [8], [9], [11], [33] etc. takes longer execution time as 

their schemes required. Table 1 depicts a theoretical comparison among likely hood methods: 

 

 

 

 

Figure 7. Comparison of Execution Time 

Figure 8. Comparison of memory utilization 
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Table 1. Review of different soft-error tolerance techniques 
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5. Conclusions  

As soft errors become more widespread across a wide range of markets now a days, techniques, 

which can modify the level of protection to each user’s specific performance and reliability 

requirements, will be needed. The possibility of modification of existing methodologies to lower 

the criticalities of program blocks to minimize the risk of soft errors is reflected here. The 

significant contribution of the proposed method is to lower soft error risks with a minimum time 

and space complexity since it works only with critical variables in critical blocks; hence, all the 

variables in program code are not considered to be recomputed or replicated though they also may 

cause such error, that is from benign faults and faults that are not severe for the system; which 

does no interference to system performance. It is seen that only critical variables induced soft 

error affects systems program flow in a great extent to be malfunctioned. Hence, leaving some 

ineffective errors un-pursued, the proposed method can achieve the goal in a cost effective (with 

respect to time and space) way. 
  
Some possible steps could be adopted to enhance the performance of the method. Storing the 

recomputed outcomes of the critical blocks at cache memory will enhance memory access time, 

which can be a significant issue in case of memory latency. This can make the proposed method 

less time consuming by compensating the time killing to make double computation. The 

protection of backup of original program is a great concern to remain it soft error free. In support 

of storage, besides existing techniques such as Error-Correcting-Code (ECC), Redundant Array of 

Inexpensive Disks (RAID), enhancement can be explored. Another considerable concern is the 

critical blocks and critical variables. Obviously critical blocks and critical variables identification 

among numerous code blocks in operating program is a great challenge to make it optimum. 

Efficiency of the proposed method is mostly depends on proper identification of critical blocks 

and critical variables. They can be grouped according to their criticality that is treated differently 

in different view-points. Several issues like “fan out”, that is number of dependency/ branches 

exist; number of “recursion”- that is, looping or how many times a call repeated; “severity of 

blocks”,  that is block containing more weighted variables etc., are wide open to determine the 

criticality. Hence, much more scopes are available in the field of critical block and variable 

identification. In contrast, proper identification of these critical blocks and variables and work 
only with them can mitigate most of the soft error risks with time and space optimality.    
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