
Signal & Image Processing : An International Journal (SIPIJ) Vol.2, No.3, September 2011

DOI : 10.5121/sipij.2011.2311 121

An Efficient Approach towards Mitigating Soft
Errors Risks

1
Muhammad Sheikh Sadi,

1
Md. Mizanur Rahman Khan,

1
Md. Nazim Uddin,

2
Jan Jürjens

1
Khulna University of Engineering and Technology (KUET), Khulna, Bangladesh,

2
TU Dortmund, Germany

sheikhsadi@gmail.com, rk_mizan@yahoo.com

ABSTRACT

Smaller feature size, higher clock frequency and lower power consumption are of core concerns of today’s

nano-technology, which has been resulted by continuous downscaling of CMOS technologies. The resultant

‘device shrinking’ reduces the soft error tolerance of the VLSI circuits, as very little energy is needed to

change their states. Safety critical systems are very sensitive to soft errors. A bit flip due to soft error can

change the value of critical variable and consequently the system control flow can completely be changed

which leads to system failure. To minimize soft error risks, a novel methodology is proposed to detect and

recover from soft errors considering only ‘critical code blocks’ and ‘critical variables’ rather than

considering all variables and/or blocks in the whole program. The proposed method shortens space and

time overhead in comparison to existing dominant approaches.

KEYWORDS

Soft Errors, Risk mitigation, Safety Critical System, Critical Variable, Critical Block

1. INTRODUCTION

In recent Times, performance of microprocessors has been increasing remarkably due to

improved fabrication technology. Smaller feature sizes, lower operating voltage levels, and

reduced noise margins have also helped to improve the performance and lower the power

consumption of today’s microprocessors. On the other hand, these advancements have made chips

more prone to transient faults, which are temporary unintended changes of states resulting from

the latching of single-event transient (transient voltage fluctuations); consequences of external

particle strikes or process-related parametric variation. These transient faults when executed in

the system create soft error. Unlike manufacturing or design error, soft error does not occur
consistently rather these are transitory. Soft error involves changes to data by altering signal

transfers and stored values - the charge in a storage circuit, as instance, and thereby, resulting in

incorrect program execution. These do not cause permanent physical damage to the chip.

The undesired change due to these errors may alter the control flow of the system and may be
catastrophic for the desired functionalities of the system. Specially, they are matters of great

concern in those systems where high reliability is necessary [4], [5], [6]. Space programs (where a

system cannot malfunction while in flight), banking transaction (where a momentary failure may

cause a huge difference in balance), automated railway system (where a single bit flip can

Signal & Image Processing : An International Journal (SIPIJ) Vol.2, No.3, September 2011

122

cause a drastic accident) [7], mission critical embedded applications, and so forth, are a few

examples where soft errors are severe.

Soft errors mitigating techniques mostly focuses on post design phases i.e. circuit level solutions,

logic level solutions, error correcting code, spatial redundancy, etc., and some software based

solutions evolving duplication of the whole program or duplication of instructions [8], Critical

Variable re-computation in whole program [9], etc. are concerns of prior research. Duplication
seems to provide high-coverage at runtime for soft errors; it makes a comparison after every

instruction leaving high performance overhead to prevent error-propagation and resulting system

crashes. It compares the results of replicated instructions at selected program points such as stores

and branches [4]. While this reduces the performance overhead, it sacrifices coverage as the

program may crash before reaching the comparison point [9]. Error Detection by Diverse Data

and Duplicated Instruction [8] is a software-based diverse execution technique in which original

program is transformed into a different program where each data operand is multiplied by a

constant value. The same processor executes the original program and the transformed one and

the results are compared. Error Detection by Diverse Data and Duplicated Instruction can’t detect

errors in instruction issue and decode logic as it introduces diversity only in the data values used

in the program and not in the instructions that compute the data values.

For soft errors, designers often reimburse by adding hardware redundancy and making circuit and

process-level adjustments. However, different types of applications have different data integrity

and availability demands, which make hardware approaches such as these too costly for many

markets. In this respect, software techniques can provide fault tolerance at a lower cost and with

superior flexibility since they can be selectively deployed in the field even after the hardware has

been manufactured. Most existing software-only techniques use recompilation, requiring access to

program source code. Regardless of the code transformation method, existing techniques also

sustain unnecessary momentous performance penalties by uniformly protecting the entire

program without taking into account the varying susceptibility of different program regions and

state elements to soft errors. Software based approaches can significantly improve dependability

without requiring hardware modifications. This criterion makes software redundancy techniques

significantly cheaper and easier to deploy than hardware based approaches, working even on

machines already in the field. Exploitation of redundancy techniques in the field may become

important because of poor estimates of the severity of the soft-error rate by designers and because

of the uncertainty in the usage condition of the machine. Changes to the operating environment of
the hardware can also have a noticeable effect on reliability, requiring the deployment of software

redundancy techniques.

Many static approaches [67], [68] have been proposed so far to find soft errors in programs,

which have proven effective in finding errors of known types only. But there is still a large gap in

providing high-coverage and low-latency (rapid) error detection to protect systems from soft error

while the system is in operation. Hence, this paper proposed a new approach for soft error

detection and recovery technique, which lessen time and memory overhead by working with
critical blocks and variables within program code.

The paper is organized as follows: Section 2 describes related works. Section 3 outlines the

methodology. Experimental Analysis is shown in Section 4. Finally in Section 5, conclusions are
stated.

2. Related Work

A good number of works have been performed on soft errors mitigation. Three types of soft errors

mitigation techniques are highlighted so far; that are ‘Software based’ approach, ‘Hardware

Signal & Image Processing : An International Journal (SIPIJ) Vol.2, No.3, September 2011

123

based’ solutions and ‘Hardware and software combined’ approach which may be stated as

‘hybrid’.

Software based approaches to tolerate soft errors include redundant programs to detect and/or
recover from the problem, duplicating instructions [13], [14], task duplication [15], dual use of

super scalar data paths, and Error detection and Correction Codes (ECC) [16]. Chip level

Redundant Threading (CRT) [12] used a load value queue such that redundant executions can

always see an identical view of memory. Walcott et al. [56] used redundant multi threading to

determine the architectural vulnerability factor, and Shye et al. [57] used process level

redundancy to detect soft errors. In redundant multi threading, two identical threads are executed

independently over some period and the outputs of the threads are compared to verify the

correctness. EDDI [54] and SWIFT [55] duplicated instructions and program data to detect soft

errors. Both redundant programs and duplicating instructions create higher memory requirements

and increase register pressure. Error detection and Correction Codes (ECC) [16] adds extra bits

with the original bit sequence to detect error. Using ECC to combinational logic blocks is

complicated, and requires additional logic and calculations with already timing critical paths.

Hardware solutions for soft errors mitigation mainly emphasize circuit level solutions, logic level

solutions and architectural solutions. At the circuit level, gate sizing techniques [17], [18], [19]

increasing capacitance [20], [21], resistive hardening [22] are commonly used to increase the

critical charge (Qcrit) of the circuit node as high as possible. However, these techniques tend to

increase power consumption and lower the speed of the circuit. Logic level solutions [58], [59],

[60] mainly propose detection and recovery in combinational circuits by using redundant or self-

checking circuits. Architectural solutions mainly introduce redundant hardware in the system to

make the whole system more robust against soft errors. They include dynamic implementation

verification architecture (DIVA) [23].

Hardware and software combined approaches [24], [25], [29], [26], [30], [27] use the parallel

processing capacity of chip multiprocessors (CMPs) and redundant multi threading to detect and

recover the problem. Mohamed et al. [62] shows Chip Level Redundantly Threaded

Multiprocessor with Recovery (CRTR), where the basic idea is to run each program twice, as two

identical threads, on a simultaneous multithreaded processor. One of the more interesting matters

in the CRTR scheme is that there are certain faults from which it cannot recover. If a register

value is written prior to committing an instruction, and if a fault corrupts that register after the

committing of the instruction, then CRTR fails to recover from that problem. In Simultaneously

and Redundantly Threaded processors with Recovery (SRTR) scheme [65], there is a probability

of fault corrupting both threads since the leading thread and trailing thread execute on the same

processor. Others [61], [66], [63], [64] have followed similar approaches. However, in all cases

the system is vulnerable to soft error problems in key areas.

In contrast, the complex use of threads presents a difficult programming model in software-based

approaches while in hardware-based approaches, duplication suffer not only from overhead due to

synchronizing duplicate threads but also from inherent performance overhead due to additional

hardware. Moreover, these post-functional design phase approaches can increase time delays and

power overhead without offering any performance gain.

 3. The Methodology to Mitigate Soft Errors Risks

A novel methodology has been proposed to mitigate soft error risk. In this method, the major

working phenomenon consists of two-phases. During 1st phase, the proposed method detects soft

errors at critical blocks and critical variables. At 2
nd

 phase, the recovery mechanism goes to action

by replacing the erroneous variable or code block with originals. The overall methodology is

depicted in Figure 2.

Signal & Image Processing : An International Journal (SIPIJ) Vol.2, No.3, September 2011

124

The program that is to be executed is split into blocks; among them, ‘critical blocks’ are

identified. Critical Blocks (CB) provide high coverage for data value errors. These include

decisive programming code fragments and treated as special program-segments besides other

blocks or segments. Advancing with program continuation depends on these blocks. The code

blocks that determine branching of the program control flow are termed as critical-blocks. The

dashed block in Figure 1 is example of CB within a program code segment. Critical blocks make
decision which of the distinctive paths will be followed.

Critical variables (CV) provide high coverage for data value errors. Variables in a program that

exhibit high sensitivity to random data errors in the application are critical variables. Placing

checks on critical variables achieves high detection coverage. Critical variables are defined as

those, which assume great sensitivity to errors, and deriving error detectors for these variables

provides great exposure for errors in any data value used in the program.

As Figure 2 illustrates, while the program is being executed, if critical blocks are encountered,

they are treated specially. To meet these circumstances, a computational procedure is invoked and

then the critical variables within the block are computed twice to get two outcomes. If the

comparing-mechanism finds the results identical, the ordinary execution flow of the program

continues from the next block. Otherwise, the variable or block is noticed to be affected by soft

error.

At the 2
nd

 phase, the recovery process responses. The task includes replacing the found erroneous

critical block or variable with the original program-block/variable. To serve the purpose, a backup
of the original program is managed earlier.

 while (i>1)

 {

 a = a-1;

 b = b+1;

 x = x-y+b;

 y = y+z;

 z = z+1;

 }

 if (x>0) path A

 else path B

 path A

call run(x)
 path B

call stop(x)

if (x= =1) call right(x)

if (x= =0) call left(x)

Figure 1. Critical Block

Signal & Image Processing : An International Journal (SIPIJ) Vol.2, No.3, September 2011

125

3.1. Creation and Storing Back up of operational program

It is the 1st and crucial step of the methodology. A backup of the examinee program is created and

later on, the backup of that functioning program is kept in memory for further functioning. This

backup is assumed to be soft error free. Diverse technique - ECC, Parity, RAID, and CRC or

other techniques can be adopted to ensure soft error free back up.

3.2. Critical Variables and Blocks Identification

All variables or blocks are not equally responsible or susceptible to system failure in a computer

program. These can be analyzed according to their significance level and responsibility to system

mal-function or failure. Variables are of higher levels of significance are considered most

vulnerable.

Critical variables (CV) and Critical Blocks (CB) provide high coverage for data value errors. By

dint of CV and CB, program execution flow is determined and assuming erroneous values
diversified from originals, these lead to erroneous outcome of program. Variables are determined

as ‘critical’ through adopting and considering some phenomenon like number of recursion,

dependencies, etc. Criticality ranges higher with respect to more dependencies.

Block

Block

Critical Block

Block

Block

Functioning

Program

Block

Block

Critical Block

Block

Block

SE free Backup

Program

Computation 1

 Computation 2

Output

compariso

n

1

Similar

output

Distinct output

SE detection &

recovery utility

Copied original block

Legend

1: to start

SE: soft error

Figure 2. Soft Error Detection and Recovery

Signal & Image Processing : An International Journal (SIPIJ) Vol.2, No.3, September 2011

126

Figure 3. An Example Program-segment to show Variable Dependency

Different ways of variable dependence-relationships exist. As instance, a variable can be ‘data

dependent’ or ‘control dependent’ on other variables. Data dependency uses pairs of program

points. A variable v defined at n is said to be ‘data dependent’ on another variable v0 at n0 if the

latter is used in n and there exists an execution path from n0 to n on which v0 is not customized.

Conversely, control dependency arises from branching in program due to statements that are

conditional or from function calls. A variable v defined at n is said to be ‘control dependent’ on
another variable v0 at n0 if the execution or non-execution of n depends on the truth-value of the

expression involving v0 at n0. The program code fragment shown in Figure 3, which depicts a

simple program with a single while-loop, narrates ideas of variable dependence relationships. At

the end of the program, variable x depends upon the initial values of the variables i, z, y, b, x.

Here, the way is shown in which variable dependence can be circular or loop carried (x’s

dependence upon y) and involves control dependence (x’s dependence upon i) as well as data

dependence (other dependences stated here).

Besides, variable dependencies may be classified as ‘forward dependencies’, and ‘backward

dependencies’.

 Figure 4. Backward dependency graph

 while (i>1)

 {

 a = a-1;

 b = b+1;

 x = x-y+b;

 y = y+z;

 j = j+1;

 z = z+1;

 }

Var1 Var2

rslt1

rslt
2

Var3

Var0

Var4

rslt1=var1+var2

;

rslt2=rslt1+var

3;

var =rslt +var

Signal & Image Processing : An International Journal (SIPIJ) Vol.2, No.3, September 2011

127

Figure 5. Forward dependency graph

Figure 4 and Figure 5 shows the variable dependency graphs for backward and forward

dependencies respectively. In the figures, three statements are considered and assumed as part of

a program code segment and seven variables are deployed. As shown in Figure 4, while

executing, value determination of variable ‘rslt2‘ of statement 2 will depend on statement 1 for

result of the variable ‘rslt1’ , statement 3 will depend on statement 2 to calculate ’var0‘ since

‘var0‘is the summation of ‘rslt2‘and ‘var4’. Hence, ‘var0‘is dependent on the variables at the back

e.g., ‘rslt2‘, ‘var4’, ‘rslt1’ etc. This is called ‘back ward dependency’. Any error in rslt2, var1, rslt1

etc. will be propagated to var0. If soft errors occur in any of the variables, it can be detected by

comparing and checking only var0.

As shown in Figure 5, statement 2 and statement 3 are dependent on ‘rslt0‘ in statement 1. Hence,
the variables at the forward e.g., rslt2, rslt1 etc. are dependent on ‘rslt0’. This dependency is called

‘forward dependency’. Considering the assignment statements, the tree in Figure 5 is formed and

the root node (rslt0) is determined. It is seen that the root node is more critical among others

because it is (root node) decisive in those respect. If soft errors occurred in any node other than

root, that will ultimately be propagated to the root node.

So, to detect soft errors, the critical variable comparison will be more efficient rather than

consider all variables to be compared. This significantly reduces the execution time of program as

well as memory utilization. Thus it may considerably increase the efficiency of error detection

process.

Critical Blocks (CB) are programming segments; the program control flow depends highly on

these blocks. Identification of these blocks and advancing with the critical blocks and/or variables

noticed within it, is the key concept of the proposed method.

The code blocks responsible for branching the program control flow are recognized to be critical-

blocks.

3.3 Soft Error Detection and Recovery

The critical variables found in specific critical block are computed twice each and then compared

two distinct outcome to determine whether they are identical or not. As Figure 1, while executing

var1=rslt0

rslt1=var1+var3

;

rslt2=rslt1+var

;

Var1

rslt1

rslt2

Var3

rslt0

Var4

Signal & Image Processing : An International Journal (SIPIJ) Vol.2, No.3, September 2011

128

 a full program code, faced critical block is executed twice and the result is compared. If the

values found are identical then program execution flow continues to the next (next block). If the

result of the two computations is distinct, the total block of program is marked and replaced by

the relevant program code block that is in original. And program execution is continued from the

current code block.

The basic steps can be stated as follows:

Step 1: Each critical block is recomputed. It is executed twice and received outcomes are stored
individually.

Step 2: Recomputed results are then compared to make sure that they are identical / consistent.

Step 3: If recomputed values show consistency, program will be continued from the next code

block and no soft error will be reported.

Step 4: If recomputed values show inconsistency, particular program block will be identified as

erroneous and soft error will be reported; and then the recovery procedure will be called for. With

the block replacing procedure, the significant erroneous critical block will be replaced by the

relevant original program’s critical block. And the program execution will be continued from

current block.

4. Experimental Analysis

The methodology is experimented through a multi phases simulation process. The simulation

procedure mainly evolves ‘error-detection’ phase and ‘error-recovery’ phase. It detects the soft

error occurred through the detection phase and duly recovers it in order to lead the program

towards expected output with its counterpart; the recovery process. Through a backup creation

phase, a backup of the operational program is created and kept in memory for soft error recovery
process. A candidate program is checked through the simulator to detect soft error and duly

reports it if there is any. Block wise execution of core program along with twin computation of

critical one is helped by this backup to go to the desired end by supporting the blocks to be actual

valued. A binary representation of the executable program is formed and lunched on the simulator

editor as hexadecimal format. They are sequence of bit stream to negotiate with. Fault is injected

manually that is flipping a bit/ bits to change the original code sequence.

4.1 Injection of Faults

In ‘fault injection’ phase, fault is injected manually through a fault-injection wizard of the

simulator. Fault injection evolves bit flipping; this is to change a binary ‘0’ (zero) to a binary ‘1’

(one) and vice-versa at any bit position of a particular byte. Fault is injected at variables and/ or at

any random position (instructions or variables) of the program’s binary file to change the value of

the variables or the instructions. If binary representation of a variable’s value is 01000110, bit

flipping may occur at any bit position due to error. If bit position 5 (say) will be flipped from 0 to

1, the value of the variable will be 01001110 what will cause a huge difference for value of the

variable. It is done so that in detection-phase, how the mechanism treats the fact - whether any

crucial change on output of the program takes place due to injected fault(s) and that is detected; or

minor change occurs having less significance to output of the program and detector ignores it
treating it as benign fault(s) that is the program may run and produce a relatively realistic output.

Signal & Image Processing : An International Journal (SIPIJ) Vol.2, No.3, September 2011

129

4.2 Detection of Soft Errors

After fault-injection at random position of the candidate program’s new representation as shown

in following figure, detection process is to go ahead. The critical blocks come into main focus

among all other program-blocks. While executing, they are computed twice and compared by

values they contain. The error detection tool detects the mismatch(es) as error (as shown in Figure

6) if the comparison is distinguished-valued.

As soft error is transitory, it has neither repetitive occurrence nor long lasting effect. Hence,

consecutive computation of variables results different result if any of them assumes erroneous

value that should not to be. If no such case is encountered, ‘no soft error’ is reported by the

utility.

4.3 Recovery from Soft Errors

In recovery phase, the previously noticed erroneous critical variable and its location are traced;
and then, the backup is invoked to replace the erroneous critical code block with relevant

originals. Soft error recovery tool in the interface activates the mechanism to perform recovery

process.

4.4 Result Analysis

The proposed methodology has gone through an experimental simulation process. It exhibits

some optimistic result-oriented outcomes.

The methodology is found to have to deal with some constant amounts of critical variables in

recognized critical blocks other than to go through considering all the variables in the critical

system program code. This makes it less time consuming to perform computation as shown in

Figure 7.

Figure 6. Simulator interface

Signal & Image Processing : An International Journal (SIPIJ) Vol.2, No.3, September 2011

130

In contrast, treating with fewer variables (only in critical blocks) will definitely require some

lower memory space (as shown in Figure 8) and hence, the overall program execution time will

be reduced significantly. More over, if the critical variables-recomputed values are stored in L1

cache, memory access latency will be a great issue to be noticed.

Some other well-established methods like [8], [9], [11], [33] etc. takes longer execution time as

their schemes required. Table 1 depicts a theoretical comparison among likely hood methods:

Figure 7. Comparison of Execution Time

Figure 8. Comparison of memory utilization

Signal & Image Processing : An International Journal (SIPIJ) Vol.2, No.3, September 2011

131

Table 1. Review of different soft-error tolerance techniques

Approaches

Diverse Data

and

Duplicated

Instruction

ED
4
I [8]

Critical

Variables Re-

computation

for Transient

Error

Detection [9]

Source Code

Modification

[11], [33]]

Proposed

Method

Adopted

methodology

The original

program and

the

transformed

program are

both

executed on

the same

processor and

the results

are

compared.

Recomputes

only critical

variables

(not the

instructions)

to detect and

recovery from

soft errors.

Based on

modifications

of the source

code.

Protection

methods are

applied at the

intermediate

representation

level of the

compiled

source code.

A backup is

kept in a

memory for

error

correction.

Detection is

performed by

only re-

computation of

critical blocks.

Erroneous

blocks are

replaced by

the relevant

backed up

program

blocks.

Memory space

overhead

At least

double

Depends on

no. of Critical

variable.

Larger than

usual

depending upon

Modification

scheme

Depends on

no. of Critical

Blocks

Execution

time overhead

Longer than

usual since

comparison

Longer than

usual since CV

re-computation

High running

time since

source code

modification

Relatively

much lower

Number of

variables to be

executed

Double Depends on

no. of Critical

variable.

Depends on

modification

techniques

Depends on

no. of Critical

Blocks

Drawback

Program may

crash before

reaching the

comparison

point.

Possibility to

be erroneous

for both of

the programs.

Is not able to

detect all

severe errors

since it does

work only with

Critical

variables.

Instructions

may also be

erroneous.

System may

crush before

reaching the

control flow

checking point.

Improper

identification

of critical

blocks leads to

inefficiency.

Signal & Image Processing : An International Journal (SIPIJ) Vol.2, No.3, September 2011

132

5. Conclusions

As soft errors become more widespread across a wide range of markets now a days, techniques,

which can modify the level of protection to each user’s specific performance and reliability

requirements, will be needed. The possibility of modification of existing methodologies to lower

the criticalities of program blocks to minimize the risk of soft errors is reflected here. The

significant contribution of the proposed method is to lower soft error risks with a minimum time

and space complexity since it works only with critical variables in critical blocks; hence, all the

variables in program code are not considered to be recomputed or replicated though they also may

cause such error, that is from benign faults and faults that are not severe for the system; which

does no interference to system performance. It is seen that only critical variables induced soft

error affects systems program flow in a great extent to be malfunctioned. Hence, leaving some

ineffective errors un-pursued, the proposed method can achieve the goal in a cost effective (with

respect to time and space) way.

Some possible steps could be adopted to enhance the performance of the method. Storing the

recomputed outcomes of the critical blocks at cache memory will enhance memory access time,

which can be a significant issue in case of memory latency. This can make the proposed method

less time consuming by compensating the time killing to make double computation. The

protection of backup of original program is a great concern to remain it soft error free. In support

of storage, besides existing techniques such as Error-Correcting-Code (ECC), Redundant Array of

Inexpensive Disks (RAID), enhancement can be explored. Another considerable concern is the

critical blocks and critical variables. Obviously critical blocks and critical variables identification

among numerous code blocks in operating program is a great challenge to make it optimum.

Efficiency of the proposed method is mostly depends on proper identification of critical blocks

and critical variables. They can be grouped according to their criticality that is treated differently

in different view-points. Several issues like “fan out”, that is number of dependency/ branches

exist; number of “recursion”- that is, looping or how many times a call repeated; “severity of

blocks”, that is block containing more weighted variables etc., are wide open to determine the

criticality. Hence, much more scopes are available in the field of critical block and variable

identification. In contrast, proper identification of these critical blocks and variables and work
only with them can mitigate most of the soft error risks with time and space optimality.

ACKNOWLEDGEMENTS

The authors would like to thank Bishnu Sarker and Tanay Roy, Department of Computer Science

& Engineering, Khulna University of Engineering & Technology, Khulna-9203, Bangladesh for
their structural comments and valuable supports.

REFERENCES

[1] A. Timor, A. Mendelson, Y. Birk, and N. Suri, "Using under utilized CPU resources to enhance its

reliability," Dependable and Secure Computing, IEEE Transactions on, vol. 7, no. 1, pp. 94-109,

2010.

[2] E. L. Rhod, C. A. L. Lisboa, L. Carro, M. S. Reorda, and M. Violante, "Hardware and Software

Transparency in the Protection of Programs Against SEUs and SETs," Journal of Electronic Testing,

vol. 24, pp. 45-56, 2008.

[3] S. S. Mukherjee, J. Emer, and S. K. Reinhardt, "The soft error problem: an architectural perspective,"

in 11th International Symposium on High-Performance Computer Architecture, San Francisco, CA,

USA, pp. 243 - 247, 2005, pp. 243-7.

[4] R. K. Iyer, N. M. Nakka, Z. T. Kalbarczyk, and S. Mitra, "Recent advances and new avenues in

hardware-level reliability support,"Micro, IEEE, vol. 25, pp. 18-29, 2005.

Signal & Image Processing : An International Journal (SIPIJ) Vol.2, No.3, September 2011

133

[5] V. Narayanan and Y. Xie, "Reliability concerns in embedded system designs,"Computer, vol. 39, pp.

118-120, 2006.

[6] S. Tosun, "Reliability-centric system design for embedded systems," Ph.D. Thesis, Syracuse

University, United States --New York, 2005.

[7] Muhammad Sheikh Sadi, D. G. Myers, Cesar Ortega Sanchez, and Jan Jurjens, “Component

Criticality Analysis to Minimizing Soft Errors Risk.” Comput Syst Sci & Eng (2010), vol 26 no 1

September 2010.

[8] Nahmsuk Oh, Subhasis Mitra, Edward j. McClusky, “ED4I: Error Detection by Diverse Data and

Duplicated Instructions.” EEE Transactions on Computers Vol. 51 No. 2 February 2002

[9] Karthik Pattabiraman, Zbigniew Kalbarczyk, and Ravishankar K. Iyer, “Critical Variable

Recomputation for Transient Error Detection”, 2008

[10] Chen Cuiting, “A New Hybrid Fault Detection Technique for Systems-on-a-Chip”, July 1, 2008

[11] Adam Piotrowski, Dariusz Makowski, Grzegorz Jabło´nski, Andrzej, Napieralski, “The Automatic

Implementation of Software Implemented Hardware Fault Tolerance Algorithms as a Radiation-

Induced Soft Errors Mitigation Technique” Nuclear Science Symposium Conference Record, IEEE,

2008

[12] S. S. Mukherjee, M. Kontz, and S. K. Reinhardt, "Detailed design and evaluation of redundant multi-

threading alternatives," in 29th Annual International Symposium on Computer Architecture, pp. 99-

110, 2002, pp. 99-110.

[13] N. Oh, P. P. Shirvani, and E. J. McCluskey, "Error detection by duplicated instructions in super-scalar

processors," Reliability, IEEE Transactions on, vol. 51, pp. 63-75, 2002.

[14] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August, "SWIFT: software implemented

fault tolerance," Los Alamitos, CA, USA, 2005, pp. 243-54.

[15] Y. Xie, L. Li, M. Kandemir, N. Vijaykrishnan, and M. J. Irwin, "Reliability-aware co-synthesis for

embedded systems," in 15th IEEE International Conference on Application-Specific Systems,

Architectures and Processors, 2004, pp. 41-50.

[16] C. L. Chen and M. Y. Hsiao, "Error-Correcting Codes for Semiconductor Memory Applications: A

State-Of-The-Art Review," IBM Journal of Research and Development, vol. 28, pp. 124-134, 1984.

[17] J. K. Park and J. T. Kim, "A soft error mitigation technique for constrained gate-level designs," IEICE

Electronics Express, vol. 5, pp. 698-704, 2008.

[18] N. Miskov-Zivanov and D. Marculescu, "MARS-C: modeling and reduction of soft errors in

combinational circuits," Piscataway, NJ, USA, 2006, pp. 767-72.

[19] Z. Quming and K. Mohanram, "Cost-effective radiation hardening technique for combinational logic,"

Piscataway, NJ, USA, 2004, pp. 100-6.

[20] Oma, M. a, D. Rossi, and C. Metra, "Novel Transient Fault Hardened Static Latch," Charlotte, NC,

United states, 2003, pp. 886-892.

[21] P. R. ST Microelectronics Release, "New chip technology from ST microelectronics eliminates soft

error threat to electronic systems," Available at

www.st.com/stonline/press/news/year2003/t1394h.htm, 2003.

[22] L. R. Rockett, Jr., "Simulated SEU hardened scaled CMOS SRAM cell design using gated resistors,"

IEEE Transactions on Nuclear Science, vol. 39, pp. 1532-41, 1992.

[23] T. M. Austin, "DIVA: a reliable substrate for deep submicron microarchitecture design," in 32nd

Annual International Symposium on Microarchitecture, 1999, pp. 196-207.

[24] B. T. Gold, J. Kim, J. C. Smolens, E. S. Chung, V. Liaskovitis, E. Nurvitadhi, B. Falsafi, J. C. Hoe,

and A. G. Nowatzyk, "TRUSS: a reliable, scalable server architecture,"Micro, IEEE, vol. 25, pp. 51-

59, 2005.

[25] S. Krishnamohan, "Efficient techniques for modeling and mitigation of soft errors in nanometer-scale

static CMOS logic circuits," Ph.D. Thesis, Michigan State University, United States -- Michigan,

2005.

[26] A. G. Mohamed, S. Chad, T. N. Vijaykumar, and P. Irith, "Transient-fault recovery for chip

multiprocessors," IEEE Micro, vol. 23, p. 76, 2003.

[27] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers, "The case for lifetime reliability-aware

microprocessors," in 31st Annual International Symposium on Computer Architecture, 2004, pp. 276-

287.

[28] M. W. Rashid, E. J. Tan, M. C. Huang, and D. H. Albonesi, "Power-efficient error tolerance in chip

multiprocessors," Micro, IEEE, vol. 25, pp. 60-70, 2005.

Signal & Image Processing : An International Journal (SIPIJ) Vol.2, No.3, September 2011

134

[29] T. N. Vijaykumar, I. Pomeranz, and K. Cheng, "Transient-fault recovery using simultaneous

multithreading," in 29th Annual International Symposium on Computer Architecture, 2002, pp. 87-

98.

[30] Y. Xie, L. Li, M. Kandemir, N. Vijaykrishnan, and M. J. Irwin, "Reliability-aware co-synthesis for

embedded systems," in 15th IEEE International Conference on Application-Specific Systems,

Architectures and Processors, 2004, pp. 41-50.

[31] S. M. Seyed-Hosseini, N. Safaei, and M. J. Asgharpour, "Reprioritization of failures in a system

failure mode and effects analysis by decision making trial and evaluation laboratory technique,"

Reliability Engineering & System Safety, vol. 91, pp. 872-81, 2006.

[32] S. Krishnamohan, "Efficient techniques for modeling and mitigation of soft errors in nanometer-scale

static CMOS logic circuits," Ph.D. Thesis, Michigan State University, United States -- Michigan,

2005.

[33] Adam Piotrowski, Szymon Tarnowski, “Compiler-level Implementation of Single Event Upset Errors

Mitigation Algorithms.”

[34] R. C. Baumann, “Soft errors in advanced semiconductor devices — part I: the three radiation

sources,” Device and Materials Reliability, IEEE Transactions on Volume 1, Issue 1, 2001.

[35] “Radiation-induced soft errors in advanced semiconductor technologies,” IEEE Transactions on

Device and Materials Reliability, Vol. 5, No. 3,, 2005.

[36] M. Rebaudengo and M. Sonza Reorda and M. Violante, “A new approach to software-implemented

fault tolerance,” IEEE Latin American Test Workshop, vol. 40, pp. 433–437, 2002.

[37] O. Goloubeva and M. Rebaudengo and M. Sonza Reorda and M. Violante, “Soft-error detection using

control flow assertions,” 18th IEEE International Symposium on Defect and Fault Tolerance in VLSI

Systems (DFT’03), p. 581, 2003.

[38] N. Oh, “Software implemented fault tolerance,” Ph.D. dissertation, Stanford University, 2000.

[39] George A. Reis, Jonathan Chang, Neil Vachharajani, Ram Rangan, David I. August, Shubhendu S.

Mukherjee, “Design and Evaluation of Hybrid Fault-Detection Systems”, IEEE 2005

[40] L. L. Pullum, Software fault tolerance techniques and implementation. Artech House, Inc., 2001.

[41] S.E. Michalak and K.W. Harris and N.W. Hengartner and B.E. Takala and S.A. Wender,, “Predicting

the number of fatal soft errors in los alamos national laboratory’s asc q supercomputer,” IEEE

Transactions on Device and Materials Reliability, 2005.

[42] F. L. Kastensmidt and L. Carro and R. Reis, Fault-Tolerance Techniques for SRAM-Based FPGAs.

Springer Science+Business Media, LLC, 2006.

[43] M. Rebaudengo and M. Reorda and M. Torchiano and M. Violante, “Soft-error detection through

software fault-tolerance techniques,” IEEE DFT’99: IEEE International Symposium on Defect and

Fault Tolerance in VLSI Systems, pp. 210–218, 1999.

[44] A. Piotrowski and D. Makowski and S. Tarnowski and A. Napieralski, “Automatic implementation of

radiation protection algorithms in programs generated by gcc compiler,” EPAC 2008 - European

Particle Accelerator Conference, 23-27 June, Genoa (Italy), 2008.

[45] N.S. Oh, P.P. Shirvani and E.J. McCluskey, Error detection by duplicated instructions in super-scalar

processors. IEEE Transactions on Reliability, 51(1):63-- 75, March 2002.

[46] N.S. Oh, S. Mitra and E.J. McCluskey, ED4I: Error Detection by diverse data and duplicated

instructions in super-scalar processors. IEEE Transactions on Reliability, 51(2): pp. 180-199,

February 2002.

[47] S. M. Yacoub and H. H. Ammar, "A methodology for architecture-level reliability risk analysis,"

IEEE Transactions on Software Engineering, vol. 28, pp. 529-547, 2002.

[48]A. G. Mohamed, S. Chad, T. N. Vijaykumar, and P. Irith, "Transient-fault recovery for chip

multiprocessors," IEEE Micro, vol. 23, pp. 76, 2003.

[49] H. T. Nguyen, Y. Yagil, N. Seifert, and M. Reitsma, "Chip-level soft error estimation method,"

Device and Materials Reliability, IEEE Transactions on, vol. 5, pp. 365-381, 2005.

[50] Maurizio Rebaudengo, Matteo Sonza Reorda, Marco Torchiano, “A source-to-source compiler for

generating dependable software.”

[51] F. Li, G. Chen, M. Kandemir, I. Kolcu, “Improving Scratch-Pad Memory Reliability Through

Compiler-Guided Data Block Duplication.”, IEEE 2005.

[52] B. Nicolescu and R. Velazco, “Detecting soft errors by a purely software approach: method, tools and

experimental results,” in Proc. of Design, Automation and Test in Europe Conference and Exhibition,

Munich, Germany, Mar. 2003.

Signal & Image Processing : An International Journal (SIPIJ) Vol.2, No.3, September 2011

135

[53] P. P. Shirvani, N. Saxena, and E. J. McCluskey, “Software-implemented edac protection against

SEUs,” IEEE Transaction on Reliability, vol. 49, no. 3, pp. 273–284, Sept. 2000.

[54] N. Oh, P. P. Shirvani, and E. J. McCluskey, "Error detection by duplicated instructions in super-scalar

processors, "Reliability, IEEE Transactions on, vol. 51, pp. 63-75, 2002.

[55] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August, "SWIFT: software implemented

fault tolerance," Los Alamitos, CA, USA, 2005, pp. 243-54.

[56] K. R. Walcott, G. Humphreys, and S. Gurumurthi, "Dynamic prediction of architectural vulnerability

from microarchitectural state," New York, NY 10016-5997, United States, 2007, pp. 516-527.

[57] A. Shye, J. Blomstedt, T. Moseley, V. Janapa Reddi, and D. Connors, "PLR: A Software Approach to

Transient Fault Tolerance for Multi-Core Architectures,"Dependable and Secure Computing, IEEE

Transactions on,To be Appeared.

[58] M. Z. S. Mitra, N. Seifert, TM Mak and K. Kim. Soft and IFIP, "Soft Error Resilient System Design

through Error Correction,"VLSI-SoC, January, 2006.

[59] M. Zhang, "Analysis and design of soft-error tolerant circuits," Ph.D. Thesis, University of Illinois at

Urbana-Champaign, United States -- Illinois, 2006.

[60] M. Zhang, S. Mitra, T. M. Mak, N. Seifert, N. J. Wang, Q. Shi, K. S. Kim, N. R. Shanbhag, and S. J.

Patel, "Sequential Element Design With Built-In Soft Error Resilience," Very Large Scale Integration

(VLSI) Systems, IEEE Transactions on, vol. 14, pp. 1368-1378, 2006.

[61] S. Krishnamohan, "Efficient techniques for modeling and mitigation of soft errors in nanometer-scale

static CMOS logic circuits," Ph.D. Thesis, Michigan State University, United States -- Michigan,

2005.

[62] A. G. Mohamed, S. Chad, T. N. Vijaykumar, and P. Irith, "Transient-fault recovery for chip

multiprocessors," IEEE Micro, vol. 23, p. 76, 2003.

[63] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers, "The case for lifetime reliability-aware

microprocessors," in 31st Annual International Symposium on Computer Architecture, 2004, pp. 276-

287.

[64] M. W. Rashid, E. J. Tan, M. C. Huang, and D. H. Albonesi, "Power-efficient error tolerance in chip

multiprocessors," Micro, IEEE, vol. 25, pp. 60-70, 2005.

[65] T. N. Vijaykumar, I. Pomeranz, and K. Cheng, "Transient-fault recovery using simultaneous

multithreading," in 29th Annual International Symposium on Computer Architecture, 2002, pp. 87-

98.

[66] Y. Xie, L. Li, M. Kandemir, N. Vijaykrishnan, and M. J. Irwin, "Reliability-aware co-synthesis for

embedded systems," in 15th IEEE International Conference on Application-Specific Systems,

Architectures and Processors, 2004, pp. 41-50.

[67] D. Evans, J. Guttag, J. Horning, and Y. M. Tan. LCLint: A tool for using specifications to check code.

In Proc. Symposium on the Foundations of Software Engineering (FSE), Dec.1994.

[68] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. Dynamically discovering

likely program invariants to support program evolution. IEEE Transactions on Software Engineering,

27(2):1-25,2001

Signal & Image Processing : An International Journal (SIPIJ) Vol.2, No.3, September 2011

136

Authors

Short Biography

Muhammad Sheikh Sadi received B.Sc. Eng. in Electrical and Electronic

Engineering from Khulna University of Engineering and Technology,

Bangladesh in 2000, M.Sc. Eng. in Computer Science and Engineering from

Bangladesh University of Engineering and Technology, Dhaka, Bangladesh in

2004, and completed PhD (Area: Dependable Embedded Systems) from

Curtin University of Technology, Australia in 2010. He is currently Associate

Professor at the Department of Computer Science and Engineering, Khulna

University of Engineering and Technology, Bangladesh. He teaches and

supervises undergraduate and postgraduate theses in topics related to

Embedded Systems, Digital System Design, Soft Errors Tolerance etc. He has

published over 20 papers and book chapters in his area of expertise.

Muhammad Sheikh Sadi is a member of the IEEE since 2004.

Md. Mizanur Rahman Khan received his B.Sc. (Hons) degree in Computer

Science from National University, Bangladesh in 2007. He is the Associate

Member of Bangladesh Computer Society (BCS). He is currently a student of

M.Sc. Eng. at the Department of Computer Science and Engineering, Khulna

University of Engineering and Technology (KUET), Bangladesh. He has

published a paper in the field of Soft Errors Tolerance and written a paper on

anti-phishing (yet to be published) as well. His current research interests are

in Embedded Systems, Soft Errors Tolerance and System Modelling.

Md. Nazim Uddin received B.Sc. Eng. in Computer Science and Engineering

from Khulna University of Engineering and Technology, Bangladesh in 2007.

He is the Member of The Institute of Engineers, Bangladesh (IEB) and

Associate Member of Bangladesh Computer Society (BCS). He is currently a

student of M.Sc. Engg. in the Department of Computer Science and

Engineering, Khulna University of Engineering and Technology, Bangladesh.

He has also written a peer-reviewed paper in the field of Soft Errors

Tolerance. His current research interests are in Embedded Systems, Soft

Errors Tolerance and System Modeling.

Jan Jürjens is a Professor at the Chair for Software Engineering in the

Department of Computer Science of Technical University Dortmund

(Germany), the Scientific Coordinator "Enterprise Engineering" and Attract

research group leader at the Fraunhofer Institute for Software and Systems

Engineering ISST (Dortmund), and a Senior Member of Robinson College

(Univ. Cambridge, UK). He obtained his Doctor of Philosophy in Computing

from the University of Oxford and author of "Secure Systems Development

with UML" (Springer, 2005; Chinese translation: Tsinghua University Press,

Beijing, 2009) and various publications mostly on computer security and

software engineering, totaling more than 2000 citations (Google Scholar, Apr.

2010). Much of his work is done in cooperation with industrial partners

including Microsoft Research (Cambridge), O2 (Germany), BMW,

HypoVereinsbank, Infineon, Deutsche Telekom, Munich Re, IBM-Rational,

Deutsche Bank, Allianz.

