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ABSTRACT 

Image processing in machine vision is a challenging task because often real-time requirements have to be 

met in these systems. To accelerate the processing tasks in machine vision and to reduce data transfer 

latencies, new architectures for embedded systems in intelligent cameras are required. Furthermore, 

innovative processing approaches are necessary to realize these architectures efficiently. Marching Pixels 

are such a processing scheme, based on Organic Computing principles, and can be applied for example to 

determine object centroids in binary or gray-scale images. In this paper, we present a processing pipeline 

for smart camera systems utilizing such Marching Pixel algorithms. It consists of a buffering template for 

image pre-processing tasks in a FPGA to enhance captured images and an ASIC for the efficient 

realization of Marching Pixel approaches. The ASIC achieves a speedup of eight for the realization of 

Marching Pixel algorithms, compared to a common medium performance DSP platform.     
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1. INTRODUCTION 

Marching Pixels (MPs) are an alternative design paradigm, e.g. to analyze global image attributes 

like the zeroth and first moments of objects with an arbitrary form and dimension. Subsequently, 

the centroid of these objects can be determined. This method is biologically inspired, e.g. by an 

ant colony, where each artificial ant has a strongly limited complexity but the local interaction of 

all individuals together results in a more complex system behavior. Using the biological inspired 

MPs in a two-dimensional SIMD-structure an artificial computer architecture provides emergent 

and self-organizing behavior. The resulting ASIC presented here can be a part of an embedded 

stand alone machine vision system.  

A problem which basically occurs is that the input images from an image sensor, which should be 

processed by the MP architecture, are often noisy or need to be converted or enhanced. 

Commonly, some image pre-processing operations are required [1], before the input image can be 

processed efficiently by the ASIC. Image pre-processing operations are data and computationally 

intensive task. Commonly, they are realized with Sliding Window Operations (SWOs), a form of 
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2D stencil codes [2]. Stencil codes operate on regular matrices. They update the values using 

neighboring array elements in a fixed pattern. This pattern is called the stencil. For the processing 

of a pixel with a SWO, a certain number of neighboring pixels and optionally a number of 

coefficients are required, e.g. for convolution operations. Examples for such SWO based image 

pre-processing operations are morphological operations like Erosion, Dilatation, Open, Close and 

Thinning for binary images and digital filters like Median filter or feature detectors like the Sobel 

Edge Detector for grayscale images. There exist a lot of more image pre-processing operations 

based on SWOs. FPGAs are well suited for the implementation of such SWOs. They are very 

flexible and allow a parallel processing on both, a fine-grained and a coarse-grained level. Hence, 

the image pre-processing operations can be implemented efficiently relating to the application of 

the machine vision system.  

 

 
Figure 1 - Data Processing Flow 

We will present an image processing pipeline for Marching Pixel approaches which consists of an 

FPGA with a special buffering architecture for the realization of image pre-processing operations 

and an ASIC for the efficient processing of MP algorithms. MP algorithms require a lot of 

resources and, hence, are difficult to implement in FPGAs, especially in low-power FPGAs. 

Therefore, we favor the realization of an optimized ASIC for the MP approaches and the 

implementation of required image pre-processing operations should be realized in a low-power 

FPGA to allow a flexible adaption to the underlying application of the vision system. Figure 1 

shows an overview of the image data flow in our proposed architecture. First, an image is 

captured by an image sensor and converted to digital values. Commonly, gray-scale images are 

sufficient for a lot of applications in machine vision and some of them require only a binary 

representation of a scene. Therefore, different processing steps are possible. The gray-scale image 

can pre-processed by the FPGA and transferred directly to the MP architecture (gray dashed 

arrow). It is also possible that the image is binarized in the FPGA before or after the image pre-

processing and the binarized image is transferred to the MP architecture. The object centroids can 

then be calculated with the pre-processed binary or gray-scale image. The data is reduced to the 

center points of the objects and further systems, for example robots, can be controlled with the 

output.  

In this paper we propose two architectures. The first architecture is a special buffering template 

for FPGAs, for the realization of image pre-processing operations on gray-scale or binary images. 

The other one is an ASIC for Marching Pixel approaches, to calculate the centroid points of 

objects for example.  The  ASIC  architecture we have already introduced in [3]. The focus in this  

Paper  is  the interaction with an image sensor and an FPGA as image pre-processing unit to build 
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up an image processing pipeline for a stand-alone machine vision system. 

To realize image pre-processing operations based on SWOs efficiently, it is necessary to 

implement sufficient buffering strategies within the FPGA, for the data to be processed. The most 

common buffering concepts are the Full Buffering (FB) and the Partial Buffering (PB) strategy 

[4], [5]. We favor the FB scheme since it allows a streaming of the data from the sensor to the 

Marching Pixel architecture, without a buffering of the complete image. This is not possible with 

a PB strategy, because a pixel has to be loaded several times during the processing. Therefore, the 

image or at least a part of the image has to be stored in an external memory, before the processed 

data can be transferred to the Marching Pixel architecture. 

We have adapted the standard FB approach to realize a parallel processing of SWOs, if more than 

one pixel is available from the image sensor per system clock cycle. An example for the 

processing of two sliding windows with the help of the FB scheme was presented in [3]. We 

concretized this idea and developed an adapted FB scheme for a parallel processing with an 

arbitrary degree of parallelization, depending on the available pixels per system clock cycle from 

the image sensor. The new approach, realized by us, is the pipelining of several of our adapted FB 

instances, to allow the consecutively processing of several SWOs before the image data is 

transferred to the Marching Pixel architecture. Hence, several image pre-processing operations 

can be performed simultaneously while streaming the data from the image sensor to the Marching 

Pixel architecture. Thus, the overall processing time for the image pre-processing operations and 

also the latency between image capturing and processing in the Marching Pixel architecture can 

be reduced significantly. 

The ASIC for Marching Pixel algorithms is realized as SIMD architecture. We present a short 

mathematical derivation of the system and address a hierarchical three-step design strategy to 

generate a full ASIC layout. For prototyping purposes only a SIMD architecture with a small 

resolution of 64x64 pixels was designed. The focus in this paper is the realization of object 

centroid determination with Marching Pixels. The latencies of this determination are compared 

with those of a software solution running on a common medium performance DSP platform. 

This paper is divided into six sections. In the next section we present former work and projects 

which are related to our architectures. Afterwards, in section three, the mathematical basis for our 

image processing tasks, especially for the Marching Pixel algorithms, will be explained. In 

section four our generic image pre-processing architecture will be presented together with some 

simulation and synthesis results. Afterwards, in section five, our Marching Pixel chip architecture 

for the determination of object centroids will be discussed. At last, we want to conclude the most 

important points of our paper.   

2. RELATED WORK 

In the following, we assume images with a resolution of m × n pixels, where n is the height and m 

is the width of the image. Each pixel stores d bits of information, which is d = 1 for binary and d 

= 8 for gray-scale images. We assume that for the image pre-processing operations, the image is 

processed with a sliding window from the upper left to the lower right corner. We also assume a 

Moore neighborhood, which means a stencil size of 3 × 3 pixels, where the center pixel is 

processed by the SWO. 

 



Signal & Image Processing : An International Journal (SIPIJ) Vol.2, No.3, September 2011 

140 

 
        Figure 2 - Partial Buffering 

 
Figure 3 - Full Buffering 

 

The PB scheme is illustrated in Figure 2. In the PB scheme, only pixels required for the SWO at 

the current position are buffered in the FPGA internally, enclosed with bold black lines. For the 

processing of the next window, three pixels have to be read in which are highlighted with a gray 

background in Figure 2. Because the image sensor transfers the image pixels consecutively, the 

image has to be buffered in an external memory. Therefore, a streaming and processing of the 

data is not possible with this buffering scheme. The advantage of PB is that only a small amount 

of pixels has to be buffered internally. The FB scheme is shown in Figure 3. The pixels enclosed 

by the bold black lines are buffered in the internal memory of the FPGA. Two complete image 

rows and some additional pixels, depending on the stencil, have to be stored internally. In our 

case, for 3x3 SWOs, this is (2·m+3) pixels. Hence, the FB scheme requires more resources than 

PB. After the processing of the actual pixel value, the sliding window is moved to the next 

position which is indicated by gray arrows and the window with bold gray lines in Figure 3. For 

the processing of the next window, only one pixel has to be read in which is highlighted with a 

gray background. Therefore, the pixels from an image sensor can be fetched directly by an FB 

architecture in the FPGA and streamed to the Marching Pixel architecture after processing.  

There are a lot of applications where the PB scheme is favored because of the lower resource 

consumption. Several architectures for shifting a window over an image in 2D shift-variant 

convolvers are presented in [6]. A PB scheme combined with parallel memory access is used 

in [7]. Therefore, several external memory modules together with a memory management unit are 

used. In [8] an efficient multi window PB scheme is proposed for 2D convolution. The goal was 

to optimize the memory access compared to a standard PB implementation. There are also some 

approaches which use different buffering schemes for a parallel processing to increase the 

throughput rate. Yu and Leeser [9] presented an automated tool which allows the adjustment of 

the parallelism and buffering strategy depending on the application, the on-chip memory and the 

external memory bandwidth. They propose a so called block buffering, which is based on a PB 

scheme. A block of pixels is loaded which is greater than the sliding window. Hence, more 

windows could be processed in parallel and redundant memory accesses can be eliminated. 

In [10] a parallel processing scheme based on a 2D systolic architecture is presented which can 

also be classified as a PB scheme. Several windows are processed in parallel and pixels read from 

external memory are reused efficiently. However, all of these approaches, based on PB, require a 

storage of the image data in an external memory. A streaming and processing of the data from the 

image sensor is not possible, because not all redundant memory accesses are eliminated in this 

buffering scheme. Therefore, we favor the FB approach. It reduces the latency for the image pre-

processing operations, because the data can be streamed efficiently during the processing of the 

SWOs from the image sensor to the Marching Pixel architecture. Considering the capacities of 

state of the art FPGAs, the increased resource consumption of the FB scheme appears to be 

acceptable. Furthermore, we favor the FB scheme, because it allows an efficient pipelining of FB 

instances in order to process several SWOs simultaneously. This is not possible with the PB 

approach. 
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Hard-to-solve classes of image operators are those to determine global image information. An 

example is the computation of centroids and orientations of large sized image objects with an 

arbitrary form factor (convex as well as concave). In order to introduce the problems to extract 

these object attributes, some related work for the Marching Pixel architecture is given in the 

following. Integrated image processing circuits to obtain zeroth, first and second moments of 

image objects are presented for the first time in the early 90's of the 20th century. An earlier 

photosensitive analog circuit with these capabilities is already presented in [11]. The single photo 

currents generating by the photo diodes are summed up by a two-dimensional resistor network. 

The centroid and the orientation can be determined by measuring the voltages (which correspond 

to the moments) at the network boundaries. A further method introduced in [12] describes, how 

moments of zeroth to second order of numerous small objects (particles) can be determined in a 

massively parallel fashion within an FPGA. The computation bases on image projections, while a 

binary tree of full-adders performs a fast accumulation of the moments. A fully-embedded, 

heterogeneous approach is addressed by [13]. The architecture presented in that paper is based on 

a reduced behavioral description of a Xilinx PicoBlaze processor. Only the required operators to 

compute binary images are realized. At all 34x26 processing elements have been connected to an 

SIMD-processor to compute a tenth of the pixel resolution of an QVGA-image (320x240). The 

calculation of the bounding boxes of the image objects as well as the zeroth, first and second 

moments of each of these partitions is performed in parallel. The object centroids and orientations 

are calculated by a Xilinx MicroBlaze processor. Subsequently, a Xilinx Spartan3-1000 FPGA 

implementation could be realized to apply the architecture at binary images with VGA-resolution 

(640x480). Another approach to extract global image information are CNNs (Cellular Neuronal 

Networks). In [14] a CNN network calculates symmetry axis and centroids of exclusively axial 

symmetric objects. To apply this method, an object has to be extracted by a preprocessor from a 

given image. Afterwards, the coordinates of each object pixel has to be transformed into its polar 

form.  

In [15] it was shown by Dudek and Geese, that it is possible to rotate and mirror images in a fast 

way due to the swapping of neighbored pixels and the use of only local communication 

mechanisms by Marching Pixels. The present paper affects the analysis of distributed algorithms 

to extract global image attributes by a two-dimensional field of calculation units (CUs). Each CU 

has a Von Neumann connectivity to its immediate neighbors. The main difference to the CNNs is 

the capability of these CUs to store states and to change them in dependence of the states of the 

CUs in the local neighborhood. The interactions between the CUs cause a information flow 

beyond the local neighborhoods, which has lead to the concept of Marching Pixels (MP) [16]. 

In [17] and [18] the finding of object centroids is carried out due the evolving of a horizontal line, 

where MPs begin to run from the upper and lower edge of each object. During passing through 

the object vertically the MPs increments the column sums within the object. When opposing MPs 

meet each other, the upper column sum is added to its lower counterpart and a so called reduction 

line emerges. The two points of the reduction line, adjacent to the object edge, are defined as left 

side and right side. Then the evaluation process is described as follows: 

- At the left side one MP starts and adds up the left sums located on the reduction line. 

- When the MP reaches the right side on the opposite object edge it returns and adds up the 

right sums in the same way. 

- During the MP returns it calculates the difference between the actual right with the stored 

left sum. When an underflow is detected the object center is found. 

This algorithm is useful in the case of convex objects with a adequate form factor. Otherwise, it is 

possible that the algorithm does not converge in the object centroid. Some theoretical work to the 

present paper had been done by [19] and [20], especially for the Flooding and the Opposite 

Flooding algorithm which converge correctly in all cases in contrast to the method mentioned 

before. Key parts to implement these algorithms in FPGA hardware are presented in [21], but it is 

difficult to implement more complex MP algorithms, e.g. gray-scale based approaches, for 
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sufficient image resolutions in low-power FPGAs. Therefore, we propose the realization of these 

algorithms in an optimized ASIC architecture and to combine this ASIC with a low-power FPGA 

for the flexible realization of image pre-processing operations. 

3. MATHEMATICAL BASIS  

3.1 Image Segmentation 

To understand the image processing algorithms for the Marching Pixel architecture, it is 

important to define a mathematical basis. Let I be an image with a resolution of m x n pixels (Pi,j) 

in the following way: 
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whereas a pixel is defined as: 

Pi,j = (i , j, xi,j), 

where xi,j is the gray value for that pixel. To assign a pixel it's gray value υ at the coordinates (i,j), 

we define the function: 

υ(Pi,j) = xi,j. 

The segmentation of gray-scale images can be carried out in different ways depending on the 

image processing application. The easiest way to create a binary image from a given gray-scale 

image is to compare the actual gray value υ(Pi,j) of each pixel with an adjustable threshold S: 
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To get feasible results while executing MP algorithms on gray-scaled images, the following 

method is recommended: 
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All pixels below the threshold are assigned with 0 (image background) whereas all object pixels 

keep their gray value. 

3.2 Bounding Box Computation 

The Flooding algorithm is characterized by the generation of a bounding box for each 

image object. The pixels of the Von Neumann neighborhood of a pixel Pi,j are denoted as 

{ Pi,j-1 , Pi-1,j , Pi+1,j , Pi,j+1 }. In the case of a binary image, all pixels { }1,0∈OP  have the  
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attribute to be located within the bounding box of an object O. Denoted as wave, all 

pixels Pw are a starting point of any MP. Due to binary operations between Pi,j and the 

pixels Pi,j-1 , Pi-1,j , Pi+1,j , resp. Pi,j+1, the binary value of wO can be determined as follows: 

( )
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( ) ( )( ) ( ) ( )( )
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In the case of gray-scale images the segmentation should be carried out by (2). 

Afterwards, one possibility to compute the bounding box is the following: 
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The edges of the bounding box span a local cartesian coordinate system separately for 

each object which is also called the Local Calculation Area of the object (see Figure 4). 

The rightmost x-coordinate (ri) resp. the bottommost y-coordinate (bj) of the calculation 

area of an object O is then defined by: 
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ErO and EbO  are sets of all right edge pixels jriO
P , respectively of all bottom edge pixels 

ObjiP , , which have to be computed by local 3x3 edge filters applying to the object's 

bounding box: 
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Figure 4 - Gray-scaled image object (O) enclosed by an object-related  

coordinate system denoted as local calculation area 
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For gray-scaled images ri*O, bj*O, Er*O, Eb*O are defined in the same way using the 

g* function (2). The subsequent integer arithmetic computation steps are subdivided into forward 

and backward calculation. The forward calculation provides the zeroth and the first moments in x 

and y direction. During the backward calculation the centroid pixel emerges by evaluating the 

zeroth and the first moments. 

3.3 Forward Calculation 

 
Figure 5 - Distributed computation of the zeroth moment 

 
The mathematical derivation of the forward calculation in the case of binary images, including 

the distributed computation of the zeroth (m00) and the first moments in horizontal (m01) and 

vertical direction (m10), is already described in [21] and [19]. For gray-scale images the binary 

pixel value g(P) has to be replaced with g*(P). Figure 5 shows the scheme to cumulate the zeroth 

moment sum (object mass) beginning from the upper left towards the bottom right edge. 

3.4 Backward Calculation 

To avoid area consuming division operators, the backward computation process is distributed in a 

similar way as shown in Figure 5. The two-dimensional topology can be easily used to substitute 

the division by successive subtractions. For this purpose, the backward calculation process (here 

only shown for the y-coordinate) starts with the initialization of two CU-registers in the bottom 

right pixel 
mnOP

,
 of the local calculation area. The registers are denoted as n (numerator) and d 

(denominator): 
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Furthermore, all edge state registers ey(i,j) receive a logical 1, if j = n. 

Note 1. The content of register d is equal for both, the x- and y-coordinate. Therefore, no index is 

required. 

Finally, the pixel 
mnOP

,
is left and has to be successively shifted into the object's center. In fact it 

virtually "marches" into the centroid, while carrying the registers ny (resp. nx) and d. The values 

of these registers are changed in the following way, depending on their actual position (i,j): 
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3.5 Centroid Detection 

The CU-register midy(i,j) is set to a logical 1 or 0, if the following conditions occur: 
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In the case of a logical 1, midy(i,j) respectively the corresponding pixel P(i,j) is located at the y-

coordinate of the center of mass axis. 

Note 2. The backward calculation in x-direction is carried out on exactly the same way, only the 

coordinate label has to be changed. The centroid is determined by a logical AND of midy(i,j) and 

midx(i,j): 

),(),(),( jimidjimidjimid xy ∧=           (11) 

 

In fact, the centroids mid(i,j) are binary result pixels located in a cartesian coordinate system 

(denoted as "centroid image") as well as the origin data. A step-by-step computation example of 

an object with a calculation area of 4x4 pixels can be found in [20]. 

4. IMAGE PRE-PROCESSING 

4.1 Parallel Full Buffering Scheme 

The FB approach is frequently rejected because of its higher resource consumption. The problem 

is that several complete rows have to be buffered internally in queues (shift registers). For a 

comparison with a PB scheme often the Flip-Flops (FFs) and Look-up-tables (LUTs) of the 

FPGA are used for the implementation of the shift registers. But this is not an efficient 

implementation. In contrast, we recommend an implementation of the queues with the help of the 

FPGAs internal BRAMs (Block RAM). In today’s FPGAs, there are up to several hundred of 

these small memory blocks which can be efficiently concatenated to arbitrary sizes of data and 

address ports. By the use of BRAMs for the queue implementation, the overall resource 

consumption of a FB architecture can be greatly reduced. 

As mentioned before, we have adapted the standard FB scheme to realize also a parallel 

processing of SWOs, if required, because often the image sensor frequency is higher than the 

system clock of the FPGA. There are also some image sensors which transfer the image data via 

more than one channel. Therefore, the degree of parallelization for the FB architecture in our 

system depends on the available pixels per system clock and can be adapted optimally.  
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Figure 6 - Full Buffering for parallel  

processing with p=2 
Figure 7 - Full Buffering for parallel  

processing with p=4 

 

Our proposed architecture for a parallel processing with FB is outlined in Figure 6 for p = 2 and 

in Figure 7 for p = 4. As mentioned before, we used a fixed mask size of 3 × 3 pixels for the 

sliding window in our approach because it is sufficient for our field of applications. Every pixel, 

illustrated with small squares in the figures, contains a register for the storage of d bits. Some 

FIFO components can be integrated to compensate variations in the streaming process of the 

image data. In contrast to a standard FB approach, the shift width in our approach was adapted in 

order to realize a parallel processing. The shift width of the queues depends on the degree of 

parallelization p. This case is illustrated with gray boxes and gray arrows in the figures. Every 

gray box contains p pixels which are shifted within one clock cycle and there are p Processing 

Elements (PE) integrated for a parallel processing. Furthermore, the address and data ports of the 

BRAM components also depend on p. The black dashed box in the figures encloses all pixels 

required for the parallel SWO. The small squares on the left side of the dashed box are additional 

registers. Such a register preserves a right most pixel of a pixel block for the processing of the 

next pixel block. Every clock cycle, p new pixels are loaded from the image sensor, are processed 

and streamed to the Marching Pixel architecture, while shifting all buffered pixels with a shift 

width of p to the next pixel block location.  

With this parallel FB processing approach a speedup of p compared to a standard FB 

implementation can be achieved with nearly the same resource consumption. The speedup is only 

constrained by the available pixels per system clock cycle. How this adapted FB scheme for a 

parallel processing can be used also for a pipelined processing of SWOs, will be presented in the 

following section. 

 

4.2 Pipelining of FB Stages 

Because SWOs can be performed in a streaming fashion with an FB scheme, the result pixels of 

an FB stage can be directly fetched by further FB stages for the processing of further SWOs, 

before the image is sent to the Marching Pixel architecture. Hence, with our processing approach, 

a pipelining of FB stages is possible to process different image pre-processing operations based 

on SWOs simultaneously, with a marginal latency overhead per stage. In the following, we use 

the parameter it for the designation of the number of pipelined instances of our FB architecture 

for parallel processing and, hence, the number of simultaneously processed SWOs. The 

pipelining is illustrated for p = 2 and it = 3 in Figure 8. 
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Figure 8 - Pipelining of FB Stages 

Because every FB stage has to be initialized, an overhead of (mp + 2) clock cycles is required for 

every instance, where mp = m/p, before the first image pixels can be processed by the PEs. The 

greater the degree of parallelization is, the smaller is the number of clock cycles required for 

initialization. Therefore, a speedup of almost (p·it) is feasible for all performed image pre-

processing operations.  

4.3 FPGA Implementation 

For the realization of this new parallel and pipelined FB scheme, we implemented a generic 

VHDL template for FPGAs and tested it on Spartan3E-1200 from the Xilinx. When using our 

template, the parameters m and n for the image resolution, d for the bits per pixel, p for the degree 

of parallelization and it for the pipeline depth have to be adapted. Furthermore, the PEs have to be 

specified in VHDL to realize the SWOs which should be performed. A problem which has to be 

solved in conjunction with SWOs, is the handling of the border pixels of the image. We made the 

handling of border pixels selectable for our VHDL template. The border pixels can be set to fixed 

values, but also an overlapping for the realization of a torus topology is possible. Therefore, the 

interface of a PE contains, beside the pixel information of the sliding window, also a signal which 

notifies if the current processing position is in the border region or not. In the current version of 

the VHDL template, the mask size for the SWOs is fixed to 3x3 pixels which is sufficient for the 

applications here. Currently, we improve the template to allow SWOs with arbitrary sizes. 

As mentioned before, we implemented and tested the VHDL template for a Spartan3E-1200 

FPGA. To show the flexibility of our architecture, we implemented some binary and also some 

gray-scale operations for the input object image of Figure 1 which is shown in more detail in 

Figure 9. For testing purposes, we used here only a small resolution of 128x128 pixels. In 

Figure 10, the binarized version of this image can be found which can be realized with 

Equation (1). A problem which is shown in Figure 10 are distortions and noise in the binarized 

version of the input image. This can lead to failures in the Marching Pixel processing, e.g. in the 

object centroid determination. Especially noise pixels at the image background can lead to 

failures by the object centroid determination with Marching Pixels. With the help of our template, 

the image content can be enhanced in the FPGA by remove noise or distortions with image pre-

processing operations based on SWOs. It is also possible to transform gray-scale images if 

required. 
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Figure 9 - Gray-scale image from sensor 

 

 
Figure 10 - Binarized version of the input 

image 

 

 

 

Figure 11 - Noise reduction by Open/Close 

Operations on the binarized input image 

 

Figure 12 - Image transformation by applying 

a Median filter followed by a Sobel filter 

 

The reduction of noise of the objects in a binarized image with our template is illustrated in 

Figure 11. We used a 6-stage pipeline to perform Dilatation and Erosion operations for the 

realization of Open (Erosion followed by a Dilatation operation) und Close (Dilatation followed 

by a Erosion) operations. The result shown in Figure 11 was calculated by a Close operation to 

reduce object distortions, followed by a two times Open operation to reduce noise at the image 

background. Figure 12 shows an example of an gray-scale image transformation on the input 

image with the help of our template. We used a 2-stage pipeline where in the first FB stage a 

Median filter is applied on the gray-scale input image to reduce noise. The second FB stage 

realizes a Sobel filter which can be used for edge detection in gray-scale images.  

We implemented and tested these two examples on a Nexys2 board from Digilent which contains 

a Spartan3E-1200 FPGA from Xilinx. The FPGA contains 8672 Slices, 17344 FFs and 28 18Kb-

BRAMs (Block RAM). For testing purposes, we can transfer images via a serial interface to the 

FPGA and after the processing of the image with our FB pipeline it is displayed on a external 

monitor which is connected to the VGA interface of the board. In the following, we will present 

some synthesis results of our VHDL template which consists of the FB pipeline and a control 

unit. We used a significiant image resolution of n = m = 1024 pixels. In Table 1 the synthesis 

results of the template pipeline for the Open/Close operations are shown. For these operations 

only binary images are required, this means d = 1 and we used a 6-stage pipeline which means it 

= 6 for this example. In Table 2 the synthesis results of the template pipeline for the 

Median/Sobel filter on gray-scale input images are shown. For this example d = 8 and a 2-stage 

pipeline was used which means it = 2 for this example. 
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Table 1 - Synthesis results for 6-stage Open/Close pipeline 

Degree of 

parallelization p 

System 

frequency fmax 

Slices FFs BRAMs 

1 138 857 609 12 

2 138 887 735 12 

4 138 910 795 12 

8 138 1067 1053 12 

 

Table 2 - Synthesis results of a 2-stage Median/Sobel filter pipeline 

Degree of 

parallelization p 

System 

frequency fmax 

Slices FFs BRAMs 

1 56 948 673 4 

2 56 1177 831 4 

4 55 1619 1149 4 

8 55 2569 1787 8 

 

Both examples show the flexibility of our special buffering pipeline for image pre-processing 

operations. A lot of other SWOs could be implemented easily with the help of our VHDL 

template. As mentioned before, the input images are processed in a streaming fashion. The 

latency of this pre-processing depends mainly on the possible degree of parallelization and the 

pipeline depth and can be estimated with (mp+2)*it system clock cycles of the FPGA.  

The synthesis results show that only a small amount of FPGA resources will be required for these 

image pre-processing operations. Hence, the FPGA could be used also for controlling purposes 

which are required in a stand-alone vision system, e.g. for controlling the image sensor or the 

Marching Pixel ASIC. After the enhancement or transformation of gray-scale or binarized input 

images, the Marching Pixel architecture can be used to perform MP algorithms like the Flooding 

algorithm for object centroid determination.  

5. MARCHING PIXEL CHIP ARCHITECTURE 

5.1 Global Data Path 

5.1.1 Binary image processing  

The low pixel resolution (64x64) of the initial test chip design allows to read in the image data 

din in a line parallel fashion (see Figure 13). The local communication logic of CU cell enabled 

for binary pixel computation is attached at the right side of the figure. The chip operates in two 

global modes: either data input/output or data computation. The activity of the shift signal 

switches the chip to the input mode, where external image data is transferred and stored in the 

internal CU pixel registers. 

Each CU-ALU cell contains one 1-bit register (denoted as DFF), in which the previously upper 

data value qpix/qmiddle state or the internal middle_state_i signal value can be stored, depending on 

the global mode state. In the case of an input image and a resulting centroid image identical in 

size, the read in / write out procedure can be carried out simultaneously. Therefore, one data 

register can be saved which leads to only one shared input/output DFF. During the read in phase, 

the signal shift is active, where each rising edge of the clock signal (clk) leads to a synchronous 

capturing of image data through the module Data_In_Control. The pixel registers are 

concatenated to a register chain leading to a vertical data transport from the upper to the lower 

edge of the CU array. 
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Figure 13 - Global datapath within CU-array, IO modules (gray) 

 

When the image capturing process is done, the signal run enables all CUs to read out the internal 

stored pix-value and to carry out the centroids (computation phase). After the computation latency 

has expired, the centroid image data are established at the AU's outputs. When releasing the 

global data communication path to its active state, the DFFs are chained again and the 

synchronous data output can occur via the Data_Out_Control unit by enabling the dout signal. At 

the same time new image data can be read in into the CU array. 

5.1.2 Gray-scale image processing  

To realize an easier global data communication, the gray-scale computation CU has separate data 

paths for the image and centroid data transport (see Figure 14). The single bit CU has to be 

replaced with the module, shown in Figure 14 which is able to process n-bit pixel values. The 

read in phase is characterized due to the storage of the n-bit image data into the pix-register. 

During the computation phase the stored bits rotate in counter-clockwise direction within the pix-

register. The internal ALU operands have deeper bit widths as the pixel operand. Therefore, a 

constant number of serial zero-bits have to be preceded, before the pixel's LSB can be computed. 

The number of the inserted bits depends on the pixel gray scale depth and the image resolution. If 

the computation of the centroids has be done, the procedure to output the centroid image is 

organized as explained above. 
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Figure 14 -  Local datapath within a gray-scale pixel computing CU 

5.2 Local data path 

The local data path of the MP architecture is characterized by orthogonal serial data connections 

between the CUs. In Figure 15 a CU black box representation is shown. The figure depicts all 

neighboured input data to compute the y-coordinate of the object's centroid. For more details 

about the local datapath we refer to [3]. 

 

 
Figure 15 - Data Inputs for Flooding-CU 

 

5.3 Prototype Chip 

The physical implementation of the MP-Chip had been done for the binary image processing flow 

as described in subsection 5.1.1. The bit-serial working CU was designed only once, because after 

designing a CU chip layout it is reusable for any image resolution. The behavioral description of 

the entire chip is designed in a consistently generic way for both the vertical and the horizontal 

MP array resolutions n and m. Table 3 summarizes the layout results for one CU, one CU-line 

and the entire 64x64 MP chip design driven by a 50 MHz clock. 
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Table 3 - Layout parameters of the chip modules using a 90 nm CMOS technology 

Parameter CU CU-line Chip 

Ports 

    Inputs 

        Data 

        Control 

    Outputs 

        Data 

        Control 

 

 

18 

6 

 

12 

 

 

640 

6 

 

768 

 

 

64 

4 

 

64 

1 

Used metal layers 

Standard cells/marco blocks 

Gates 

3 

172 

536 

6 

25/64 

34413 

 7 

767/64 

2207516 

Physical dimensions 

    Height/µm 

    Width/µm 

 

41.22 

41.60 

 

45.14 

2755.00 

 

3636 

3424 

Critical Path latency/ns 1.48 2.59 9.67 

 

In Figure 16 the resulting prototype chip is shown as a GDSII database representation. The 

squared chip core is formed by 64x64 MP calculation units. The pad ring consists of the data in- 

and output pads (64 pads each) located at the top and bottom chip edge. The left and right pad 

ring segments contain eight pairs of core power supply pads (four each). 

 

 

Figure 16 - Chip prototype layout (without bonding pads) 

5.4 Benchmark comparison 

To demonstrate the performance of chip architectures derived from our MP design strategy, a 

comparison with simulation results of two different TMS320 DSP platforms had been carried out. 

The older C6416 as well as the actual DaVinci platform (DM6446) had been simulated at a virtual 

CPU clock of 500 MHz. Therefore, a software benchmark running on the DSP cores models has 

been created by manually optimized C code programming. The computation of centroids bases on 

projections of binary and gray-scale image objects (with a bit-width of eight), where the 

algorithmic approach is similarly to [13]. In addition to the absolute worst case latencies shown in 

Figure 17, the achieved speedups (Figure 18) are plotted as a function of squared worst case 

object resolutions N2. The MP-algorithm's worst case is the largest possible L-shaped image 

object with a width of exactly one pixel. As shown in the figures, a speedup of up to eight can be 

achieved with the MP ASIC compared to the used medium DSP platforms. 
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Figure 17 - MP-latencies vs. DSP-benchmarks for squared worst case objects 

 

  
Figure 18 - Speedups for squared worst case objects 

6. CONCLUSION  

This paper depicts an processing pipeline for embedded image processing systems based on 

Marching pixels. An efficient buffering strategy for the realization of image pre-processing 

operations in a low-power FPGA, to enhance the captured images for the Marching Pixel 

architectures, was presented. We illustrated, how several image pre-processing operations can be 

realized with an adapted full buffering scheme in a parallel and pipelined fashion. Furthermore, 

we explained the Marching Pixel architecture as well as the design strategy to realize a Marching 

Pixels prototype chip in detail. The Marching Pixels concept is an alternative design paradigm to 

determine global image information, like centroids of objects, in an elegant fashion using a 

dedicated hardware platform. We showed, that an array of simple structured hardware modules is 

able to extract centroids of image objects of any shape and size faster than commonly used DSP 

platforms. We denote that the benchmark comparison results are based on a serial data input and 

the largest possible worst case object, depending on the MP array resolution. The computation 

latencies decrease dramatically using the line-parallel data input scheme supported by our chip 

architecture and several image objects with smaller form factors than the worst case object. 
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Together, both presented architectures can be used to build up a processing pipeline for stand-

alone machine vision systems utilizing Marching Pixel approaches. 
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