
Signal & Image Processing : An International Journal (SIPIJ) Vol.2, No.4, December 2011 

DOI : 10.5121/sipij.2011.2402                                                                                                                       13 

 

IMPROVEMENT OF ANOMALY DETECTION 

ALGORITHMS IN HYPERSPECTRAL IMAGES USING 

DISCRETE WAVELET TRANSFORM 

 

Mohsen Zare Baghbidi
1
, Kamal Jamshidi

1
, Ahmad Reza Naghsh Nilchi

1
 and Saeid 

Homayouni
2
 

1
Department of Computer Engineering, College of Engineering, University of Isfahan, 

Isfahan, Iran 
{m_zare, jamshidi, nilchi}@eng.ui.ac.ir 

2
 Remote Sensing Group, Department of Geomatics, College of Engineering, University 

of Tehran 
homayounis@ut.ac.ir 

ABSTRACT 

Recently anomaly detection (AD) has become an important application for target detection in hyperspectral 

remotely sensed images. In many applications, in addition to high accuracy of detection we need a fast and 

reliable algorithm as well. This paper presents a novel method to improve the performance of current AD 

algorithms. The proposed method first calculates Discrete Wavelet Transform (DWT) of every pixel vector 

of image using Daubechies4 wavelet. Then, AD algorithm performs on four bands of “Wavelet transform” 

matrix which are the approximation of main image. In this research some benchmark AD algorithms 

including Local RX, DWRX and DWEST have been implemented on Airborne Visible/Infrared Imaging 

Spectrometer (AVIRIS) hyperspectral datasets. Experimental results demonstrate significant improvement 

of runtime in proposed method. In addition, this method improves the accuracy of AD algorithms because 

of DWT’s power in extracting approximation coefficients of signal, which contain the main behaviour of 

signal, and abandon the redundant information in hyperspectral image data. 
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1. INTRODUCTION 

Recently hyperspectral imaging has been recognized as a suitable tool for target detection and 

recognition in many applications including search-and-rescue operations, mine detection and 

military usages. Hyperspectral sensors collect valuable information of earth’s surfaces in 

hundreds of narrow contiguous spectral bands in the visible and infrared regions of the 

electromagnetic spectrum. These information   providing  a powerful means  to  discriminate  

different materials on  the basis  of  their  unique  spectral  signatures [1]. 

 

Anomaly detection (AD) is a particular case of target detection (TD) with no a priori information 

about targets. The main goal of AD algorithms is finding the objects that are anomalous with 

respect to the background [1]. To be more precise, the aim of AD algorithms is to find the pixels 

whose spectra differ significantly from the background spectra [2]. The power of anomaly 

detection technique is that we do not need to target signature and  atmospheric/radiometric 

corrections [3]. 
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In recent years, many hyperspectral AD algorithms have been proposed including Reed-Xialoi 

(RX) family algorithms, like DWRX and Kernel-RX, and other algorithms like DWEST and 

NSWTD [1], [4]. RX is considered as a benchmark AD algorithm for hyperspectral images [5]. 

The most well known problem for RX family algorithms is the small sample size. This problem 

comes from the estimation of a local background covariance matrix from a small number of very 

high dimensional samples. As a result, the covariance matrix of local background will be bad-

conditioned and its estimation is unstable which strongly affects the detection performance of AD 

algorithm [6]. In addition, in many applications (like real time applications) runtime of the 

algorithm is an important issue which has not been considered by the proposed AD algorithms. 

An efficient solution for these problems is applying the dimensionality reduction (DR) techniques 

[7]. 

 

DR can be done as a pre-processing step for AD algorithms. This method reduce interband 

spectral redundancy and improve the separation between anomaly and background signatures, so 

improve detection performance of anomaly detector [8]. There are two categories of DR 

techniques: linear and nonlinear. Linear techniques do not exploit nonlinear properties in 

hyperspectral image, but they can be fast enough for real time application. Some linear DR 

techniques like Principle Component Analysis (PCA) are very popular and widely used in 

hyperspectral applications [9]. A newer DR method is discrete wavelet transform (DWT). This 

method did not evaluate for improvement of algorithms in the AD literature. 

 

This paper presents a new DR method using DWT which acts as a pre-processing step for AD 

algorithm. This method overcomes expressed drawbacks and improves the performance and 

runtime of anomaly detectors.  

 

The paper is organized as follows. Section 2 provides an overview of three popular AD methods 

used in this study. DWT is introduced in section 3. Section 4 presents a brief description of the 

proposed method. Experimental results will discuss in section 5. Finally, Section 6 concludes the 

paper. 

 

2. ANOMALY DETECTION ALGORITHMS 

2.1. RX Detector (RXD) 

RX is a widely used anomaly detector which was developed by Reed and Yu in [5]. It’s a 

constant false alarm rate (CFAR) detector and derived from the generalized likelihood ratio test. 

It also considered as a benchmark AD algorithm for hyperspectral images and works as follows: 

 

Assume that r is an image pixel vector that has L elements (L is image’s spectral bands). RX 

anomaly detector defines by equation (1). Where µ  is the sample mean and C is the sample data 

covariance matrix. 

������� = �� − 
���
×
�� �� − 
� (1) 

AD algorithms like RX can be grouped in two categories: global and local. Global anomaly 

detectors define background with reference to all the image pixels. In local case background is 

defined in a small neighborhood of pixel under test. Covariance matrix is calculated according to 

the defined background. In this study RX is implemented locally and named Local RX (LRX). 

 

2.2. DWEST algorithm 

Dual window-based eigen separation transform (DWEST) is an adaptive anomaly detector which 

was developed by Kwon et al [10]. It implements two windows, called inner and outer windows 
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which are designed to maximize the separation between two-class data. These two classes are 

target and background classes. DWEST can briefly describe as follows: 

 

Assume that r is an image pixel at which inner and outer windows are centered. Let mouter(r) and 

minner(r) is the means of the outer and inner windows respectively and Couter and Cinner is their 

respective covariance matrices. Cdiff  is the difference covariance matrix between Couter and Cinner 

and defined by equation (2). As a result, the eigen values of Cdiff can be divided into two groups: 

negative and positive values. Kwon et al.’s argued that the eigenvectors associated with a small 

number of the large positive eigen values of Cdiff could successfully extract the spectrally 

distinctive materials that are present in the inner window. If the eigenvectors represented by the 

positive eigen values in this small set are denoted by {vi}, the anomaly detector derived by the 

DWEST (δDWEST(r)) projects the differential means of two windows (mdiff(r), which showed in 

equation (3)) onto {vi} specified by equation (4). 

 ����� = ������ − ������ (2) 

����� = ������ −������ (3) 

��������� = �� ����������� !
� (4) 

2.3. DWRX algorithm  

This algorithm is the combination of RX and DWEST. In other words, it’s a RX detector which is 

implemented by two windows, inner and outer window that defined in part 2.2. This detector is 

defined by equation (5). Parameters here are the same as DWEST definition [11]. 

 �|#$�|��� = %���������&�������� ���'��������% (5) 

3. DISCRETE WAVELET TRANSFORM 

The foundation of the discrete wavelet transform (DWT) goes back to 1976 when Crochiere et al. 

for the first time introduced sub-band coding [12].  In 1983, Burt defined a technique very similar 

to sub-band coding and named it pyramidal coding which is also known as multi-resolution 

analysis [13]. Later in 1989, Vetterli and Le Gall made some improvements to the sub-band 

coding scheme and removed the existing redundancy in the pyramidal coding scheme [14]. DWT 

definition is based on sub-band coding and multi-resolution analysis. 

 

In DWT the procedure starts with passing the main signal through a half-band digital low-pass 

filter with impulse response h[n]. The output of filter is convolution of the signal with impulse 

response of the filter as shown in equation (6): 

(&)' ∗ ℎ&)' = � (&,'. ℎ&) − ,'
∞

./�∞
 (6) 

Passing the signal (x[n]) through a half-band low-pass filter removes all frequencies that are 

above half of the highest frequency in the main signal. According to the Nyquist’s rule, half of the 

samples can be eliminated. This procedure is done by down-sampling (or sub-sampling) of the 

output of low-pass filter by two as shown in equation (7). 
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Figure 1. Three-level wavelet decomposition tree 

0&)' = � ℎ&,'. (&2) − ,'
∞

./�∞
 (7) 

The same procedure is done by a half-band high-pass filter with impulse response g[n]. This 

procedure constitutes one level of decomposition in DWT and can be expressed mathematically 

by equations (8) and (9) where yhigh[k] and ylow[k] are the output of high-pass and low-pass filters 

after down-sampling [15]. 

 

02�32&,' =�(&)'
�

. 4&2, − )' (8) 

05�6&,' =�(&)'
�

. ℎ&2, − )' (9) 

This decomposition, which is known as sub-band coding, halves the time resolution and doubles 

the frequency resolution and can be repeated for further decomposition by filtering the output of 

low-pass filter as shown in Figure 1 for three level of decomposition [16]. 

 

Levels of decomposition for DWT are related to filters and frequency specifications of main 

signal. Finally the DWT of original signal is obtained by concatenation of all coefficients, starting 

from the last level of decomposition. So the DWT coefficients are equal to original signal’s 

coefficients. According to Figure 1, output of DWT is [a3.d3.d2.d1]. 

 

4. PROPOSED METHOD 

When the DWT coefficients of a signal is calculated, the frequencies that are the most prominent 

in the original signal will be appear as high amplitude in related regions of the DWT signal. 

Frequencies that are not prominent will have very low amplitude in DWT signal and can be 

discarded without any major loss of information. 

 

A pixel of a hyperspectral image is a vector with L elements, which L is number of image’s 

spectral bands. Low frequencies in this signal are the most prominent and high frequencies can be 

related to noise. So the main behaviour of signal can be found in approximation coefficients of 

DWT (output of the low-pass filter). 

 

Figure 2 shows a 64-sample signal which is the spectrum for one pixel in a hyperspectral image 

with 64 spectral bands and its DWT’s coefficients which has been calculated by different types of 

Daubechies wavelet [17]. Figure 2.b shows the 2-level DWT of the signal which calculated by 

Daubechies16 wavelet. The last 32 samples in this signal (Figure 2.b) correspond to the highest 
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frequency bands in the signal; the previous 16 samples correspond to the second highest 

frequency bands and of the signal and the first 16 samples correspond to low frequencies of 

original signal which are approximation coefficient of it. Figure 2.c and Figure 2.d shows the 3-

level and 4-level DWT of the signal respectively. 

 

Four-level DWT (Figure 2.d) is calculated using Daubechies4 wavelet. Only the first 4 samples in 

this signal, which correspond to low frequencies of the original signal, carry relevant information 

and the rest of this signal has virtually no information. Therefore, all but the first 4 samples can 

be discarded without any loss of information. These 4 samples are the approximation coefficient 

of main signal. In the proposed method these 4 samples, is used to detect anomalies. 

 

The proposed method first calculates DWT of every pixel of hyperspectral image using 

Daubechies4 wavelet. Daubechies4 wavelet decomposes the signal until four samples are left. 

These four samples are calculated for every pixel and placed in a matrix named “approximation 

matrix”. Approximation matrix is abstract of the main image and has the main behaviour of it. 

Then AD algorithms are performed on this matrix instead of main hyperspectral image. 

 

5. EXPERIMENTAL RESULTS 

5.1. Hyperspectral data 

To evaluate the performance of proposed method, two datasets is used: image with implanted 

targets and image with real targets. These data are extracted from a Hyperspectral image of a 

naval air station in San Diego, California, collected by AVIRIS (Airborne Visible and InfraRed 

Imaging Spectrometer) sensor. This image has 189 useful spectral bands and its ground resolution 

is 3.5 meters. 

 

 

Figure 2. (a) Original signal, (b) 2-level DWT, (c) 3-level DWT, (d) 4-level DWT 
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Figure 3. (a) A natural colour composite of the AVIRIS image, (b) subimage with implanted targets 

(Img1), and (c) truth locations of targets in Img1. 

5.1.1. Image with Implanted targets 

To accurately evaluate the performance of anomaly detectors, an image with truth location of 

targets (anomalies) is needed. For this purpose a 60×100 pixels sub-image (from main AVIRIS 

image, Figure 3.a) has been selected and the target implanted method [18–20] has been used to 

implant targets in this sub-image (named Img1, see Figure 3.c). 

 

In target implanted method, a sub-pixel synthetic anomaly, z, is a combination of target and 

background as shown in equation (10). In this equation t and b denotes target and background 

respectively. Sub-pixel (z) consists of the target’s spectrum, with fraction f, and the background’s 

spectrum, with fraction (1-f) [19]. 

 7 = 8. 9 + �1 − 8�. < (10) 

This method does not include adjacency effects of target spectrum on the local background pixels. 

To be more real, the background pixels which are neighbours of the targets can be affected by 

target pixel. This effect can be done by a Gaussian function with width of w as shown in equation 

(11), where =� is spatial distance between the target pixel (t) and background pixel (7�) [21]: 

 

7� = expA− B�CDCE . 8. 9 + A1−expA− B�CDCE . 8E . <� (11) 

To implant anomalies in the sub-image, different targets from various parts of main image has 

been selected and implanted in the sub-image as shown in Figure 3.b. To apply the effect of 

background on targets, outlines of targets has been selected and combined with their adjacent 

background according to equation (10) with coefficient f=0.55. To apply the effect of anomalies 

on the background pixels (at a spatial distance of one from the target) equation (11) is used. This 

data cube includes both subpixel and multi-pixel targets, so it’s an excellent image for testing AD 

algorithms. The truth location of targets is shown in Figure 3.c. 
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5.1.2. Image with real targets 

To evaluate the runtime and performance of algorithms on a hyperspectral image with real 

targets, a sub-image with size of 100×100 was selected from AVIRIS data cube. In this sub-image 

there are 38 anomalous targets. These targets may be helicopters or helipads (Figure 4.b). This 

sub-image which is used in works like [22] and [23], named Img2. 

 

5.2 Implementation 

To evaluate the proposed method three anomaly detection algorithms, Local RX (LRX), DW-RX 

and DWEST, in standard mode and with proposed method have been implemented by IDL 

programming language. To address AD algorithms which have been implemented with proposed 

pre-processing method, they named DWT-LRX, DWT-DWRX and DWT-DWEST. 

 

An important decision for AD algorithms is the detection windows size. There is no specific 

method to choose these windows [21], but inner window size (in dual window algorithms) should 

be almost as large as the biggest target in the image. The size of outer window should be large 

enough to have sufficient number of background sample for further processing [24]. 

 

To implement LRX and DWT-RX algorithms a window of 15×15 pixels has been used for both 

Img1 and Img2. The size of inner and outer window for DWRX, DWT-DWRX, DWEST and 

DWT-DWEST algorithms have been selected 5×5 and 13×13 pixels for Img1 and 3×3 and 13×13 

pixels for Img2, respectively. 

 

5.3 Evaluation of algorithms 

There are two important specifications for evaluation of anomaly detectors: accuracy of detection 

and runtime. In this study the accurate performance of AD algorithms is evaluated using Img1 

and Img2 is used for performance evaluation virtually and runtime investigation of anomaly 

detectors. 

 

 

Figure 4. A natural colour composite of the AVIRIS image, (b) sub-image with real targets (Img2) 
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5.3.1. Performance evaluation by Img1

The accuracy of AD algorithms is evaluated based on the

curve. ROC curve shows true detection (TD) rate versus false alarm rate (FAR) over a particular 

scenario. TD and FAR are computed by varying the detection threshold 

of true detected targets and the corresponding number of false alarms 

curves (AUC) is an exact criterion and widely accepted to evaluate and compare detection 

exactness of AD methods [7]. 

 

Figure 5 shows the detection result

showed in Figure 6. AUC values for AD methods are 

anomaly detectors performance according to their AUCs. 

performance of LRX and DWRX

processing method and the performance of DWEST

DWRX is the best detector. 

 

Figure 5. 3D plots of detection results 

DWRX, (e) DWEST and (f) DWT
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Performance evaluation by Img1 

is evaluated based on the receiver operation characteristic (ROC) 

ROC curve shows true detection (TD) rate versus false alarm rate (FAR) over a particular 

scenario. TD and FAR are computed by varying the detection threshold and counting the number 

of true detected targets and the corresponding number of false alarms [1]. The area under ROC 

curves (AUC) is an exact criterion and widely accepted to evaluate and compare detection 

shows the detection results of AD methods on Img1. ROC curves of AD algor

AUC values for AD methods are showed in Table 1 and Figure 

anomaly detectors performance according to their AUCs. According to these results

performance of LRX and DWRX algorithms is significantly improved using proposed pre 

sing method and the performance of DWEST method is not changed. In addition

 

. 3D plots of detection results for Img1: (a) LRX, (b) DWT-LRX, (c) DWRX, (d) DWT

DWRX, (e) DWEST and (f) DWT-DWEST 
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tion characteristic (ROC) 

ROC curve shows true detection (TD) rate versus false alarm rate (FAR) over a particular 

and counting the number 

area under ROC 

curves (AUC) is an exact criterion and widely accepted to evaluate and compare detection 

ROC curves of AD algorithms are 

Figure 7 compare 

these results, detection 

proposed pre 

In addition, DWT-

LRX, (c) DWRX, (d) DWT-
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Figure 7. Comparison of AD algorithms applied 
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Figure 6. ROC curves of AD methods for Img1. 

Table 1. AUCs of AD methods for Img1. 

AD algorithm AUC 

LRX 0.5412 

DWT-LRX 0.9791 

DWRX 0.5271 

DWT-DWRX 0.9872 

DWEST 0.9745 

DWT-DWEST 0.9709 

 

. Comparison of AD algorithms applied to Img1  

Anomaly Detection Algorithm
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Figure 8. 3D plots of the detection results for Img2: (a) LRX, (b) DWT

DWRX, (e) DWEST and (f) DWT

5.3.2. Performance evaluation by Img2

• Detection Performance

This sub-image is used to evaluate the performance and runtime of anomaly detectors.

shows the detection results of AD algorithms 

not available, the detection performance of anomaly detectors is investigated visually. For this 

purpose a thresholding step is added at the end of

cut-off threshold, this value can be calculate

 FG = 
� + HG × I�  

Where FG is the cut-off threshold value which

is an anomaly or not, 
� and I� are the

AD algorithm) and HG is the z 

pixels declared as an anomaly done by 

the adaptive cut-off threshold which

detection performance of RX and DWRX

improves their performance significantly.

method does not change significantly.
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. 3D plots of the detection results for Img2: (a) LRX, (b) DWT-LRX, (c) DWRX, (d) DWT

DWRX, (e) DWEST and (f) DWT-DWEST 

Performance evaluation by Img2 

Detection Performance 

to evaluate the performance and runtime of anomaly detectors.

shows the detection results of AD algorithms for Img2. Because the ground truth of the targets is 

not available, the detection performance of anomaly detectors is investigated visually. For this 

p is added at the end of AD procedure. This post-processing step

threshold, this value can be calculated adaptively using equation (12) [25]: 

threshold value which (at a significant level of α) declares whether a pixel 

are the mean and standard deviation of anomaly matrix (output of 

 statistic at the significant level of α. controlling the number of 

pixels declared as an anomaly done by HG. Figure 9 shows the output of thresholding step using 

threshold which is declared in equation (12). According to 

RX and DWRX methods is very low and using proposed method 

improves their performance significantly. In addition, the detection performance of DWEST

does not change significantly. 
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DWRX, (d) DWT-

to evaluate the performance and runtime of anomaly detectors. Figure 8 

ground truth of the targets is 

not available, the detection performance of anomaly detectors is investigated visually. For this 

processing step need 

  

(12) 

declares whether a pixel 

mean and standard deviation of anomaly matrix (output of 

. controlling the number of 

shows the output of thresholding step using 

 Figure 9, the 

is very low and using proposed method 

performance of DWEST 
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Figure 9. Detection results of methods 

DWT-DWRX, (e) DWEST and (f) DWT

Table 2

AD algorithm

LRX

DWT

DWRX

DWT

DWEST

DWT

 

• Runtime Performance 

To evaluate speed of AD methods, a computer with “Intel 

and 2GByte Random Access Memory (RAM) 

in equal conditions. Runtime of algorithms 

extra time for calculating DWT 

runtime is added to the proposed algorithms’

algorithms with proposed method is

least time while the DWEST is the most time
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Detection results of methods applied to Img2: (a) LRX, (b) DWT-LRX, (c) DWRX, (d) 

DWRX, (e) DWEST and (f) DWT-DWEST 

2. Runtime of AD algorithms for Img2. 

AD algorithm Run Time (seconds) 

RX 713.674 

DWT-LRX 17.071 

DWRX 637.089 

DWT-DWRX 19.318 

DWEST 1091.173 

DWT-DWEST 20.129 

 

To evaluate speed of AD methods, a computer with “Intel Core i5 2410M, 2.3GHz” processor 

GByte Random Access Memory (RAM) has been used and runtime of algorithms 

. Runtime of algorithms is shown in Table 2. The proposed method has an 

extra time for calculating DWT of the image which equals to 10.8 seconds. This pre

added to the proposed algorithms’ runtime. According to Table 2, runtime of AD 

algorithms with proposed method is much smaller than main methods. The DWT-LRX requires 

least time while the DWEST is the most time-consuming method. 
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LRX, (c) DWRX, (d) 

GHz” processor 

has been used and runtime of algorithms calculated 

. The proposed method has an 

seconds. This pre-processing 

, runtime of AD 

LRX requires 
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6. CONCLUSION 

This work proposed a new method to improve the performance and runtime of current AD 

algorithms. It uses the Discreet Wavelet Transformation (DWT) as a pre-processing Data 

Reduction (DR) step. Experimental result on AVIRIS hyperspectral image using ROC curve, 

AUC and visual investigation showed that this method improved detection performance of the 

LRX and DWRX methods, significantly. This significant improvement is because of elimination 

of redundant spectral bands and increasing the separation between anomaly and background 

signatures using proposed DR method. In addition, proposed method improves runtime of the 

LRX, DWRX and DWEST methods significantly which is very important in real time 

application. The conclusion of this study is that the DR pre-processing step can improve the 

detection performance and speed of anomaly detectors and DWT is an effective DR method for 

the application of AD in hyperspectral images. Future works include evaluating different wavelet 

filters and applying the algorithm on other target detection methods in hyperspectral images. 
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