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ABSTRACT 

 
In this paper, blind image separation is performed, exploiting the property of sparseness to represent 

images. A new sparse representation called forward difference method is proposed. It is known that most of 

the independent component analysis (ICA) basis functions, extracted from images are sparse and gives 

unreliable sparseness measure. In the proposed method, the image mixture is first transformed to sparse 

images. These images are divided into blocks and for each block the sparseness measure 0 norm is 

applied. The block having the most sparseness is considered to determine the separation matrix. The 

efficiency of the proposed method is compared with other sparse representation functions. 
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1. INTRODUCTION 

 
Blind source separation (BSS) is the process of extracting the underlying sources called Source 

Separation from the mixed images or observed signals, and since no a priori knowledge of the 

mixed sources is known or very little information is available, it is called blind. Independent 

component analysis (ICA) is most widely used technique to solve the blind source separation [1-

4] problem. BSS is based on the assumptions that source signals are independent with each other. 

Sparse coding is a method for finding suitable representation of data in which the components are 

rarely active. It has been shown [5, 6, 7] that this sparse representation can be used to solve the 

BSS problem. ICA algorithms i.e., FASTICA uses kurtosis as a sparseness measure and since 

kurtosis is sensitive to the outliers as it applies more weight on heavy tails rather than on Zero, 

this measure is mostly unreliable. When the sources are locally very sparse the matrix 

identification algorithm is much simpler. A simpler form, for separation of mixtures from images 

after sparsification transformation is hence used. 

In this work, a new method is proposed called the forward difference method (FDM) to exploit 

the sparsity representation of images and measure the sparseness, using 0 norm. The forward 

difference method provides a powerful approach to solve differential equations, non linear 

problems and is widely used in the field of applied sciences. The new BSS algorithm, is shown to 
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be more efficient and leads to improved separation quality which is measured as Peak signal to 

Noise ratio (PSNR), Structural Similarity Index Measure (SSIM) and Improvement in signal to 

Noise ratio (ISR). 

 

The rest of the paper is organized as follows: Section 2 deals with the method used for sparse 

representation of data, Sparse measure using 0 norm and the algorithm used for separation. 

Section 3 illustrates the results where the separated images and the original images are compared, 

Section 4 gives the conclusion. 

 

2. METHODOLOGY 
 

Consider N images each of size 256x512 and N linear mixtures of these original images are 

observed. These mixtures can be represented as a linear equation of the form  

ASX =   (1) 

Where s is the original source to be extracted, X is the observation random vector, A is a full rank 

n x n mixing matrix. As the observed image is a random vector X, both A and s needs to be 

estimated. Inverse matrix W can be computed after estimating A. The independent sources are 

simply obtained by 

WXU =   (2) 

Hence the goal of BSS is to find a matrix W, called separator. There are several methods [8], 

[9],[17] to separate the independent components from the original data. Bell and Sejnowski [10] 

developed a neural learning algorithm for separating the statistically independent components of a 

dataset through unsupervised learning. The algorithm is based on the principle of maximum 

information transfer between sigmoid neurons. The features it gave were not very interesting from 

a neural modeling viewpoint, and  the mixing matrix  ‘reduces’ the sparsity of the original images 

which motivates us to find better models like exploiting the property of sparseness [11]. 

 

2.1. Sparse Representation 

 
In order to restore the sparsity of the representations of the original images that solves the BSS 

problem, two methods are proposed [5, 6]. We propose a simpler and efficient method to make 

the image sparse by calculating the forward difference of the image matrix. The analysis 

systematically starts from Taylor’s series expansion by considering the approximation of first-

order derivatives. The Taylor series expansion is given by 
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Where 0<θ<1 , 

 

nf  is the hth
 derivative of f .considering the last term as order of 

nx)(∆  , 

equation (3) becomes, 
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Rewriting the above forward approximation for the partial derivative ut.  i.e., 

 

     (5) 

Or 
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i.e.        (6) 

 

Hence, approximating the formula for forward approximation  

 

        (7) 

Using finite difference operators the equation (7) can be easily written as   or  

 

               (8) 

 
Depending on the application, the spacing h may be variable or constant. The forward difference 

method (FDM) can be used for sparse representation of the image since it acts as an edge detector 

which provides a two-level image, the edges and the homogeneous background. By using this 

method, the separation matrix estimated to separate the image mixture is similar to that of the 

method used (FASTICA) for image separation. In Figure 1, the natural image is displayed as well 

as the image obtained from the above method and their respective histograms that clearly show 

the sparsity of the latter. 

 

 
 

Fig. 1. Original Image and FDM Image 

 

 

   
(a)                                                          (b) 

Fig. 2.  (a) Original Image Histogram and (b) FDM Histogram 

 

2.2. Sparsity Measure 

The sparsity property can be measured [15] using 0 norm defined by David Donoho. Usually 0 

norm is defined as 
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     (9) 

 

the number of nonzero entries of S, is used as a sparsity measure of S, since it ensures the sparsest 

solution.  Under this measure, the sparse solution is obtained by finding the number of non zero 

elements in a block. The block having the maximum sparse is selected to estimate the separation 

matrix W equation (1).The fig 3 shows quality measure using 0 norm for different sparse 

functions. 

 

 

Fig. 3.  Quality Measure values for sparse images shown for each block 

 

2.3. Algorithm 

 
In this section, A BSS algorithm using the FDM is proposed. 

 

1. Normalize the N images. 

 

2. Mixed images are formed by linearly mixing with a random matrix 

 

3. Apply forward difference method for each mixed images to get sparse images. 

 

4. The sparse images are divided into blocks. 

 

5. The blocks having same spatial location are considered for evaluation of the sparseness ( 0 

norm). 

 

6. The blocks having maximum sparseness is considered for estimating the separation matrix 

using Infomax algorithm 
 

3. SIMULATION 

 
Simulation experiments are conducted to demonstrate the feasibility of the proposed BSS method. 

All simulations are carried on 256 x 512. The algorithms are developed on MATLAB 

environment.  The images are mixed with a random matrix 2x2 and the forward difference 

formula equation (8) is applied on it. This sparse image is divided into blocks of 64x128 for 

which the 0 norm is applied to evaluate the quality factor. The blocks which has maximum value 

of the quality factor is considered for evaluating the separation matrix .The separation matrix is 

obtained by using Infomax algorithm. The results are shown in Fig 4. The performance of the 

extracted images is evaluated by an objective image quality measure Peak Signal to Noise Ratio 

(PSNR) and Improved signal to noise ratio (ISNR) which is defined by the equations (11,12). The 
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Structural Similarity Index Measure (SSIM) equation (13) a well-known quality metric is used to 

measure the similarity between two images. It was developed by Wang et al. [16], and is 

considered to be correlated with the quality perception of the human visual system (HVS). A 

comparative result is obtained with other sparcifying functions like gradient and Laplace 

transform for which the random matrix is fixed as in equation (10) . Table 1 shows the Results for 

all the three methods. 

 

     

Fig 4. Original Images 

 

    

Fig 5. Mixed Images 

 

    

Fig 6. Separated Images 

 

 Random Matrix used: 

 

M=   0.2944   0.7143; 

       -1.3362   1.6236;       (10) 
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Table 1. Performance evaluation of sparse functions used for separating the Images 

 

  Methods  PSNR in dB 

  Image 1     Image 2 

     ISNR in dB 

 Image 1      Image 2 

SSIM 

Image1  Image2  

Laplace 25.4338 

 

 17.0934 25.5006 35.8572 0.8570 0.9884 

Gradient 25.7711 

 

11.2603 25.1161 35.5613 0.9993 0.9994 

FDM   27.2376 

 

 24.1159 35.8283 35.8056 0.9999 0.9994 

 

4. CONCLUSION 

 
In this paper, an efficient and simple technique for sparsification of the natural observed mixtures 

followed by a blind separation of the original images has been proposed. This method uses 

forward difference function that has low computational complexity. The result shows FDM 

performs better than other available sparse functions for the same random matrix given in (10). 
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