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ABSTRACT 

 

The technique of cepstrum thresholding, which is shown to be an effective, yet simple, way of obtaining a 

smoothed non parametric spectrum estimate of a stationary signal. The major problem of this method is the 

choice of the threshold value for variance reduction of spectrum estimates. This paper proposes a new 

threshold selection method which is based on cross validation schemes such as Leave-One-Out, Leave-

Two-Out and Leave-Half-Out. This new methods are easy to describe, simple to implement, and does not 

impose severe conditions on the unknown spectrum. Numerical results suggest that this new methods are 

shown to be in agreement with those obtained when the spectrum is fully known.  
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1. INTRODUCTION 

 
The cepstrum is a guide to signal processing in literature [1], [2]. Since, it is applied widely in 

various fields such as speech processing, image processing, filter design, seismology and geology 

etc., [3], [4], [5]. As mentioned in [3] and [6], given the many successful stories of applications of 

cepstrum, it is certain that new and useful applications of cepstrum come in future. Hence, the 

goal is to propose new methods, which have high performance procedures for cepstral estimation. 

Consider a stationary, discrete-time, real valued signal ,.......,2,1,0),( =ttx  with covariance 

sequence { }∞

−∞=kkr and power spectral density (or spectrum) )(ωφ p  where ],[ ππω −∈ . The idea 

in this paper is to estimate the spectrum )(ωφ from a set of observed samples { } 1

0)(
−

=

N

t
tx  of the 

signal. 

 

The periodogram estimate of )(ωφ is given by [7-9] 
2
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p etx
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ωωφ                                                (1) 

 

where the subscript ‘p’ denotes the Periodogram estimate. )(ˆ ωφ p  can also be written in terms of 

the covariance sequence as  
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where kr̂    denotes the following estimate of  r k  

kr̂ = )()(
1 1

ktxtx
N

N

kt

−∑
−

=

                                                           (3) 

 

where  kk rrNk ˆˆ,1.,.........1,0 =−= −                                                             

 Let 1,.......,0,
2

−== Nll
N

l

π
ω                                                                                    (4) 

 

denote the Fourier grid of the angular frequency axis. )(ˆ ωφ p can be computed efficiently by 

means of a Fast Fourier transform (FFT) algorithm.  

 

The periodogram estimate is an asymptotically unbiased but inconsistent estimate of the true 

spectrum [7-9]. The variance of periodogram estimate is high; it does not converge to zero as 

N increases, but approach to )(2

lωΦ . To solve the above problem, many periodogram 

smoothing techniques (in both the time, lag and frequency domain) have been proposed. All these 

techniques suffer from the drawback of having to carefully select the window and the span, for 

which there are no clear-cut guidelines. Data-dependent choices of the window span are hard to 

make, due to the complicated statistical properties of the covariance estimates. In recent days, the 

periodogram estimates via cepstrum thresholding [6], [10], called SThresh [17] have very simple 

statistical properties. The choice of threshold level is almost automatic way, since the threshold 

level is selected manually by a procedure for which there are clear guidelines and for which only 

minor prior information is needed.  

 

2. RELATED WORK 

 
There are several approximately fully automatic schemes are available to select the threshold. 

These include namely Uniformly Most Power Unbiased Test (UMPUT) [10], the Bayesian 

Information Criterion (BIC) [10] and The Kolmogorov Structure Function (KSF) [11]. All these 

are useful whenever true power spectrum is known to fix the optimum threshold. But in practice, 

the true spectrum is unknown. To overcome this attempt has been made to develop fully 

automated threshold selection method such as Leave-One-Out Cross Validation (LOOCV) in the 

absence of the knowledge of true spectrum [16]. We extended the Cross Validations Schemes 

such as Leave-Two-Out and Leave-Half-Out to select the threshold in non parametric smoothed 

power spectrum estimation via Cepstrum thresholding.  

 

The paper is organized and is as follows. In the next section the cepstrum based smoothing 

technique is introduced. In section 4 the Cross Validation schemes for choosing the optimum 

threshold are described and in section 5 some numerical examples have been presented to 

illustrate the benefit of the proposed algorithm. Comparison among the various threshold 

selection schemes is presented in section 6.  
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3. SMOOTHED SPECTRAL ESTIMATION VIA CEPSTRUM THRESHOLDING -    

STHRESH 

 
The Cepstral coefficients are defined as 

 

1.,.........1,0,)](ln[
1 1

0

−== ∑
−

=

Nke
N

c
kj

N

l

lk
lωωφ                     (5)  

 

where it is assumed that ll ∀> ,0)(ωφ . The cepstral coefficients have several interesting features, 

one of which is mirror symmetry: 

 

    2/,,.........1,0, Nkcc kkN ==−                                                         (6)  

 

which mean that only half of the sequence ,.,,......... 2/0 Ncc is distinct. The other half is obtained 

from ,.,,......... 1)2/(1 −Ncc via (6).  

 

Using the periodogram estimate in (1), a common estimate of the cepstral coefficients is obtained 

by replacing )(ωφ  in (5) with )(ˆ ωφ p , which given [6], [7]. 

 

,...,.........0

,)](ˆln[
1

ˆ
0,

1

0

Mk

e
N

c k

kj
N

l

lpk
l

=

+= ∑
−

=

γδωφ ω

                                    (7) 

 

where     
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=
else

kif
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0

01
0,δ                                                              (8) 

  

M=N/2 and ...577216.0=γ (the Euler’s constant). 

 

It can be shown that in large samples, the estimated cepstral coefficients 
M

kkc 0}ˆ{ = are independent 

normally distributed random variables [18]: 
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with the above equations in mind, the idea behind cepstrum thresholding is taken from the 

literature [23-25]. Let kc~ be a new estimate of kc  and note that 0~ =kc  has a mean squared error 

(MSE) equal to
2

kc . This estimate is preferred to  kĉ   as long as
22

kk sc ≤ . Now let  
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and let S
~

be an estimate of the set S. Thresholding
Skkc ~}ˆ{

∈
 gives the following new estimates 

of kc : 
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A good estimate of S is given by 

 

}ˆ],0[{
~

kk scMkS µ≤∈=                                                  (13) 

 

where the parameter µ  controls the risk of concluding that kc  is “significant” when this is not 

true, the so called “false alarm probability”. There are three different methods to set the threshold 

level µ , they are outlined below. 

 

UMPUT [10] – The expression is derived by combining a uniformly most powerful unbiased test 

with some empirical evidence and it is given by [20] 

For )2048,128(∈N : 
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where  
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BIC [10] - In this case, the choice of the threshold depends on the Bayesian Information Criterion 

[19]. The formula of µ is:  

 
2/1)(ln1 MBIC +=µ ,   where M=N/2                               (16)  

 

KSF [11] - The value of µ is selected such that to minimize the Kolmogorov structure function 

(KSF) as it is formulated in [21]. The following threshold is used in cepstral nulling 

 
*1 lKSF +=µ , where )(minarg* lhl c

l
= , the KSF is denoted by )(lhc                   (17) 

  

This means that µ   belongs to the interval ( 0µ , 0µ +1). For other intervals of the sample length, 

N, similar rules can be developed. The smoothed spectral estimate corresponding to }~{ kc is given 

by: 
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where the subscript cep  signifies its cepstrum dependence. The final scaled spectrum estimate 

)(ˆ
lcep ωφ  is then given by  
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The above outlined smoothing scheme was called SThresh. We now proceed to automate the 

selection of µ , using a cross-validation scheme. 

 

4. CROSS-VALIDATION BASED THRESHOLD SELECTION (CV-STHRESH) 

 
The idea of using cross-validation for selection of smoothing parameters is quite appealing.  The 

selection of the bandwidth of estimates that are based on a discrete periodogram average, by 

means of cross-validation, is discussed in [12-14]. The concept of cross validation is applied to 

find an optimum value of the threshold µ . This optimal threshold value will be used to smooth 

the spectrum with the procedure outlined in section 3. First various types of cross validation 

methods are discussed[15], then the concept of Leave-One-Out Cross Validation(LOOCV) is 

explored to find an optimum threshold value[16]. 

 

4.1. Definitions 

 
Stein’s Unbiased Risk Estimation (SURE) - Choose the value of threshold µ at which the 

integrated mean square error (IMSE) is minimum. The IMSE of  }
~

{ kΦ  is given by 

    

21
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N
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K-Fold Cross-Validation-In k-fold cross-validation the data is first partitioned into k equally (or 

nearly equally) sized segments or folds. Subsequently k iterations of training and validation are 

performed such that within each iteration a different fold of the data is held-out for validation 

while the remaining k- 1 folds are used for learning. Data is commonly stratified prior to being 

split into k folds. Stratification is the process of rearranging the data as to ensure each fold is a 

good representative of the whole. For example in a binary classification problem where each class 

comprises 50% of the data, it is best to arrange the data such that in every fold, each class 

comprises around half the instances. 

 

Leave-One-Out Cross-Validation (LOOCV) -Leave-one-out cross-validation is a special case 

of k-fold cross-validation where k equals the number of instances in the data. In other words, all 

the data except for a single observation are used for training and the model is tested on that single 

observation. 
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Leave-Two-Out Cross-Validation (LTCOCV) -In this case, almost all the data except for two 

observations are used for training the model and the model is tested on the left out two 

observations. 

 

Leave-Half-Out Cross-Validation (LHCOCV)-In this case, the data is divided into two equal 

segments. One segment is used for training the model and other one for testing the model.  Leave-

half-out cross validation is simple to implement, and achieves same performance as that of the 

above techniques with the reduced computational complexity.  

 

4.2. Periodogram Smoothing via Cross Validation  

 
If we knew the true underlying spectrum )(ωφ , we would find µ  by minimizing the integrated 

mean squared error (IMSE) of cepφ̂  with respect to µ , where 
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and [.]E denotes the expectation. Unfortunately, in most practical situations, )(ωφ  is unknown 

and computing the IMSE is therefore not possible. However, cross-validation schemes can be 

utilized to find an estimate of IMSE, for instance, the following estimate is given by 

 

∑
−

=

−
−=

1

0

2)](ˆ)(ˆ[
1

)ˆ(
N

j

jpj

j

cepcep
N

MSECV ωφωφφ                             (23) 

 

here, )(ˆ
j
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jcep ωφ , constructed such that )(ˆ
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This leave-one-out estimate can be efficiently obtained from  
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The cepstral coefficients are then thresholded according to (12) for a particular choice of µ . 

Finally, the leave-one-cut estimate in (23) is given by 
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where 
j

kc
−~  denotes the threshold version of 

j

kc
−

ˆ  and α̂  is obtained by replacing )(
~

ωφcep with 

its leave-one-out estimate )(
~

ωφ
j

cep

−
in (21). The optimal thresholding parameter µ  is then the 

one that minimizes the criterion (23). 
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The Algorithm steps for proposed smoothing scheme CV-SThresh to find the optimal threshold 

parameter, optµ . 

 

1. From 1,......,1,0),( −= Nttx , compute )(ˆ ωφ p  and kĉ . 

2. Choose a ],0[ maxµµ ∈ . Empirical studies have shown that taking 10max =µ  is a good 

general choice. 

3. Find an estimate of ))(ˆ( ωφcepIMSE by efficiently evaluating ))(ˆ( ωφcepCVMSE  in (23). 

The efficient way of obtaining   
j

kc
−

ˆ  in (25) reduces computation by a factor of Nlog . 

4. Repeat the above step over the range ],0[ maxµ . 

5. Find the value of µ  that minimizes ))(ˆ( ωφcepCVMSE . 

6. Finally compute the smoothed spectrum as done in section 3, using optµ  as a threshold. 

 

5. SIMULATION 

 
The performance of the proposed CV-SThresh method is illustrated by using the broadband and 

narrowband signals and also for MST radar data. 

 

5.1. Broadband Signal 

 
Consider a broadband, second order MA process. The signal )(tx  was generated using the 

moving average equation  

 

  1,,.........0),2(15.0)1(55.0)()( −=−+−+= Nttetetetx                       (27) 

 

where )(te  is a zero mean, unit variance normal white noise. We generated 100 realizations, each 

of length N=512 of the process. In Fig.1 we show the true spectrum, periodogram based spectrum 

and the smoothed spectrum via CV-SThresh. The variance and mean square error parameters of 

these methods are shown in Fig.2.  We clearly see that the variance of the smoothed spectrum via 

CV-SThresh is significantly smaller than that of the peridogram. The optimal µ  can be obtained 

from Fig.4 (a) by finding the µ  corresponding to the minimum value of IMSE. It is clearly seen 

from Fig.3 that the true and the CV estimate of IMSE have a minimum at almost the same point. 

Cross- validation therefore gives a nearly optimal value of µ for thresholding. 
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Figure 1.  True spectrum )(ωφ , the periodogram estimate )(ˆ ωφ p and the cepstrum based spectrum 

estimate )(ˆ ωφcep versus frequency ω  rad/s, for a broadband MA signal N=512 
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Figure 2. Variance and Mean square error of )(ˆ ωφ p and )(ˆ ωφcep versus frequency ω  
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Figure 3. IMSE ( )(ˆ ωφ p ) and IMSE ( )(ˆ ωφcep ) versus the threshold µ  
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Figure 4. CVMSE ( )(ˆ ωφcep ) versus the threshold µ using cross validation method. 

 

5.2. Narrowband Signal 

 
Consider a narrowband ARMA process represented by  

 

 
1,....1,0),2(9604.0)1(5857.1)()4(8145.0

)3(4808.1)2()1(2044.26408.1)(

−=−+−+=−

+−−−−+−

Nttetetetx

txtxtxtx
                          (28)  

 

where )(te  is again a zero mean, unit variance normal white noise. We generated 1000 Monte-

Carlo simulations, each of length N=512. as described in the broadband example, the optimal 

threshold parameter optµ  has been obtained as the threshold that yields the minimum cross-
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valedictory estimate of IMSE. For comparison, we have plotted the true spectrum together with 

the periodogram based spectrum and smoothed spectrum via CV-SThresh in Fig.5. The variance 

and mean square error parameters of these methods are shown in Fig.6. Fig.7 and 8 shows the 

IMSE and CVMSE curves versus µ , used to find optµ . In comparison, we see that the variance 

has been reduced but a bias has been introduced. When smoothing the spectrum via cepstrum 

thresholding, some of the energy is lost due to the truncation of kĉ to zero in (12). For broadband 

signals, very few of the cepstral estimates are truncated so only a small bias is introduced, 

whereas for narrowband signals, many more coefficients are set to zero, thus causing the bias 

seen in Fig.5. 
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Figure 5.  True spectrum )(ωφ , the periodogram estimate )(ˆ ωφ p and the spectrum estimate 

)(ˆ ωφcep versus frequency ω  rad/s, for a narrowband ARMA signal N=512 
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Figure 4. Variance and Mean square error of )(ˆ ωφ p and )(ˆ ωφcep versus frequency ω  
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Figure 5.  IMSE ( )(ˆ ωφ p ) and IMSE ( )(ˆ ωφcep ) versus the threshold µ  
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Figure 6.  CVMSE ( )(ˆ ωφcep ) versus the threshold µ using cross validation method. 

 

5.3. MST Radar signal  

 
The MST radar data has been considered to estimate the spectrum based on the above described 

method. The MST atmospheric data is collected from the MST Radar centre at Gadhanki, 

Tirupati, India. The data set consists of 150 member functions, each having 256 samples. The 

proposed Cross Validation based method has been applied to radar data, it is observed that the 

spectrum of radar data is smoothed, which is shown in Fig.9. It is observed the spectrum 

estimated for MST radar data based on the proposed method is smoother than the spectrum 

estimated by periodogram estimate.   
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6. COMPARISON AMONG SURE TECHNIQUE AND CROSS VALIDATION 

METHODS 

 
The Stein’s unbiased risk estimation (SURE) technique and the cross validation schemes such as 

Leave-one-out (LOO), Leave two out (LTO) and Leave half out (LHO) methods have been 

applied to a broadband signal, a narrowband signal and a MST radar data for optimum threshold 

selection. Table.1 suggest that Leave half out cross validation is easy to implement, and achieves 

threshold value in agreement with other techniques with few computations.  

 

TABLE.1. Threshold values of SURE, LOOCV, LTOCV and LHOCV 

 

Type of signal Optimum threshold value ( ) 

SURE Technique LOOCV LTOCV LHOCV 

Broadband MA signal  4 4 5 4 

Narrowband ARMA 

signal 

3 3 2 2 

MST Radar data * 3 3 2 

 

* Not applicable duo to lack of known spectrum 
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Figure 7.  The periodogram estimate )(ˆ ωφ p and the spectrum estimate )(ˆ ωφcep versus frequency ω  

rad/s, for a radar data N=256.  
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Figure 8.  CVMSE ( )(ˆ ωφcep ) versus the threshold µ using cross validation method. 

7. CONCLUSIONS 

 
In this paper the CV-SThresh has been proposed, which is a new data-driven method for 

threshold selection in smoothed non-parametric spectral estimation. The technique of cross-

validation has been applied to a broadband, a narrowband and a MST radar data for determining 

the smoothed spectrums by automatically selecting optimum threshold value. The criterion used 

in this paper is a cross validatory estimate of the minimum mean square error.  Three cross 

validation schemes: Leave-one-out, Leave-two-out and Leave-half-out are employed to select the 

optimum threshold level for the given N  Periodogram ordinates ))(ˆ( kP ωΦ . The results obtained 

are in conformity with the existing results in [6], [16], derived using some apriori knowledge 

about the true spectrum. We observed that Leave-half-out Cross Validation scheme is simple to 

implement than the other methods, because it produces the good results with few computations. 
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