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ABSTRACT 

This paper describes the development of an adaptive noise cancellation algorithm for effective recognition 

of speech signal and also to improve SNR for an adaptive step size input. An adaptive filter with Fast Block 

Least Mean square Algorithm is designed for noise free audio (speech/music) signals. The signal input 

used is a audio speech signal which could be in the form of a recorded voice. The filter used is adaptive 

filter and the algorithm used is Fast Block LMS algorithm. A  Gaussian noise is added to this input signal 

and given as a input to the Fast Block LMS.  The algorithm is implemented in Matlab and was tested for 

noise cancellation in speech signals. A Simulink model is designed which results in a noise free audio 

speech signal at the output. The FBLMS algorithm is computationally efficient in noise cancellation. The 

noise level in speech signal can be 1) mild, 2) moderate, 3) severe. The SNR is estimated by varying the 

adaptive step size. 
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1. INTRODUCTION 

The purpose of filtering, which is a signal processing operation, is to manipulate the information 

present in the signal. Filter is a device which extracts desired information from the input signal by 

mapping input signal to another output signal. The digital format of discrete time signal can be 

processed by digital filter. With these filters desired spectral characteristics of signal can be 

achieved by which unwanted signal can be rejected, like noise or interference and bit rate can be 

reduced in transmission. For time-invariant filters the internal parameters and the structure of the 

filter are fixed and if the filter is linear the output signal is a linear function of the input signal. 

The problem which is not known in advance can be tackled by making the filter adaptive i.e. 

changing the parameters of filter according to some algorithm.e.g. The characteristics of the 

signal, or the unwanted signal, or systems influence on the signal that one would like to 

compensate. The Adaptive filters are capable of adjusting to unknown environment and even 

track signal or system characteristics varies in time. three steps are in designing time invariant 

linear filter, namely specification are approximated using rational transfer function, choice of 

defining the algorithm and choice of implementation form for the algorithm. An adaptive filter is 

required when either the fixed specifications are unknown or the specifications cannot be satisfied 

by time-invariant filters. In actual fact an adaptive filter is a nonlinear filter because its 
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characteristics dependents on the input signal, consequently the homogeneity and additive 

conditions are not satisfied. In general, adaptive filters are one that varies through time because 

the characteristics of its inputs may be varying. That is why it separates itself from classical 

digital signal processing (ie) the digital system itself changes through time. When there is a need 

to process signal in an environment of unknown statistics adaptive filters will not perform better 

than fixed filter. This paper describes adaptive filtering and its simulation in MATLAB with Fast 

Block LMS algorithm for noise cancellation in speech signals. 

2. ADAPTIVE FILTER 

An adaptive filter is a filter that self-adjusts its transfer function according to an optimizing 

algorithm. Because of the complexity of the optimizing algorithms, most adaptive filters are 

digital filters that perform digital signal processing and adapt their performance based on the 

input signal. In contrast, a non-adaptive filter has static filter coefficients, which together form the 

transfer function .Since for the desired processing operation some parameters (for instance, the 

properties of some noise signal) are not known in advance for some application adaptive 

coefficients are required. In this case it is common to use an adaptive filter, which uses feedback 

to modify the values of the filter coefficients and thus its frequency response. The adaptive 

process involves the use of a cost function, which is a criterion for optimum performance of the 

filter (for example, minimizing the noise component of the input), to feed an algorithm, which 

determines how to modify the filter coefficients to minimize the cost on the next iteration. 

 

2.1 Specification of an Adaptive System 

The complete specification of an adaptive system consists of three items: 

 

2.1.1. Application 
 

The choice of the signals acquired from the environment to be the input and desired-output 

signals defines the type of application. During the last two decades the applications which 

successfully use adaptive techniques are increased enormously. Some examples are echo 

cancellation, equalization of dispersive channels, system identification, signal enhancement, 

adaptive beam forming, noise cancelling, and control. This paper explores about noise 

cancellation. 

 

2.1.2. Adaptive-Filter Structure 

The computational complexity of the process and also the necessary number of iterations to 

achieve a desired performance level are being influenced by structure choice. Basically, there are 

two major classes of adaptive digital filter realizations, distinguished by the form of the impulse 

response, namely the finite-duration impulse response (FIR) filter and the infinite-duration 

impulse response (IIR) filters. FIR filters are usually implemented with non-recursive structures, 

whereas IIR filters utilize recursive realizations. 

 

2.1.2.1. Adaptive FIR filters realizations 

 

The adaptive FIR filter structure which is most widely used is the transversal filter, also called 

tapped delay line, that implements an all-zero transfer function with a canonical direct form 

realization without feedback. For this realization, the output signal y(k) is a linear combination of 

the filter coefficients, that yields a quadratic mean-square error (MSE = E[|e(k)|2]) function with 

a unique optimal solution. Other alternative adaptive FIR realizations are also used in order to 

obtain improvements as compared to the transversal filter structure, in terms of computational 

complexity, speed of convergence, and finite word length properties. 
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2.1.2.2. Adaptive IIR filter realizations 

 

The most widely used realization of adaptive IIR filters is the canonical direct form realization, 

due to its simple implementation and analysis. However, there are some inherent problems related 

to recursive adaptive filters which are structure dependent, such as pole-stability monitoring 

requirement and slow speed of convergence. To represent these problem varies realizations were 

proposed attempting to overcome the limitations of the direct form structure. 

 

Among these alternative structures, the cascade, the lattice, and the parallel realizations are 

considered because of their unique features 
 

2.1.2.3. Algorithm 

 

The procedure for the algorithm is to adjust the filter coefficients for the adaptive filter in order to 

reduce a prescribed criterion. The algorithm is determined by minimization algorithm, the 

objective function, and the nature of error signal. Various type algorithms determine several 

crucial aspects of the overall adaptive process, such as existence of sub-optimal solutions, biased 

optimal solution, and computational complexity. 

 

2.2. A Review of LMS Algorithm 

 

The LMS algorithm which uses an instantaneous estimate of the gradient vector of a cost function 

is an approximation of the steepest descent algorithm. Based on sample values of the tap-input 

vector and an error signal the gradient is estimated. The algorithm iterates each coefficient in the 

filter, moving it in the direction of the approximated gradient. For the LMS algorithm it is 

necessary to have a reference signal d[n] representing the desired filter output. The difference 

between the reference signal and the actual output of the transversal filter is the error signal which 

is given in the equation (1) 

 

][][)()( nxncndne H−=                                         (1) 

 

The objective of the LMS algorithm is to find a set of filter coefficients c(n) to achieve the least 

mean squared error that minimizes the expected value of the quadratic error signal. The squared 

finite impulse response error and its expected value are (for simplicity of notation and perception) 

drop the dependence of all variables on time n .A schematic of the learning setup is depicted in 

figure (1) 

 

Figure (1) General Block diagram for Adaptive Filter with LMS  

From Figure, 

cxxcxdcdxcde HHHH +−=−= 2)( 222                        (2) 
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)()2()(][ 22 cxxcExdcEdEeE HHH +−=
                        (3) 

 

cxxEcdxEcdEeE HHH )()(2)(][ 22 +−=
                (4)

 

 

Note, that the squared error e2 is a quadratic function of the coefficient vector c, and thus has 

only one (global) minimum (and no other (local) minima, ref equation (4). 

 

The gradient descent approach demands that the position on the error surface , ref equation(5)  

according to the current coefficients should be moved into the direction of the ‘steepest descent’, 

i.e., in the direction of the negative gradient of the cost function J = E(e2) with respect to the 

coefficient vector 
 

cxxEdxEj
H )(2][ −=∇−                                                         (5) 

 

The expected values in this equation, E(d x) = p, the cross-correlation vector between the desired 

output signal and the tap-input vector, and E(x xH) = R, the auto-correlation matrix of the tap-

input vector, would usually be estimated using a large number of samples from d and x. In the 

LMS algorithm, however, a very short-term estimate is used by only taking into account the 

current samples: E(d x) d x, and E(x xH)  x xH , leading to an update equation for the filter 

coefficients 

))((2/ cjCC c
oldnew −∇+= µ                           (6)

 

)( cxdxCC
Holdnew −+= µ                                       (7) 

*xeCC
oldnew µ+=                          (8)                                     

Here, we introduced the ‘step-size’ parameter µ, ref equation (6) & (7) which controls the 

distance we move along the error surface. In the LMS algorithm the update of the coefficients, is 

performed at every time instant n, 

][][*][]1[ nxnencnc µ+=+                                      (9)
 

 2.2.1.Choice of step-size 

The error function surface at each update step that moves along is controlled by’ step-size’ 

parameter µ.µ certainly has to be chosen such that µ > 0 (otherwise we would move the 

coefficient vector in a direction towards larger squared error). Also, µ should not be too large, 

since in the LMS algorithm we use a local approximation of p and R in the computation of the 

gradient of the cost function, and thus the cost function at each time instant may differ from an 

accurate global cost function. Moreover, larger the step-size causes the LMS algorithm to be 

instable, i.e., the coefficients do oscillate instead of converge to fixed values. Analyzing closely, 

for stable behavior of the LMS algorithm depends on the largest eigenvalue λmax of the tap-input 

auto-correlation matrix R and thus on the input signal. For stable adaptation behavior the step-

size has to be 

 

max

2

λ
µ <                                               (10)                                  
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Since we still do not want to compute an estimate of R and its eigen values, we first approximate 

)()(max RtrRtr≈λ   is the trace of matrix R, i.e., the sum of the elements on its diagonal), and then – 

in the same way as we approximated the expected values in the cost function , 
2

)()( nxRtr ≈−  the 

tap-input power at the current time n. Hence, the upper bound for µ for stable behavior depends 

on the signal power. 

3. FAST BLOCK LMS ALGORITHM 

 

For some application like adaptive echo cancellation and adaptive noise cancellation needs 

adaptive filters with a large filter length.  LMS algorithm applied to the adaptive filter might take 

a long time to complete the filtering and coefficients updating process. This may cause problems 

in these applications because the adaptive filter must work in real time to filter the input signals. 

In such situation, one can use the fast block LMS algorithm. 

 

The Fast block LMS algorithm transform the input signal x(n) to the frequency domain using the 

fast Fourier transform (FFT). It also updates the filter coefficients in the frequency domain. This 

updates can save computational resources. The fast block LMS algorithm differs from the 

standard LMS algorithm in the following ways:  The size of block is exactly the same as the filter 

length. The filter coefficients are updated by sample by sample basis in the standard LMS 

algorithm. 

 

The multiplication operation needed for the fast block LMS algorithm is much lesser than the 

standard LMS algorithm. If both the filter length and block size are N, the standard LMS 

algorithm requires N(2N+1) multiplications, whereas the fast block LMS algorithm requires only 

(10Nlog2N+26N) multiplications. The fast block LMS algorithm can execute 16 times faster than 

the standard LMS algorithm, when N=1024. 

 

3.1 Circular Matrices 

 
Consider the MxM circular matrix Ac as shown in equation (11)  
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Each row (column) in Ac is determined by shifting the previous row (column) circularly by one 

element. The circular matrix has an important property according to which such matrices are 

diagonalised by DFT matrices. That is, if F is the M xM DFT matrix defined as F given in 

equation (12) 
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Then 
1−= FFAA cF is a diagonal matrix. Furthermore, the diagonal element of AF correspond to 

the DFT of the first column of Ac, i.e. ][ FF adiagA = , aFa F =][  

Where, [ ]T

Maaaa 110 .... −= . 

3.2. Window Matrices and Matrix Formulation of the Overlap-Save Method 

 
Define the N’xN’ circular matrix, for N’=L+N-1, as Xc(k) 





















+−−−−−

+−+−+−

+−−−+−

=

)1(.....)2()1(

.

.
.....

.

.

.

.

)3(.....)1()2(

2(.....)1()1(

)(

NkLxNkLxNkLx

NkLxNkLxNkLx

NkLxNkLxNkLx

X Kc

             (13)                                                           









=

)(

0
)(~

ky
ky

 

Also, define the length N’ column vector 

Where,  [ ]TkLykLykLyky )1(.....)1()()( −+=  

   is the length of N-1 zero vector. Let denote by    the column vector that appears on the 

left-hand side of equation (14). That is 

[ ]Tc kLykLykLyky )1(.....)1()(**....**)( −+=                (14) 

We can see that  can be obtained from  with zero. This substitution can be written in the 

form of a matrix-vector product as 

)(~)(~
, kyPky cLo=

                                                           (15) 

where   is the N’xN’ windowing matrix defined as 
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                                                              (16)                                              

with being the LxL identity matrix and  are zero matrix with appropriate dimensions. Thus, 

we obtain 
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)()()(~
, kWkXPky cLo=

                                       (17) 

The above equation (17) may be written as 

)()()(~ 11
, kWFFkFXFPky cLo

−−=
              (18) 

where F is the N’xN’ DFT matrix .Next, define 

)(
~

)( KWFkW =                    (19) 

1)( −= FFXkX cF                                                    (20) 

Since XC(k) is a circular matrix,  is the diagonal matrix having elements of DFT of the first 

column of XC(k) ).The first column of XC(k) is the input vector .Thus obtain equation (21) 

)()()(~ 1
, kWkXFPky FFLo

−=
                             (21) 

3.3. FBLMS Algorithm 

 

The Fast BLMS (FBLMS) algorithm is a computationally efficient implementation of the BLMS 

algorithm in the frequency domain, referring to equation (21), we write   

)()()(~ 1
, kWkXFPky FFLo

−=
    

With respect to the filtering part of the FBLMS algorithm 

 

The output vector )(~ ky , in extended form is defined as 
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The extended error vector is )(~)(
~

)(~ kykdke −= .To obtain the frequency domain equivalent  

)()(2)()1( kekX
L

kWkW
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+=+               (23) 

Then , replace  and by their extended version, where Xc(k) is the circular matrix of 

samples of the filter input and, 
L
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 which is an N’xN’ windowing matrix it shows that even after each iteration the last 

L-1 elements of the updated weight vector )1(
~

)1(
~

. ++ kWPkW ON
  remain equal to zero. The 

frequency domain equivalent can be done by premultiplying it on both sides by the DFT matrix F 

and using the identity  to obtain 
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and then we can write the weight-vector updating equation as 

)()(2)(
~

)1(
~ *

, kekXPkWkW F

T

FONµ+=+                     (25) 

Where )(~)( keFke F =  

and 
1

,.
−= FFPP ONON  

The block diagram of the FBLMS algorithm is shown in figure (2). 

 

Figure (2) Implementation of FBLMS Algorithm 

3.3.1. Constrained and Unconstrained FBLMS Algorithms 

 

Already shown that for fairly mild conditions the FBLMS algorithm can work well even when the 

tap-weight constraining matrix PN,0 is dropped from equation (24). That is, the recursion  

 

)(2)(
~

)1(
~ *

keXkWkW FFµ+=+                                       

(26) 

 

When N is chosen sufficiently large that converges the same set of tap-weights and the input 

process, x(n), does not satisfy some specific ( unlikely to happen in practice ) conditions. If the 

gradient constraining operation, enclosed by the dotted-line box, is dropped constrained algorithm 

is easily converted to the unconstrained FBLMS algorithm. 



Signal & Image Processing : An International Journal (SIPIJ) Vol.3, No.3, June 2012 

47 

3.3.2. Convergence Behaviour of the FBLMS Algorithm 

 

Consider the unconstrained recursion,  

)()()(
~

)(~ 1
, kWkXFPkdke FLO

v
−−=                      (27)            

Since the first N-1 elements of  are all zero, thus 

)(2)(
~

)1(
~ * keXkWkW FFµ+=+                                  (28)               

)]())()(()[(2)()1( ,
* kWkXkdPkXkWkW FFFLOFFF −+=+ µ                                                (29)                  

                                         

Next, we define the tap-weight error vector 

FOFF WkWkv ,)()( −=                                                                                   (30)       

       

Where   , is the optimum value of the filter tap-weight vector in the frequency domain. Using 

the equation (28), (29) & (30) we can obtain equation (31) 

 )()(2)())()(21()1( ,,
*

,
* kePkXkvkXPkXkv FOLOFFFLOFF µµ +−=+                                (31)                             

Where )(, ke FO  is the optimum error vector obtained when )(kWF is replaced by )(, kW FO .It can be 

shown (omitted) that, for coloured inputs, as happens with the conventional LMS algorithm, the 

unconstrained FBLMS algorithm will also perform poorly. The same is true for the constrained 

FBLMS algorithm. 

3.3.3. Step-Normalization 

 

The convergence behaviour of the FBLMS algorithm can be greatly improved by using 

individually normalized step-size parameters for each element of the tap-weight vector  , 

rather than a common step-size parameter. The above technique is called “normalizing the step 

size” , that is same as one used for improving the convergence of the transform-domain LMS 

algorithm. The step-normalization is implemented by replacing the scalar step-size parameter µ 

by the diagonal matrix 

 

]........)()([)( 110 −= Nkkdiagk µµµµ                                                                                 (32) 

                     

where µi(k) is the normalized step-size parameter for the i-th tap. These are obtained by the 

equations. 
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µ  Where µ0 is a constant, )(
,

2
k

iFx∂  are the power estimates of the samples of the 

filter input in the frequency domain, )(, kx iF
 these estimates may be obtained in equation (33) 

using the following recursion 
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2

,,

2

,

2 )()1()1()( kxkk iFiFxiFx ββ −+−∂=∂                                                                              (33) 

                  

where, 0<ß<1, ß is close to 1. 

3.3.4. Steps involved in FBLMS Algorithm 

 

Step: 1.Input Tap-weight vector,       )(kWF                                      

            Signal power estimates,   2

,

2
)(k

iFx∂                                

            Extended input vector, T
LkLxNkLyNkLxkx )]1().....2()1([)(~ −++−+−=   

Step: 2. Output vectors 

Desired output vector, [ ]TLkLdkLdkLdkd )1(......)1()()( −++=   

Output: Filter output, [ ]TLkLykLykLyky )1(......)1()()( −++=  

Tap-weight vector update, )1( +kWF  

  where N: filter length, L: block length 

Step: 3. Filtering ))(~()(~ kxFFTkx F =  

)(ky = the last elements of IFFT of )(
~

)(~ kWkx FF ⊗  

Here  denotes element - by element multiplication of vectors. 

Step: 4. Error estimation: )()()( kykdke −=  

Step: 5. Step-Normalization for i=0 to N-1 ,
2
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Step:6. Tap-weight adaptation: )
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Step: 7. Tap-weight constraint: )
0
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
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=+
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FFTkW F

F
 

This last step is applicable only for the constrained FBLMS algorithm The algorithm is applicable 

to both real- and complex-valued signals. 

3.3.5. Selection of the Block Length 

 

In general the block processing of signals, results in a certain time delay at the system output In 

many applications this processing delay may be intolerable and hence it has to be minimized. In 

this application where the processing delay is not an issue, L is usually chosen to N. The exact 
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value of L depends on N. For a given N, one should choose L so that N’=N+L-1 is an appropriate 

composite number so that efficient FFT and IFFT algorithm can be used in the realization of the 

FBLMS algorithm. On the other hand, in applications where it is important to keep the processing 

delay small, one may need to strike a compromise between system complexity and processing 

delay. 
 

4. SIMULATION AND RESULTS  

For the purpose of noise cancellation in speech signal corrupted by White Gaussian noise, the 

Fast Block LMS algorithm was simulated and tested using Matlab as shown in figure (3&4).The 

model is designed in the situation under which the adaptive filter needed to remove a white noise 

from a desired speech signal. The original speech signal is recorded audio signal as shown in 

figure (5). White Gaussian noise is added to the original speech signal once it is being generated. 

The primary input used for the filter is the linear combination of the generated noise and the 

original signal. Figure (6) shows the original speech corrupted by white noise with frequency 

response as shown below, the filtered speech signal using the Fast Block LMS algorithm is shown 

in figure (7). 

 

Figure (3) Simulink Model of Fast Block LMS for speech signal Processing  
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Figure (4) Internal structure of Fast Block LMS for speech signal Processing  

 

 

Figure (5): Original Speech signal (Recorded audio signal) and its Spectrum 
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Figure (6): White Gaussian Noise Signal and its Spectrum 

         

                                            

Figure (7): Filtered output Speech signal after FBLMS and its Spectrum 

The step size can be varied using the adapt block. It can be enabled or disabled using boolean. 

The filter can also be reset using a suitable enable or disable. The signal to noise ratio output is 

calculated for the various step size input signal.. The peak signal to noise ratio is also calculated 

for the output signal. The results obtained for the various values of step size are tabulated below, 

Refer Table (1). 

 

The Signal to Noise ratio for FBLMS is also estimated and tabulated, Refer Table (2). 
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Table (1) PSNR ratio of different input step size using FBLMS  

 

Table (2) Comparison of SNR ratio of different Noise Level   

 

5. CONCLUSION  

In this paper Fast Block LMS algorithm for speech signal is simulated and tested by using 

Matlab. The results from the FBLMS shows that it can remove the different levels of noise more 

efficiently and effectively and which may cause faster response. It has a low computational 

complexity property than LMS algorithm. The Peak signal to noise ratio for different step size are 

found and the optimum value of step size is found to be 0.0019.In Low power noise the system 

showed SNR improvement up to 23.15dB, for Medium noise level the system showed SNR 

improvement up to 20.5dBand in severe noise level the system showed SNR improvement up to 

15.75dB.This techniques can be used for noise cancellation in speech signal and Bio medical 

signals. The future work is to be implemented in DSP processor with real time applications. 
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