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ABSTRACT 

The standard separable two dimensional wavelet transform has achieved a great success in image 

denoising applications due to its sparse representation of images. However it fails to capture efficiently the 

anisotropic geometric structures like edges and contours in images as they intersect too many wavelet basis 

functions and lead to a non-sparse representation. In this paper a novel de-noising scheme based on multi 

directional and anisotropic wavelet transform called directionlet is presented. The image denoising in 

wavelet domain has been extended to the directionlet domain to make the image features to concentrate on 

fewer coefficients so that more effective thresholding is possible. The image is first segmented and the 

dominant direction of each segment is identified to make a directional map. Then according to the 

directional map, the directionlet transform is taken along the dominant direction of the selected segment. 

The decomposed images with directional energy are used for scale dependent subband adaptive optimal 

threshold computation based on SURE risk. This threshold is then applied to the sub-bands except the LLL 

subband. The threshold corrected sub-bands with the unprocessed first sub-band (LLL) are given as input 

to the inverse directionlet algorithm for getting the de-noised image. Experimental results show that the 

proposed method outperforms the standard wavelet-based denoising methods in terms of numeric and 

visual quality. 
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1. INTRODUCTION 

Image noise is an undesirable by-product of image acquisition or transmission. Denoising is one 

of the important pre-processing steps in various image processing and analysis applications. The 

main aim of image denoising is to remove noise while preserving the important signal features. 

Noise reduction techniques are conceptually similar regardless of the image being processed; 

however a prior knowledge of the characteristics of an expected image can govern the 

implementations of these techniques.  A number of denoising methods have been proposed in 

literature for removing various types of noises such as Gaussian, Speckle, Salt & Pepper etc. 

These include linear and non-linear techniques. Noise having Gaussian-like distribution is very 

often encountered in real-world images. The zero mean property of the Gaussian distribution 

allows such noise to be removed by locally averaging pixel values. Conventional linear filters 

such as arithmetic mean filter and Gaussian filter smooth noises effectively but distort edges and 

contours [1]. The Wiener filter is the mean square error-optimal stationary linear filter for images 

degraded by additive noise and blur. A common drawback of the practical use of this method is 

that they usually require some ‘a priori’ knowledge about the spectra of noise and the original 

signal. Unfortunately, such information is very often not available. This makes the linear or 
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spatial techniques less attractive for image denoising. Alternatively non-linear methods were 

proposed for denoising. They are mostly based on multi-resolution analysis using wavelet 

transform [2, 3].  In the wavelet domain, the noise is uniformly spread throughout the 

coefficients, while most of the image information is concentrated in the few largest ones due to its 

sparse representation. The most straightforward way of distinguishing information from noise in 

the wavelet domain consists of thresholding the wavelet coefficients [4, 5]. A wavelet coefficient 

is compared with a given threshold and is set to zero if its magnitude is less than the threshold; 

otherwise it is kept or modified depending on hard or soft thresholding schemes. Since 2-D 

Wavelet is tensor product of 1-D Wavelet, it has only three directions, viz. vertical, horizontal and 

diagonal. So 2-D Wavelet is effective at approximating point singularities than line singularities 

like edges. The tensor product wavelet do not adapt to the boundaries or edges, due to isotropic 

scaling of its basis functions. Therefore a more effective basis for real-world images with edges 

and curves is required for making the signal to concentrate on fewer coefficients after 

transformation.  

 

To make image representation effective for denoising applications, it should be based on a local, 

directional and multi resolution expansion. Towards this several adaptive schemes based on 

bandelets [6] and wedgelets [7] and non-adaptive schemes based on curvelets [8] and contourlets 

[9, 10, 11, 12] have been proposed. These methods build dictionaries of anisotropic oriented basis 

functions that provide a sparse representation of edges and contours in images. These geometrical 

transforms have good directionality than wavelet transform. However, these transforms often 

require oversampling, have higher computational complexity when compared to the standard WT, 

and require non-separable convolution and filter design due to the non-rectangular division of 

frequency spectrum. Furthermore, in some of these transforms like curvelets the design of the 

associated filters is performed in the continuous domain and this makes it difficult to use them 

directly on discrete images. Also some other directional transforms like directional filter bank 

(DFB) lacks in multi-scale feature even if it can provide perfect reconstruction and cascade 

structures [13]. The DFB combined with the Laplacian Pyramid [14] can overcome this difficulty. 

But these methods are computationally complex and the design of the associated 2-D filter-banks 

is often challenging and involved.  

 

The directionlet transform was proposed by Vladen et al as an anisotropic perfect reconstruction 

and critically sampled basis functions with directional vanishing moments along any two 

directions [15]. It retains the simplicity of 1-D processing and filter design from the standard 

separable 2-D WT. It has good approximation properties as compared to the approximation 

achieved by the other over complete transform constructions and is superior to the performance of 

the standard separable 2-D WT while having the same complexity. Eventhough directionlet was 

designed to provide image compression [16], it can be used in collaboration with directional 

energy for image enhancement purpose also. As far as image compression is concerned, 

decimation plays a central role. But whenever it is employed for enhancement and recognition 

purpose, decimation becomes a problem. Here in the proposed work an undecimated version of 

directionlet transform is used for denoising. 

 

After making an effective sparse representation of image the most straight forward way of 

distinguishing information from noise is the thresholding of the sparsely represented coefficients. 

Even if thresholding is a non linear technique, it is very simple because it operates on one sample 

at a time. There are ample of literature available on finding out an effective threshold. Of the 

various thresholding strategies, soft-thresholding is the most popular and has been theoretically 

justified by Donoho and Johnstone [17]. These authors have shown that the shrinkage rule is 

near-optimal in the minimax (minimum of maximum mean square error) sense and provided the 

expression of the optimal threshold called universal threshold as a function of the noise power, 

when the number of samples is large. The use of the universal threshold to denoised images in the 

wavelet domain is known as VisuShrink. For image denoising, however, VisuShrink is known to 
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yield overly smoothed images. This is because its threshold value, �2σ� log N, can be 

unwarrantedly large due to its dependence on the number of samples N, which is very high for 

typical test images. Yet, despite its theoretical appeal, minimax is different from mean-squared 

error (MSE) as a measure of error. For denoising applications with known noisy function, it is 

often ideal to search for the optimal minimum mean-square error risk estimate using a priori 

information. Thus Donoho and Johnstone proposed an optimal threshold value by minimizing 

Stein’s unbiased risk estimator (SURE) [18]. SURE risk is a very good estimation of the true risk 

when the true function is not known [19, 20]. Later a hybrid approach between the universal 

threshold and SURE threshold was proved to be more efficient and is known as SURE shrink 

[21]. Later many authors have proposed different image denoising algorithms based on wavelet 

coefficient thresholding [22, 23, 24 and 25].  

 

Here we propose an image denoising method based on an optimized hybrid scale dependent 

adaptive thresholding scheme using SURE risk in directionlet domain. We show that the 

proposed method provides much better perceptual and numerical image estimates. 

 

The paper is organised as follows. In section 2, the theoretical concepts of Directionlet Transform 

are presented. Section 3 explains the SURE thresholding scheme in wavelet domain.  The 

proposed denoising algorithm based on directionlet is presented in section 4. Experimental results 

with different test images and the comparison with wavelet based denoising scheme are given in 

section 5. 

 

2. DIRECTIONLET TRANSFORM 

The standard Wavelet Transform (WT) is an efficient tool for analysing one dimensional signal. 

However, for 2-D signals like images it is inefficient due to the spatial isotropy of its 

construction. In 2-D WT the number of 1-D transforms including filtering and sub-sampling 

operations along the horizontal and vertical directions is the same at each scale (Figure 1(a)). This 

isotropic transform cannot properly capture the anisotropic discontinuities present in images. This 

is because the directions of the transforms and discontinuities in images are not matched and the 

transform fail to provide a compact representation of two dimensional signals. The standard WT 

considers only vertical and horizontal directions and number of filtering in both these directions is 

equal. Because of this, a separable 2D wavelet transform applied on natural images with edges in 

orientations other than horizontal and vertical, results in too many non-zero coefficients. Here the 

1-D discontinuities like edges or contours of highly anisotropic objects cannot be properly 

captured by the isotropic WT. Many wavelets intersect the discontinuity and this leads to many 

large magnitude coefficients (see Figure 1(c)).  

 

In the anisotropic wavelet transform (AWT(n1,n2)), the number of transforms applied along the 

horizontal and vertical directions is unequal, that is there are n1 horizontal and n2 vertical 

transforms at a scale, where n1 is not necessarily equal to n2. The iteration process is continued in 

the low sub-band, like in the standard wavelet transform (Figure 1(b)). The anisotropic wavelet 

transform can be implemented as a stage transformation. At the first stage the rows of the image 

to be transformed are low pass (L) and high pass (H) filtered and down sampled by two. In the 

next step each column of the row filtered image is again low pass (L) and high pass (H) filtered 

and down sampled by two. The output of this will have four sub band images labeled as LL, HL, 

LH and HH. As a next step each row of these sub band images are again low pass (L) and high 

pass (H) filtered and down sampled by two. This will produce eight bands viz. HHH, HHL, HLH, 

HLL, LHH, LHL, LLH, and LLL as shown in Figure 2. Now the LLL subband image goes 

through the same process of filtering and down sampling to form the next stage of the structure. 

The anisotropic ratio ρ = n1/n2 determines elongation of the basis functions of the AWT (n1, n2). 

When n1 = 2, n2 = 1, the AWT (2, 1) produces eight bands as shown in Figure 2. The AWT can 
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trace the discontinuity efficiently with fewer significant coefficients compared with standard WT 

(see Figure 1(d)). 

 

The main problem with AWT is directional interaction. The lattice based transform can avoid the 

directional interaction. Here the discrete space is first partitioned using integer lattices before 

performing 1-D filtering along lines across the lattice. Any integer lattice Λ is a sub-lattice of the 

cubic lattice Z
2
. Here the lattice Λ can be represented by a non-unique generator matrix MΛ.  

 

MΛ = �� �
�� ��

� = ��
��

�   (1) 

where, a1, b1, a2, b2 ∈ Z. 

 

The linear combination of two linearly independent integer vectors d1 and d2 will form the points 

of the lattice Λ. The cubic lattice Z2 can be partitioned into |��| cosets of the lattice Λ. The 

filtering and sub sampling operations are applied on the pixels along the vector d1 (transform 

direction) in each of the cosets separately. Since these operations are applied in each cosets 

separately, the pixels retained after this are clustered along the vector d2 (alignment direction). 

This type of lattice based transform, which will avoid directional interaction, is called Skewed 

AWT, S-AWT (MΛ, n1, n2). The basis functions of S-AWT are called directionlets, which can be 

effectively used for directional analysis of images. An example of construction of directionlets 

based on integer lattices is shown in Fig. 3 for pair of direction (45
º
, -45

º
).  

 

Figure 1. Frequency decomposition of (a) Standard 2-D Wavelet Transform (b) Anisotropic 

Wavelet Transform Basis functions of (c) 2-D Wavelet Transform (d) Anisotropic Wavelet 

Transform.  



Signal & Image Processing : An International Journal (SIPIJ) Vol.3, No.6, December 2012 

65 

 

Figure 2. Filtering scheme for the AWT (2, 1), where one step of iteration is shown.  

 

Figure 3. An example of construction of directionlets based on integer lattices for pair of 

directions (45
º
, -45

º
). 

Unlike the discrete version of directionlet transform, which down samples the the approximation 

coefficients and detail coefficients at each decomposition level, the Undecimated Directionlet 

Transform (UDT) does not incorporate the down sampling operations. Thus, the approximation 

coefficients and detail coefficients at each level are having the same length as the original signal. 

Denoising with the UDT is shift-invariant.  

 

3. SURE THRESHOLDING IN WAVELET DOMAIN 

Suppose that the image f , with N number of pixels, is polluted by independent and identically 

distributed white Gaussian noise � with mean 0 and variance σ2 , the observed image � is 

described as: 

 

� = � + �                                                                                        (2) 
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In denoising applications, the performance is often measured in terms of peak signal-to-noise 

ratio (PSNR). The aim of image denoising is naturally to maximize the PSNR and, thus, to 

minimize the minimum mean square error (MSE).  Here our objective is to estimate image f with 

minimum MSE, i.e., to minimize l2 risk for a given noisy image, as follows: 

 

����, �� =  
�  ��� −  ��� =  

� ∑ ���! −  �!���"!#$                        (3) 

 

Here �� is the estimate of  � from �. Here mean is used instead of the mathematical expectation, 

because the optimal solution is desired for each individual noisy function. For the image noise 

model given in (2), assume 

 

%&�' = ��&�' − �                                                                               (4) 

 

where %&�' is a function from RN to RN.  

 

Charles Stein [18] introduced a method for estimating the loss ��� −  ���
 in an unbiased fashion. 

For a nearly arbitrary, nonlinear, biased estimator one can nevertheless estimate its loss unbiased 

[19, 20]. When %&�' is weakly differentiable, then 

 

() ���&�' −  �&�'�� = * + ()+‖%&�'‖� + 2∇. %&y'0             &5' 

 

Where,  

∇. %&�' = ∑ 234
2.4

56#$                                                                     (6) 

Now consider the soft threshold estimator 

 

��&�' = 7&�, 8' = 9:;�&�'&|�| − 8'<                                      (7) 

 

Where        &|�| − 8'< = max&0, |�| − 8'                                                   (8) 

 

 9:;�&�' =  
<ABC                                                                     (9) 

 

��&�' is weakly differentiable in Stein's sense, and so we get from (5) that the quantity 

 

���&�' − �&�'�� = * − 2. ≠ +: ∶  |�!| ≤ 8 + ∑ &|�!| ∧ 8'��!# 0 = �I&8'    (10)   

 

This is an unbiased estimator of the risk,  ()  ���&�' − �&�'��
. 

 

This estimator of risk can be used to select the near optimal threshold as  

 

8I   =   arg K:�          �I&8'                                                       (11) 

                                      8 ∈  L�$, � . . ��"M  
 

Here 8I is selected as the value of y which makes the  �I&8' minimum. This is a suboptimal 

threshold for the risk because it is selected within a finite set. 
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The wavelet shrinkage method relies on the basic idea that the energy of a function will often be 

concentrated in a few coefficients in wavelet domain while the energy of noise is spread among 

all coefficients. Therefore, the nonlinear thresholding function in wavelet domain will tend to 

keep a few larger coefficients representing the function, while the noise coefficients will tend to 

reduce to zero. Here the equation for l2 risk for a given noisy image can be extended to the 

wavelet coefficients also provided the transform is orthogonal. Then the risk function given in (3) 

can be expressed as in wavelet domain [21] as 

 

����, �� = 
� ∑ ���! −  �!���"!#$ =  

�   ∑ �NOP,Q −  NP,Q��
P,Q               (12) 

 

Apply the discrete wavelet transform (DWT) to the vector y and obtain the empirical wavelet 

coefficients RP,Q at scale j where j= 1, 2….J.  Here  R$,Q represents the scaling coefficients and will 

not be shrunk in the next step. Then apply the soft-thresholding function as given in equation (7), 

to the empirical wavelet coefficients at each scale j where j= 1, 2….J.  Then the estimate 

coefficients ROP,Q are obtained based on the selected threshold t = [t1, t2…tJ]
 T. Note tj is the 

threshold for wavelet coefficients at scale j. Here t is selected for each scale as the value of the 

wavelet coefficient at that scale which makes the SURE risk  �I&8' minimum. This is done for 

each detail subband. So this is a scale dependent sub band adaptive threshold. Now take the 

inverse DWT on threshold applied wavelet coefficients and obtain the estimate of the function. 

4. DENOISING ALGORITHM IN DIRECTIONLET DOMAIN 

We present a novel denoising scheme which is in line with the 3-band 2-D wavelet transform 

based schemes presented in previous section with several modifications due to the 

implementation of directionlet transform. As in any transform based denoising schemes, the 

directionlet based denoising also involves mainly three steps. First transform the input image 

using an orthogonal transform, then threshold the transform coefficients using a non-linear 

algorithm and finally reconstruct the image using the modified coefficients. The effectiveness of a 

denoising algorithm basically depends on two factors- one is the efficient representation of the 

image to be denoised using a local, directional and multi resolution expansion and second is the 

efficient computation of an optimal threshold. Here the first requirement is met by using a locally 

adaptive directionlet transform and the second by optimal threshold computation using SURE 

risk.  

The edge information in images has great influence on human visual effect and reflects the main 

direction of texture for the most part. The information on direction of texture with edge 

information in an image can greatly improve the precision of estimation of correct threshold. 

Thus it is important to identify the dominant direction of texture before thresholding.  In the case 

of images, the directional information varies over space. Thus, directionality can be considered as 

a local feature, defined in a small neighborhood. Therefore, to extract directional variations of an 

image it has to be analysed locally. This necessitates the need for spatial segmentation of image 

into smaller segments before identifying the dominant directions for that segment.  Then the 

transform directions are adapted independently in each segment based on the identified dominant 

directions allowing for more efficient capturing of geometrical information. In the proposed 

scheme the input image is subdivided into patches of size 16x16 before taking the directionlet 

transform. To avoid a blocking effect in the transform caused by many small segments, the pixels 

from the neighbour segments are used for filtering across the segment borders.  

Even though the construction of directionlets allow for anisotropy and directional vanishing 

moments along any two directions with rational slopes, the transform direction pairs are taken 

only from the set S = L&0°, 90°', &0°, 45°', &0°, −45°', &90°, 45°', &90°, −45°' M so that the cubic 
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segment indexed by n as: 

�V∗ = arg

where the wavelet coefficients  
along the pair d  of directions. The assigned 

input image forms a directional map 

transform and locally dominant directions for that segment

dominant directions, the pair (0, 

simplicity of implementation of the direc

 

After identifying the dominant direction in each spatial segment, the 

corresponding to the dominant directions are selected for thresholding. 

decomposition, the subbands HHH

called the details, where k is the 

decomposition. The subband LLL

directionlet transform is also orthogonal

identically distributed with zero mean and variance

section 3 is applicable for directionlets also. 

subbands are used for optimal threshold computation 

The denoised estimate is then 
operator. Figure 4 illustrates the block diagram of the 

 

Here the undecimated version of directionlet transform (UDT) is used which 

the down sampling operations. Thus, the approximation coefficients and detail coefficients at 

each level are having the same length 

invariant. The denoising result of the undecimated directionlet transform has a better balance 

between smoothness and accuracy than its discrete version.

Figure 4. Principle of Directionlet based den

 

The full image denoising algorithm 

 

Step 1: Directionlets and Directional Map

• The noisy image is first divided into spatial segments of smaller 

• Apply directionlet transform 

 S = L&0°, 90°', &0°, 45
• Compute optimal pair of direction using equation (

• Compute the multi scale directionlet transform along the dominant direction
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lattice is not divided into more cosets. The best pair of directions  �V∗ ∈ S  is chosen for each 

arg K:�
Y∈Z

[\]V,!Y \�

!
                        &13'          

                                                

 ]V,!  Y are produced by applying directionlets to the nth segment 

The assigned pair of transform directions of each patch across the 

input image forms a directional map [16] of that image and provides the best matching between 

transform and locally dominant directions for that segment. For segments with no 

, 90) is assigned by default to smooth segments for the reason of 

simplicity of implementation of the directionlet.  

After identifying the dominant direction in each spatial segment, the directionlet coefficients 

corresponding to the dominant directions are selected for thresholding.  In the directionlet 

HHHk, HHLk, HLHk, HLLk, LHHk, LHLk  and  LLHk, k=1,2,3….J

is the scale, with J being the largest (or coarsest) scale in the 

LLLJ is the low resolution residual. Like wavelet transform, the

orthogonal and the coefficients in the subbands are independent and 

with zero mean and variance. Thus the image noise model presented in 

is applicable for directionlets also. The directionlet coefficient Yij from the detai

are used for optimal threshold computation with soft threshold function to obtain 

  �� = S" Òij , where S" is the inverse directionlet

Figure 4 illustrates the block diagram of the proposed denoising scheme. 

Here the undecimated version of directionlet transform (UDT) is used which does not incorporate 

the down sampling operations. Thus, the approximation coefficients and detail coefficients at 

each level are having the same length as the original signal. Denoising with the UDT is shift

invariant. The denoising result of the undecimated directionlet transform has a better balance 

between smoothness and accuracy than its discrete version. 

Figure 4. Principle of Directionlet based denoising 

image denoising algorithm proposed in the paper can be summarised as follows:

Directional Map 

image is first divided into spatial segments of smaller size, say 16 

Apply directionlet transform to segments along the pair of directions 

& 45°', &0°, −45°', &90°, 45°', &90°, −45°' M 

Compute optimal pair of direction using equation (13) 

Compute the multi scale directionlet transform along the dominant direction 
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is chosen for each 

are produced by applying directionlets to the nth segment 

pair of transform directions of each patch across the 

the best matching between 

For segments with no apparent 

90) is assigned by default to smooth segments for the reason of 

directionlet coefficients 

In the directionlet 

k=1,2,3….J are 

being the largest (or coarsest) scale in the 

wavelet transform, the 

independent and 

Thus the image noise model presented in 

from the detail 

threshold function to obtain Ò
ij. 

directionlet transform 

does not incorporate 

the down sampling operations. Thus, the approximation coefficients and detail coefficients at 

as the original signal. Denoising with the UDT is shift-

invariant. The denoising result of the undecimated directionlet transform has a better balance 

in the paper can be summarised as follows:- 

 by 16.  
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Step 2: Threshold Computation 

• For each subband, except the LLLj subband, compute the SURE threshold using the 

equation (11) which minimizes the SURE risk  

• Apply the computed threshold to the subband using soft thresholding rule to estimate the 

best value for the noise-free coefficients 

 

Step 3: Reconstruction 

• Reconstruct the image from the above processed sub-bands and the low-pass residual 

(LLLj) using inverse directionlet transform and the direction map to obtain the denoised 

image. 

5. RESULTS AND DISCUSSIONS 

Standard grey images of size 256 x 256 were used for evaluating the performance of the 

developed algorithm. The test images were contaminated with simulated zero mean white 

Gaussian noise with three different power levels, σ = 10, 15, 20. The performance of the new 

method was compared with discrete wavelet based soft thresholding (WST) and hard thresholding 

schemes (WHT). In our method as well as in DWT based methods we used the popular Haar 

wavelet. The performance improvement was quantified in terms of Peak Signal to Noise Ratio 

(PSNR) and edge preservation parameter c. PSNR was obtained by using the following formula: 

de*� = 10 log$ f ��
�e(g                                                                  (14)    

where R is the maximum fluctuation in the denoised image and MSE is representing the Mean 

Square Error between the denoised image Iden and the original image (before adding noise) Iorg, 

which was computed using the following equation: 

 

�e( = ∑ (hYAV(:, i) − hjkl(:, i))�!,P �%*                                               (15) 

where M and N are the size of the images.  

c parameter which assesses the quality of the edge preservation was computed by using the 

following formula: 

c = ∑ (∆hYAV − ∆hYAVnnnnn) �∆hjkl − ∆hjklnnnnn�!,P
o∑ (∆hYAV − ∆hYAVnnnnn)� ∑ �∆hjkl − ∆hjklnnnnn��!,P!,P

                     (16) 

where ∆hYAV and ∆hjkl are the high pass filtered output of  hYAV(:, i) and hjkl(:, i) using 

Laplacian filter. If the edges are optimally preserved, then the value of c will be close to one.  

The denoising process was performed over ten different noise realizations for each standard 

deviation and the resulting PSNRs and c averaged over these ten runs. Table I and Table II 

summarize the relative PSNR results and c of wavelet based and the proposed schemes for Lena 

and house images. A visual comparison of Lena image is given in Figure 5 for σ = 25. The 

proposed method outperforms the other ones for both the test images. Also the visual quality of 

the denoised images is evidently better because of sharper edges and texture. We can notice that 

our method does not produce any artifacts while it is able to well preserve the features of the 

original image. The performance improvement is basically due to the locally adaptive directional 

decomposition of image before applying the optimal threshold. 
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Table I. PSNR (dB) * values for the different denoising algorithms of Lena & House (256x256) 

images 

Lena 

Variance Noise PSNR WST WHT Directionlet 

5 

10 

25 

34.24 

28.38 

20.13 

35.61 

30.57 

25.03 

36.48 

32.02 

26.57 

37.71 

33.86 

27.99 

House 

Variance Noise PSNR WST WHT Directionlet 

5 

10 

25 

34.22 

28.32 

20.17 

36.81 

31.81 

25.96  

38.46 

33.82 

27.41 

39.78 

36.98 

29.12 

* Average of ten readings 

Table II. c * values for the different denoising algorithms of Lena & House (256x256) images 

Lena 

Variance WST WHT Directionlet 

5 

10 

25 

0.698 

0.512 

0.221 

0.771 

0.557 

0.301 

0.823 

0.612 

0.392 

House 

Variance WST WHT Directionlet 

5 

10 

25 

0.782 

0.524 

0.301  

0.826 

0.628 

0.372 

0.928 

0.796 

0.467 

* Average of ten readings 
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Figure.5. Image denoising using the proposed method. These images are presented in the order 

from top to bottom: Noise free image, noisy image with σ = 25, denoised image using wavelet 

(soft thresholding), denoised image using directionlet. 

5. CONCLUSIONS 

In this paper a novel de-noising scheme based on multi directional and anisotropic wavelet 

transform called directionlet is presented. The SURE based thresholding scheme defined in 
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wavelet domain has been extended to the directionlet domain. Since the wavelet transform is 

isotropic in every scale and have limited directional capabilities, the denoising performance 

obtained by minimizing SURE in wavelet domain is poor around the discontinuities in the 

images. To overcome these limitations, we extend SURE based thresholding scheme to the 

directionlet domain. Since the directionlets possess spatial anisotropy and better directional 

capabilities, directionlet-based SURE results in visually appealing denoised results, with 

improved PSNR values. Since the directionlets have vanishing moments along only two 

directions, the dominant local directions in the image must be identified first. This was carried out 

by computing the directional map of the segmented image. The proposed method suitably adjusts 

the transform directions based on dominant directions of each segment of image and computes 

the threshold using SURE risk. We show by simulations that minimizing SURE in the directionlet 

domain results in better denoising performance when compared to minimizing it in the wavelet 

domain. Future work is to find out a faster method to identify the dominant local directions in an 

image and applying more effective threshold schemes in directionlet domain.  
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