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ABSTRACT 

 
In this study, we extend the "Fault Tolerant Matrix Pencil Method for Direction of Arrival Estimation 

(DOA)" proposed by the authors [1] to joint estimation of Azimuth and Elevation Angles from a data 

generated by Uniform Planar Antenna array (UPA), where at random locations a few of the elements due 

to failure are missing. Joint Azimuth and Elevation Angles estimation is generally known as Two-

dimensional DOA estimation. In the proposed technique, the observed incomplete data is imputed first 

using the Matrix Completion (MC) algorithm and later the 2D angles are jointly estimated using the Two 

dimensional Matrix Pencil Method (2D-MP). The resulting algorithm is robust in terms of failure of 

elements, is computationally efficient as it does not forms a correlation matrix and the angles are estimated 

using only a single snapshot. It is shown that the algorithm is able to estimate the DOAs when we have a 

fraction of the observed data. The numerical simulation results are provided to see the performance of the 

method for various incomplete data sizes and Signal-to-Noise Ratio (SNR). 

 

 

1. INTRODUCTION 

 
Joint estimation of azimuth and elevation angles generally known as Two Dimensional Direction 

of Arrival (2D-DOA) estimation is a key problem in array signal processing fields such as; radar, 

sonar, and wireless radio systems. There are a number of super resolution 2D DOA estimation 

methods like, Multiple Signal Classification (MUSIC) [2], Estimation of Signal Parameters via 

Rotational Invariance Technique (ESPRIT) [3]-[4]. These methods are subspace based 

approaches and require formation of correlation matrix and therefore a large number of non-

coherent signal snapshots are required to effectively estimate the DOAs. On other hand, Direct 

Data Domain (D3) based Matrix Pencil (MP) method [5] [6] overcomes the requirement of 

correlation matrix, which makes it practically important. 

 

Most of the DOA estimation techniques are devised for uniformly spatially sampled observed 

complete data sequences. However, estimating the 2D-DOAs with missing data due to failure of 

few elements is also important. Because, it is not possible to replace the faulty elements in all the 

situations. Estimating the DOAs from a faulty array is dealt in [7] - [8]. In [7] Larson and Stocia 
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proposed a ML estimate of the correlation matrix in the presence of the sensor failures and are 

shown to improve the performance of the MUSIC algorithm. Array failure correction based on 

Genetic algorithm is proposed by Yeo and Lu [9], which synthesises the original antenna array. A 

method for detection of the sensor failure and compensation has been proposed by Pirinen et al 

[10]. Vigneshwaran et al [8], use minimal resource allocation network to handle the sensor 

failures. These methods suffer from computational complexity, initialization, training, selection 

of network size etc. 

 

In this paper, we extended the one dimensional fault tolerant MP method for DOA estimation 

published by authors in [1] to 2D DOA estimation. We use Matrix Completion via Convex 

Optimization proposed by Candes and Recht [11], to impute the missing 2D data and apply the 

2D MP method proposed by Hua [5] to estimate the azimuth and the elevation angles. The 

proposed method results in a very low computationally complex algorithm and uses a single 

snapshot of the array. These features are important in many applications. In the matrix completion 

problem, if the given matrix is of rank ‘r, and is not too structured, a small random subset of its 

entries allow to reconstruct it, exactly by solving a simple convex optimization program. Convex 

Optimization has been used in signal processing from a long time, a detailed discussion and 

applications on convex optimization can be found in [12] [13]. The problem of matrix completion 

is found in collaborative filtering [14], system identification [15] and computer networks[16]. 

Compared to the EM algorithm, MC algorithm is less complex and is also shown to be accurate in 

estimating the missing data. The problem of Matrix Completion is similar to Compressed Sensing 

(CS) [17] [18]. While MC recovers a rank deficient matrix, CS solves a system of under-

determined equations where the solution is sparse, i.e. have only a few non-zeros. The CS is also 

used DOA estimation in [19][20][21] in order to reduce the hardware complexity and the 

software requirements. 

 

The rest of the paper is organized as follows. In section 2, the signal model for the 2D case is 

presented. In section 3, the matrix completion procedure is discussed. The conventional 2D MP 

method is revisited in section 4. The proposed MCMP method is discussed in section 5. The 

computer simulations are provided in section 6, followed by the conclusion. 

 

2. SIGNAL MODEL 

 
Consider a Uniform Planar Array (UPA) of antenna of size My ×Mz elements with interelement 

spacing of d equal to half of the wavelength of the signal source impinging on the array. An 

example of a UPA is shown in Fig. 1. It is assumed that N number of signals impinging on the 

array, such that the i
th
 source has an elevation angle of θi and azimuth angle φi. The noiseless data 

x(m, n) measured at the feeding points of the omni directional antennas is given by 

 

 
 

Where, 1≤ m≤ My and 1≤ n ≤ Mz. Equation 1 implies that x(m;n) consists of N 2-D sinusoids 

arriving at the array from elevation angleθi and azimuth angleφi. Further si and ϕi are amplitude 

and phase respectively of the ith source, where i= 1,2,…. N. In the noisy case, the received data 

is  
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Figure 1: Uniform Planar Antenna Array 

 

 
 

Where  is the 2-D noise sequence, and is assumed to be additive white Gaussian 

noise. 

 

Equation 1 can be simplified to  

 

 
 

 

Where 
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The azimuth and elevation angles can be obtained uniquely from poles  

 

 
 

Assume that at random locations a few elements are malfunctioning, and the output is available 

only from the remaining working elements, neglecting the output of the failed elements. The 

incomplete and inaccurate data is given as the sampled subset entries, i.e. 

 

 

 

 

Where,  is the indexes of the data or the location of the working elements, X is the Original data 

and  is the incomplete data corresponding to . The problem is therefore, to estimate the 

DOAs when the data available is incomplete and inaccurate. 

 

3. MATRIX COMPLETION 

 
Recovering a matrix from a sample of its entries is known as Matrix Completion (MC) problem. 

Suppose, we have a full rank matrix X of rank n, and we have access only to a partial entries of a 

matrix X and if the rank of incomplete matrix has a low rank r, then Candes and Rachet in [11], 

showed that X can be recovered by using a simple convex optimization [22] problem 

 

 
 

Where,  is the set of locations corresponding to the observed entries, i.e. if 

Xi,j  is observed. 

 

The functional  is the nuclear norm of the matrix X, which is the sum of its singular 

values. When the entries are sampled randomly following a uniform distribution, the number of 

entries m that should be known for perfect recovering the matrix is of the order given by 

 

 
where, C is some positive numerical constant. The details can be found in [11]. 

 

The problem of Matrix Completion is similar to Compressed Sensing (CS) [17] [18]. While MC 

recovers a rank deficient matrix, CS solves a system of under-determined equations where the 
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solution is sparse, i.e. have only a few non-zeros. The CS is also used DOA estimation in 

[19][20][21] in order to reduce the hardware complexity and the software requirements. 

 

The CS uses L1 minimization on the sparse signal by invoking the Linear Programming to 

interpolate the signal exactly. In other words, the missing data is interpolated by zeros at 

respective location. On the other hand, MC is concerned with the guessing the entries accurately 

or even exactly that we have not observed [11], which is of our interest in this dissertation. 

 

The Eq. (8) is the tightest convex relation of the NP-hard rank minimization problem 

 

 
 

In [22], the Singular Value Thresholding (SVT) algorithm for approximately solving the nuclear 

norm minimization problem given by Eq. (8) is developed. The SVT algorithm is as follows. 

 

The problem can be expressed as 

 
 

Where  is called the nuclear norm and is defined as the sum of its singular values, X is the 

matrix to be recovered,  is the set of indices of the sampled entries, P  is a masking operator 

that selects the entries of X that are within  and  is the collected partial snapshots. 

 

The inputs to the SVT algorithm are, a parameter step size , samples set , sampled 

entries X( ) and initializing vector Y
0
 = 0. The algorithm is  

 

 
 

The steps in Eq. (12) are repeated until convergence. shrink (*) is a nonlinear function which 

applies soft thresholding rule at level to the singular values of the input matrix. The key 

property here is that for large values of the sequence {X
k
} converges to a solution which 

very nearly minimizes Eq. (11). Hence, at each step one needs to compute only at most one SVD 

and perform a few elementary matrix additions. 

 

For shrinkage operator, SVD of Y is taken 

 
 

Where U and V are the right and the left singular vectors and S is the singular value matrix. For 

a soft thresholding operator DT  defined as follows 
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where (*)+ , is the positive part of *. In other words, this operator simply applies the soft 

thresholding rule to the singular values of Y, effectively shrinking these towards zero. The 

algorithm is shown in Table 1. The SVT algorithm is listed in Table 1. 

 

4. 2D MATRIX ENHANCEMENT MATRIX PENCIL METHOD 

 
In this section, a brief overview of the 2D matrix enhancement matrix pencil method proposed by 

Hau in [5] is presented. The method in studied for joint estimation of azimuth and elevation angle 

estimation. 

 

Table 1 : SVT Algorithm 

 
 

The original data matrix (noiseless) in 3 is defined as follows 

 

Using (3) in (15) 
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                                          X =  YAZ                                                                                          (16)          

Where 

 

 

The following is noted [5] 

• if rank (X) is less than K, {yi; i = 1, . . . ,K} and {zi; i = 1, . . . ,K} cannot be both 

obtained from the principle singular vectors of X, and 

• the principle singular vectors of X do not contain sufficient information to carry out the 

pairing between yi and zi. 

To overcome the above problems, a enhanced matrix Xe is formed from the data matrix X in (15). 

This process is enhancing the rank condition of the a matrix by a partition-and-stacking process, 

to form a Hankel block matrix Xe and is written as        

 

Where 
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Where Xe is an L1 × (M − L1 + 1) Hankel block matrix, with          

rank (Xe) = K ≥ rank (X) 

And Xm is an L2 × (N − L2 + 1) Hankel matrix, and is obtained by windowing the rows of the 

original data matrix x(m; n). The L1 and L2 are the window pencil parameters used to obtain the 

Hankel matrices of (20) and (21) 

The necessary and sufficient condition for rank (Xe) = K is 

                               L1 L2  ≥  K 

                                                      (M – L1 + 1) (N – L2 + 1) ≥  K                                           (22) 

assuming that K is known 

To extract the 2D poles the Singular Value Decomposition (SVD) is applied to Xe to obtain 

 

where min = min (L1 L2, ((M − L1 + 1)(N − L2 + 1)) which is the smaller dimension of Xe, Us, 

∑s, and Vs contains the K principal components and Un , ∑n and Vn contains the remaining 

nonprincipal components. 

If rank(Xe = K) 

 

and 

 

The above properties are used to extract the poles. 

Further, to extract  we define 
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If the above condition in (22) of the pencil parameters are satisfied, we can now formulate as a 

Generalized Eigenvalue Problem (GEP) 

 

Where  are the generalized eigenvalues of the corresponding matrix pencil, i.e.  = yi,  

i = 1, 2, ….,k 

 

Next, to extract to extract the  we define 

 
 

Where P is the permutation matrix. And 

 
 

Then the matrix pencil is  

 
 

where λ are the generalized eigenvalues of the corresponding matrix pencil, i.e. λ = xi, i = 1, 2, . . 

. ,K 

 

The azimuth and elevation angles are obtained from the poles (yi, zi) obtained after pairing [5]. 

These angles are obtained from 

 

 
 

5. 2D MATRIX COMPLETED MATRIX PENCIL METHOD 

 
We can now extend the 2D MP method for the faulty UPA. Due to wear and tear, a few elements 

at random locations have failed to produce the output. The resulting output of a UPA is a 

incomplete data, and is given as 

 
 

where,  is the set of locations corresponding to the observed data output, from the functioning 

elements. The conventional 2D MP method described in the previous section cannot be applied 

directly on such an incomplete data. As the method relies completely on the completeness of the 

data, the extension of the conventional MP method for a faulty array is achieved by perfectly 

recovering the missing data to complete the data matrix, which is further processed to estimate 

the DOAs. 
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The problem of recovering the complete data matrix can be written as 

 

 

 is the data collected from working elements,  is the location set whose entries are the 

location of the elements that are working in a UPA, X is the matrix to be recovered and the 

operator X( ) represents the data collected from only the working elements. The solution to the 

problem in Eq. (33) is obtained using Singular Value Thresholding (SVT) algorithm proposed by 

Cai, Candes and Shen [22]. 

 

5.1 Summary of the proposed MCMP method 

 
The algorithms described in the previous section assume noiseless data. In this section, we 

summarize the MCMP algorithm for the noisy data. For convenience, we use the notation X for 

the data (noisy). The studied MCMP algorithm is summarized in Table. 2 

 

Table 2: Summary of the MCMP method 

 

 
 

6. SIMULATION RESULTS 

 
In this section, computer simulations are provided to illustrate the performance of the proposed 

technique. Two complex exponential signals of equal magnitude and phase corrupted by additive 

white Gaussian noise (AWGN) are considered. The signals are impinging on the array from 

azimuth and elevation angles of [10
o
, 25

o
] and [30

o
, 40

o
] respectively. The number of elements 

are My = Mz = 20 and the distance between the elements on both the axis dx = dy = λ/2. The 

results are based on 100 trails. We assume that a few number of elements at random locations 

have failed to produce to the output. There are techniques available for knowing the number of 

elements failed and their locations and can be found in [23]. Three examples are considered to 

evaluate the performance. 
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In the first example, the performance of the proposed 2D MCMP DOA estimation method is 

evaluated for various number of working element. Three cases of number of working elements is 

assumed. Unlike, the examples in the previous chapters, we in this chapter, assume more number 

of element failures, i.e., reduced number of working elements at random locations, to know the 

effectiveness of the proposed 2D MCMP DOA estimation algorithm. The number of elements 

feeding the output, i.e., the number of working elements considered are 240 elements out of 400 

elements (20 × 20 UPA), 200 elements out of 400 elements and 160 elements out of 400 

elements. In other words, we have only 60%, 50% and 40% of observations. The signals are 

corrupted due to AWGN of 20 dB. The estimated azimuth and elevation angles are plotted on a 

scatter plot shown in Fig. 2 for all the three cases respectively. 

 

It can be observed that, for 60% and 50% observations the method is successful in estimating the 

angles. Whereas, for 40% observations, the method shows less accuracy. Therefore, for the 

assumed signal environment, the proposed method estimates the angles with at least 50% of 

observation or using 200 functioning elements or in other words the algorithm effectively handles 

up to 200 malfunctioning elements. Provided that the location of the working elements is known. 

 

The performance of the proposed algorithm is further evaluated using the RMSE vs SNR plot for 

the estimated azimuth and elevation angles. The SNRs considered are 5 dB, 10 dB, 15 dB, 20 dB 

and 25 dB. The number of working elements considered are 400 elements (all elements are 

functioning), 360 elements, 280 elements and 200 elements are considered working. From Fig. 3 

it can be seen that for all the cases of observations the performance is almost similar. The 

proposed is able to handle a reasonable number of element failures. Furthermore, the performance 

is at its best under high SNR. 

 

In the final example, we considered the RMSE plot between the estimated angles and percentage 

of the working elements. The SNRs assumed are 30 dB, 20 dB and 10 dB and the number of 

working elements assumed are [120, 160, 200, 240, 280, 320, 360] elements at random locations. 

Fig. 4 shows the RMSE plot for elevation and azimuth angles. We observe that the proposed 

algorithm is able to estimate the angles at low SNRs and a reasonable size of working elements. It 

can be seen that, for 120 functioning elements at random locations, the algorithm is moderately 

accurate at low SNR values, however, at high SNR values the accuracy is improved. Therefore, 

from all the three examples, it can be observed if the noise effect is reduced considerably, the 

performance is better. 

 

7. CONCLUSION 

 
A Matrix Completion Matrix Pencil method for the two dimensional DOA estimation has been 

developed for the extending the conventional two dimensional Matrix Pencil method, to handle 

the element failure in the UPA. The Matrix Completion procedure is used to impute the missing 

data to reconstruct the complete data and later estimate the DOAs. The computational complexity 

when compared with the conventional 2D matrix pencil method is slightly increased. The 

increase is in computing the singular vectors for Matrix completion procedure. The proposed 

algorithm is able to estimate the DOAs when only a fraction of the elements are working. The 

algorithm shows improved performance when the SNR is very low. 
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(a) 240 elements are working 

 
(b) 200 elements are working 

 

(c) 160 elements are working 

 

Figure 2: Scatter plot of the estimated azimuth and elevation angles. Two signals are impinging 

from 10
o
 and 25

o
 on the array of size 20 × 20 elements, SNR is 20 dB. 
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(a) Azimuth angles 

 

(b) Elevation angles 

 

Figure 3: RMSE vs SNR plot for various working elements. 
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 (a) Azimuth angles 

 

 (b) Elevation angles 

 

Figure 4: RMSE vs SNR plot for various working elements. 
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