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ABSTRACT 

 

This paper focuses on improved edge model based on Curvelet coefficients analysis. Curvelet transform is 

a powerful tool for multiresolution representation of object with anisotropic edge. Curvelet coefficients 

contributions have been analyzed using Scale Invariant Feature Transform (SIFT), commonly used to study 

local structure in images. The permutation of Curvelet coefficients from original image and edges image 

obtained from gradient operator is used to improve original edges. Experimental results show that this 

method brings out details on edges when the decomposition scale increases. 
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1. INTRODUCTION 
 

Edges are discontinuity in the image map resulting from sudden changes of the texture. Contours 

also mark high frequencies areas in an image. Contours are very important in the characterization 

of physiognomies and perception. Consequently they are call upon in many applications of image 

processing such as the analysis of detail in an image, content based retrieval, objects 

reconstruction and objects recognition. 

 

In practice, contours are determined using filtering operation by applying a convolution of the 

image with a mask of filter. For this purpose, several masks of convolutions have been defined. 

Some examples are the filter of Roberts, the filter of Sobel and the filter of Prewitt [1,2]. 

Unfortunately these filters are sensitive to the noise and they detect contours only in two 

directions. The Kirsch method uses eight filters to calculate contours in eight different directions, 

including derivatives in these directions. However the filters shunting devices give sometimes 

thick contours. By making a convolution of an image with the Laplacian of Gaussian, Marr and 

Hildreth [2] remove noise which would have been detected by the Laplacian. The success of their 

method lies in the good choice of the variance σ. Canny et al. proposed an optimal filter for the 

detection of an ideal contour drowned in a white vibration Gaussien. The filter proposed is 

optimal in localization and maximizes the signal report ratio on noise [3]. 
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Conventional filtering edges detection techniques operate only in one scale. Multiresolution 

analysis overcomes many challenges in many domains. Meanwhile separable wavelets are 

isotropic and could not get edge regularity in an image [4]. This is the main reason why many 

geometrical transforms have appeared [4,5,6,7]. Curvelet transform [7,8] is non adaptative 

geometrical transform that has been used with great success in many applications such as 

denoising, shape recognition, edge detection and enhancement [7,9,10,11,12,13,14,15,16]. 

Gebäck and Koumoutsakos used the discrete curvelet transform to extract information about 

directions and magnitudes of features in the image at selected levels of details [14]. The edges are 

obtained using the non-maximal suppression and hysteresis thresholding of the Canny algorithm. 

In order to enhance the edges of an image Liu and Qiu have used different means to deal with 

different scales of the coefficients to enhance the edge of image [15]. The best recent edge 

detectors through traditional methods start by improving the image quality with Curvelet 

transform [15,16]. The analysis of Curvelet coefficients contributions in image processing can 

found in [15,16,18]. Unfortunately authors have not been interested enough on local structure of 

Curvelet coefficients contributions. To our knowledge, no paper tackles the question of edge 

improvement of the traditional methods. Meanwhile the potentials of Curvelet decomposition 

have not been exploited enough. In this paper we analyze local properties of Curvelet coefficients 

contributions through Scale Invariant Feature Transform (SIFT) [17] and use this study to 

improve edges in microscopic images. 

 

This paper is organized as follows. In the second section we briefly present Curvelet transform. 

We describe in section three the coefficients contributions of Curvelet transform in analysing 

microscopic images. Section four brings out the edge detection algorithm using Curvelet 

transform and we conclude our work in section five.  

 

2. CURVELET TRANSFORM 
 

Two windows are useful to describe Curvelet [7]. Let us consider in continuous domain ℝ2, 

( )W r the radial window with value [ ]1/ 2, 2r ∈  and ( , )V r t the angular window with value 

[ ]1,1t ∈ − . Admissibility conditions are defined by (1) and (2), where j  is a radial variable 

and l  is an angular variable.  
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Figure 1. Curvelet tiling of space and frequency where lengths and widths obeying the scaling 

law 2
width length≈  
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A frequency window jU is defined by (3) for 0j j≥  in Fourier domain. The Curvelet 

transform represents a curve as a superposition of functions of various lengths and widths 

obeying the scaling law 2
width length≈ . An example of windowing is represented in figure 1 

where circular wedge depends on the scale and the direction.   
/2
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with / 2j   being the integer part of  / 2j .   

Curvelet real values can then be computed as: 

( , ) ( , )jU r U rθ θ π+ +          (4) 

 

frequency domain Curvelets are supported near a parabolic wedge. However rotation is not 

adapted to Cartesian array. That is why Candès and Al indexed the values to the origin. Figure 2. 

(a) shows grey data in the upright parallelogram broken and indexed in a rectangle at the origin.  

 

For Curvelet digitalization, they redefine a new wedge jW% based on concentric squares as shown 

in figure 2. (b) and expressed by (5) [8].  

 

2 2

1
( ) ( ) ( )

j J j
W ω ω ω

+
= Φ − Φ% , 0j ≥        (5) 

 

Where  Φ  is defined by the product of two monodimensional bypass windows.  

                            
(a)                                         (b) 

Figure 2.  (a) Indexation of value to the origin in Cartesian domain, (b) digital tailing of Curvelet. 

Φ  is useful to separate scales in Cartesian domain. Thus in discrete curvelet Transform, radial 

and angular windows are obtained as follows: 
/2
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=          (6) 

( ) ( ) ( )j j jU W Vω ω ω=% %          (7) 

 

The algorithmic structure in [8] is then the application of  Fourier transform to the original image 

to have Fourier coefficients 1 2
ˆ[ , ]f n n , 1 2/ 2 , / 2n n n n− ≤ < . For each scale j  and a given 

angle l , the product , 1 2 1 2
ˆ[ , ] [ , ]

j l
U n n f n n%  is then computed and wrap to the origin to obtain (8) 
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1 2 , 1 2
ˆ[ , ] ( )[ , ]

j l
f n n W U f n n=% %

        (8) 

The Algorithm ends by computing the inverse Fourier transform of each 
,j l

f%  to collect Curvelet 

coefficients 1 2( , , , )C j l k k . 

 

In [8] are proposed two methods for implementations of Fast Discrete Curvelet Transform 

(FDCT): Curvelet via Unequally Spaced Fast Fourier Transform (USFFT) and Curvelet via 

Wrapping. We chose to implement FDCT via wrapping in MATLAB environment since this 

method has been proved to be faster. 

 

3. ANALYSIS OF CURVELET COEFFICIENTS CONTRIBUTION IN     

MICROSCOPIC IMAGES 

 
3.1 Curvelet coefficients contributions 
 

The aim of microscopic images and many medical images is to extract useful information to 

underline pathology. For given image of size *m n , we apply the Curvelet transform at different 

scales and appreciate the coefficients contributions. Let { }{ } 1 2( , )C j l k k  be a Curvelet 

coefficient where j  is the scale, l  the direction parameter and
2

1 2( , )k k k= ∈Z . Given the 

decomposition scale j , the coefficients { }{ } 1 21 1 ( , )C k k  are the low frequencies contributions 

and the other coefficients where 2 j J≤ ≤  are high frequencies contributions. At a scale 2j ≥ , 

we have N  orientations such that: 

 
( 2)/2

(2 )
j

N Nθ

−  =          (9) 

 

Where 2P
Nθ =  is orientation number à scale 2j = , ( 2) / 2j −    represent the integer part in 

excess of ( 2) / 2j −  and 3P ≥ .  

 

The Curvelet coefficient contributions in various scales are shown in fig. 3. The original image is 

283*275  and can be decomposed at maximal scale 5J = . We can observe that low frequency 

scale separate darker region from white on and can be useful for watershed segmentation. We 

discover from coarser scales to finer scales, that Curvelet coefficients contributions become 

thinner. It is thinner property of thinner scales that will be used to improve edges in microscopic 

images.  

  

 
(a)  

 
(b)  

 
(c)  
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(d)  

 
(e)  

 
(f) 

Figure 3. Curvelet coefficient contributions in each scale: (a) Original image, (b) Curvelet 

coefficients contributions at thick scale, (c) Enhanced Curvelet coefficients contributions at scale 

2, (d) Enhanced  Curvelet coefficients contributions at scale 3, (e) Enhanced Curvelet coefficients 

contributions at scale 4, (f) Enhanced Curvelet coefficients contributions at thinner scale. 

 

3.2 Local structure of Curvelet coefficients contributions 
 

The appreciation of a pixel based only on the pixel intensity is not sufficient. Knowing the local 

structure of a pixel can be useful to appreciate curvelet coefficients contributions. That is why we 

need to find interest points in order to identify robust characteristics in an image. Many interest 

points detectors have been presented in literature such as Speeded-Up Robust Features  (SURF), 

Scale Invariant Feature Transform (SIFT), or Harris Detector [17,19]. We focus on SIFT which is 

the most used. SIFT interest point detector is robust to noise and is invariant to scale change. 

SIFT algorithm begins by selecting peak in a scale space by calculating minimum and maximum 

Difference of Gaussian (DoG) through scales, then follows the elimination of the unstable points 

that are points situated in region with low contrast or points situated on contours. Dominant 

orientations based on local properties are assigned to interest points to obtain points invariant to 

rotation. The SIFT algorithm end by assigning to each key point a 128 element vector that can be 

used for mapping. Algorithmic structure use in this paper is from D. Lowe [20]. 

 

Fig. 4 shows with cyan colour interest points magnitudes and directions superimpose on the 

image. There are 34 interest points in the original image while 61 interest points are found with 

scale one Curvelet coefficients contributions.  The number of interest points through Curvelet 

scales is gathered in table 1.  

 

Table 1: Number of interest points through Curvelet scales. 

Curvelet coefficients 

contributions at scale: 

0 (original) 1 2 3 4 5 

Number of SIFT 34 61 17 5 0 0 

Number of SIFT interest point 

matching original image  

34 17 0 0 0 0 

 

It clearly appears that the number and magnitude of interest points globally decreases through 

scales. Some few interest points at the finer scale are due to instability of the local structure of 

curvelet coefficients contributions and also to the presence of contours.  
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(a)  

 
(b)  

 

(c) 

 
(d) 

 
(e)  

 
(f) 

Figure 4. SIFT Interest points of Curvelet coefficients contribution: (a) SIFT Interest points of the 

original image, (b) SIFT Interest points of the Curvelet coefficients contributions at thick scale, 

(c) SIFT Interest points of the  Curvelet coefficients contributions at scale 2, (d) SIFT Interest 

points of the Curvelet coefficients contributions at scale 3, (e) SIFT Interest points of the Curvelet 

coefficients contributions at scale 4, (f) SIFT Interest points of the Curvelet coefficients 

contributions at thinner scale. 

 

It appears that some few interest points match the original image. These interest points are located 

on low frequency curvelet coefficients contributions. Those matching interest points are said to be 

stable through scale and could be useful for quick image data base content retrieval or thick blood 

smear analysis. Figure 5 present interest points stable through scale. 

 

 
 Figure 5. Interest points stable through scales  

 

4. EDGE IMPROVEMENT USING CURVELET TRANSFORM 
 

On the contrary of authors of [15,16], who use Curvelet transform to improve the quality of 

original image before using gradient edge detector to extract contour, we start our algorithm by 

contour detection and the Curvelet transform is called upon to improve the contour detected.  

Canny edge detector [21] was used in our algorithm to obtain first contours. Then follows 

Curvelet transform of original image and contour image at scale J .  Thinner scale can be 

obtained by increasing the size of the image.  The contribution of the Curvelet coefficient of the 
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original image at thinner scale then replaces the contribution of the Curvelet coefficient of the 

contour image. Finally the inverse Curvelet transform of the contour image is computed. Contour 

is obtained by thinning the image obtained after a threshold operation with two times the mean 

value. Curvelet transform at scale 1J +  brings out more precision on contour. 

 

 
Figure 6. The diagram of our proposed method 

An illustration of Edge improvement algorithm using Curvelet is given by the diagram of figure 

6. A test example is shown in figure 7 where (a) is our original image filmed in darkness. (b) 

shows contours obtained with canny edge detector. (c) shows improved edges obtained at scale 

5J = . This image shows contours of glared light in the downright cell that is not present in 

contours obtained with canny edge detector. Moreover there are new cells contour that appear 

which are not found on contours from Canny edge detector. (d) depicts improved image obtained 

at scale 6J = . This image shows distinct upper left cells contours that are not present in contours 

obtained with canny edge detector. After series of test with 10 images, we observe that there is no 

contours improvement at scale J  lower than 5. We can conclude that thinner scale 4J >  can 

improve edges. The drawback of our method is its execution time because curvelet transform is 

computed twice. 

 

 

(a) original image 

 

(b) Contours from Canny edge 

y 

n 

Canny edge 

detection (B) 

Curvelet transform 

of  B at scale J  

 

1J J= +  

Curvelet transform 

of  B at scale J  

 

Original Image (A) 

 

Inverse Curvelet 

transform of B 

 

Replacement of thinner scale of 

B with thinner scale of A 

 

Thresholding and 

thinning 
 
Precision 

obtained? 
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detector  

 
(c) Improved edge at scale 5J =  

 
(d) Improved edge at scale 6J =  

 

Figure 7. Edge improvement using Curvelet: (a) Original image filmed in darkness, (b) Contours 

from Canny edge detector, (c) Improved edge at scale 5J = , (d) Improved edge at scale 6J =  

 

5. CONCLUSIONS 
 

This paper presents a method of improvement of contours using the analysis of the coefficients of 

Curvelet. Each coefficient contribution at specific scale has information that has not yet been 

capitalized enough. Low frequency scale could help for watershed segmentation and it’s SIFT 

interest point could facilitate content based image retrieval. It is observed that information on 

contour is located on thinner scale. Curvelet transform is a powerful tool for multiresolution 

representation of object with anisotropic edge. Experimental results show that thinner scale helps 

to improve the edges of the images filmed in the darkness. 
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