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ABSTRACT 

In this paper, we aim to determine the location information of a node deployed in Wireless Sensor 

Networks (WSN). We estimate the position of an unknown source node using localization based on linear 

approach on a single simulation platform.  The Cramer Rao Lower Bound (CRLB) for position estimate is 

derived first and the four linear approaches namely Linear Least Squares (LLS), Subspace Approach (SA), 

Weighted Linear Least Squares (WLLS) and Two-step WLS have been derived and presented. Based on the 

simulation study the results have been compared. The simulation results show that the Two- step WLS 

approach is having higher localization accuracy. 
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1. INTRODUCTION 

Wireless Sensor Network (WSN) consists of a large number of tiny low cost, low-power, 

multifunctional sensors which are capable of sensing, computing and communicating between 

these wireless devices which are deployed in a large geographic area[1]. WSN can be applied to a 

wide variety of diverse areas[2], such as environmental monitoring, military applications, target 

tracking, medical care, space exploration, location based services such as Emergency 911 (E-911) 

[3], Location sensitive billing, fraud detection, intelligent transport systems, location based Social 

Networking and Mobile yellow pages etc, [4]. Due to the developments in wireless 

communication WSN have been a new area of research [5-7].  Many applications of WSN require 

the sensor nodes to acquire the position information of the sensor nodes deployed.  Data gathered 

by sensors should be associated with the sensors positions and it is worthless without the 

information about the place of its origin.  

Despite the huge research effort, still a well accepted approach on how to solve the localization 

issue is being realized. Since the sensor nodes are inexpensive and are in huge number it is not 

practical to equip these sensors with a Global Positioning System (GPS) receiver. Various 

localization approaches have been proposed and can be seen in the literature [8-13] and there is 

not a single approach which is simple, distinct and gives decentralized solution for WSNs. The 
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Ultra Wide Band (UWB) techniques [14] give very decent localization accuracy but the systems 

are expensive.  

The commonly used approaches for measuring position estimate in WSN are Time of Arrival 

(TOA) [15], Time Difference of Arrival (TDOA)[16], Received Signal Strength (RSS)[17] and 

Angle of Arrival (AOA) a.k.a., Direction of Arrival (DOA)[18]. Where, the TOA, TDOA, and 

RSS measurement gives the distance calculation between the source sensor and the receiver 

sensors while DOAs provide the information of the angle and the distance measurements from the 

source and the receiver. Calculating these distance and angle measurements is not simple because 

of the nonlinear relationships with the source.  

 

Given the TOA, TDOA, RSS and DOA information, the main focus of this paper is based on 

TOA positioning algorithms. We consider a two dimensional (2D) rectangular area where the 

sensors are deployed in Line-of-Sight (LOS) transmission, i.e., there is a direct path between the 

source and each receiver [19]. Also, we conclude that the measurements are well inside the 

expected range in order to obtain reliable location estimation. 

 

The rest of the paper is organized as follows. In section 2 we present, the measurement model of 

TOA, and their positioning principles. In section 3, we provide the linear approach of finding the 

position by four methods i.e., Linear Least Squares (LLS), Subspace Approach (SA), Weighted 

Linear Least Squares (WLLS) and Two-step WLS. In section 4, the mean square position error 

comparison of the above approaches is made. Finally, the conclusions are drawn in section 5. 

  

2. TOA MEASUREMENT  MODEL  AND  PRINCIPLES  OF  SOURCE 

LOCALIZATION  

The mathematical measurement model for TOA based Source Localization Algorithm is given as: 

 

                                                                r = f(x) + n                                                                      (1) 

 

Where x is the source position which needs to be estimated, r the measurement vector, ‘n’ is an 

additive zero-mean noise vector and f(x) is a known nonlinear function in ‘x’. 

 

2.1. Time of Arrival  

TOA is the one-way propagation time of the signal travelling between a source and a receiver. 

This means that the source and all the receivers are accurately synchronized to measure the TOA 

information, and such an identical system is not needed if two way or round trip TOA is 

computed. The computed TOA is then multiplied with a known propagation speed, usually 

denoted as c, gives the measured distance between the source and the receivers.  The measured 

TOA represents a circle with its centre at the receiver and the source must lie on the 

circumference in a Two Dimensional (2D) space.   

 

Three or more such circles obtained from the noise free TOAs result in a distinct intersection 

point which represents the source position and is as shown in Figure 1(a) and 1(b), specifying that 

a minimum of three sensors is necessary for two dimensional position estimate [20]. If the 

number of sensors is less than three there is a possibility that there may not be any intersecting 

points and hence not a feasible solution. Hence, a minimum of three sensors is required to obtain 

the intersection and these can be represented as a set of circular equations, based on the 

optimization criterion the source position can be estimated with the knowledge of the known 

sensor array geometry [21, 22]. 
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                               (a) Trilateration                                       (b) Multilateration 

 

Figure 1: Geometrically representation of TOA Positioning system. 

 

The TOA measurement model is developed as follows. Let [ ]
T

l l lx y=x be the known 

coordinates of the  thl  sensor, 1, 2, ......, .l L= and [ ] = 
T

x yx be the unknown position of the 

source to be estimated. The number of receivers L must be greater than or equal to 3. The 

distance between the source and the sensor, denoted by
ld  is simply: 

 

                                 
2 2x-x ( ) ( ) ,    1, 2, .....

l l l l
d x x y y l L= = − + − =

                                   (2) 

 

The source radiates a signal at time 0 and the  thl sensor receives it at time lt . That is, { lt } are the 

TOAs and is represented in a simple relationship between 
lt and

ld : 

                                                     

,    1,2,....,l

l

d
t l L

c
= =

                              (3)                                        

 

TOAs are prone to measurement errors. As a result, the range based measurement based on 

multiplying lt  by c, denoted by ToA, ,lr is modelled as: 

 

                      

2 2

TOA, TOA, 
( ) ( ) ,   1,2,.....

TOA, l l l l l l
r d n x x y y n l L= + = − + − + =

                                    (4) 

 

where TOA, ln is the range error in TOA, ,lr which is resulted from TOA disturbance. 

 

                                      
TOA TOA TOA

    ( )  = +r f x n                                                    (5) 

 

where, 

                                         
TOA TOA, 1 TOA, 2 TOA, L

 .......,
T

r r r =   r                                 (6) 

 

                                         
TOA TOA, 1 TOA, 2 TOA, L

 .......,
T

n n n =  n                                               (7) 

and 
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2 2

1 1

2 2

2 2
TOA

2 2

( ) ( )

( ) ( )
( ) =  = 

( ) ( )L L

x x y y

x x y y

x x y y

 − + −
 
 − + −
 
 
 

− + −  

f x d
M

                                              (8) 

 

Here, fTOA(x) represents the known function which is parameterized by x and in fact, it is the 

noise free distance vector. The source position estimation problem based on TOA measurements 

is to estimate x given {rTOA, l} or rTOA. 

 

A zero mean uncorrelated Gaussian process with variances {σ
2

TOA, l} is assumed for the range 

error {nTOA,l}.  This helps in to facilitate the algorithm development and analysis as well as 

Cramer Rao Lower Bound (CRLB) Computation.  

 

It is noteworthy that the zero – mean property indicates LOS transmission. The Probability 

Density Function (PDF) for each scalar random variable rTOA, l, denoted by p (rTOA, l,), has the form 

of  

 

                     

( )
2

TOA,l TOA,22
TOA,TOA,

1 1
( ) exp

22
l l

ll

p r r d
 

= − −  πσπσ  
                                      (9) 

 

And is characterized by its mean and variance, dl and {σ
2

TOA, l}, respectively. In other words, we 

can write  

 
2

TOA, TOA,l
( , )

l l
r N d∼ σ

                                                         (10)
 

 

While the PDF for rTOA, denoted by  p(rTOA), is  

 

( )
( ) ( )1/2/2

1 1
exp

22

T -1

TOA TOA TOAL

TOA

p
π

 
= − − − 

 
TOA(r ) r d C r d

C
                    (11) 

 

where 

                                  
2 2 2

,1 ,2 ,( , ,........., )TOA TOA TOA Ldiag= σ σ σTOAC                                               (12) 

 

2.2. Cramer Rao Lower Bound  

It is known that the MSPE of a biased estimator cannot be less than the CRLB. The mean square 

position error of the various positioning algorithms is computed and compared with CRLB which 

gives a lower bound on variance attainable by any unbiased estimators for the same data set [23]. 

Given the conditional PDF, we may derive the CRLB for TOA based location estimation and the 

same is given as follows [24, 25]:  

 

• Calculate the second order derivatives of the logarithm of the measured PDF with respect to 

x, that is
2 ln ( ) / ( )Tp∂ ∂ ∂r x x ..   

• Take the expected value of
2

ln ( ) / ( )
T

p∂ ∂ ∂r x x . 

• To yield 
2( ) = { ln ( ) / ( )}TE p∂ ∂ ∂I x r x x   
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Where I(x) denotes the Fisher Information Matrix (FIM). And the lower bound for x and y are 

given by 
-1

1,1
(x)  I and 

-1

2,2
(x)  I respectively. 

 

Alternatively, when the measurement errors are zero-mean Gaussian distributed, the FIM, whose 

elements are defined as: 

  

( ) 1( ) ( )
X

T

−∂ ∂   
=    ∂ ∂   

f x f x
I C

x x                                                          (13) 

where C is  the covariance matrix. The FIM based on TOA measurements denoted by: 

 

( ) 1TOA TOA
TOA

( ) ( )
T

TOA

−∂ ∂   
=    ∂ ∂   

f x f x
I X C

x x                                                 (14) 

 

It is straightforward to show that  

 

1 1

2 2 2 2

1 1 1 1

2 2

2 2 2 2TOA

2 2 2 2

2 2 2 2

1 1

( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

L L

L L

x x y y

x x y y x x y y

x x y y

x x y y x x y y

x x y y

x x y y x x y y

− − 
 

− + − − + − 
 − −
 ∂ 

= − + − − + −  ∂   
 
 − −
 

− + − − + −  

f x

x
M M

                          (15) 

 

1 1

1 1

2 2

T O A
2 2

( )

L L

L L

x x y y

d d

x x y y

d d

x x y y

d d

− − 
 
 

− − 
∂   

=   ∂ 
 
 

− − 
  

f x

x
M M

                                             (16) 

 

Employing eq. (16) and eq. (12), eq. (14) becomes 

 

( )

( )

2

2 2
1 1, ,

TOA 2

2 2
1 1, ,

( )( )

( )
( )( )

L L
l l l

l lTOA l l TOA l l

L L
ll l

l lTOA l l TOA l l

x x x x y y

d d

y yx x y y

d d

2 2
= =

2 2
= =

 − − −
 

σ σ 
=  

−− − 
 σ σ 

∑ ∑

∑ ∑

I x

                                   (17)

 Where the lower bound for x and y are denoted by 
-1

1,1
( )  I x and 

-1

2,2
( )  I x respectively, and the 
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( )TOACRLB x , is  

 
-1 -1

TOA TOA1,1 2,2
( ) ( ) ( )TOACRLB    = +   x I x I x

                           (18) 

 

3. LINEAR APPROACHES FOR SOURCE LOCALIZATION  

Given the nonlinear expressions, the linear localization methodology tries to convert the nonlinear 

expressions of eq. (4), into a set of linear equations with zero mean disturbances. And a global 

solution is obtained based on the corresponding optimization cost function. In this paper four 

linear positioning approaches namely Linear Least Squares (LLS), Subspace Approaches (SA), 

WLLS and two Step WLS are presented.  

 

3.1. Linear Least Squares 

The LLS approach utilizes the ordinary Least Squares (LS) technique to estimate the position of x 

by reorganizing eq. 4 into linear equations [26].  And an intermediate variable is added which is a 

linearization function to estimate the source position.  

The linear TOA measurement model in x can be obtained by squaring eq. 4 on both sides,  

 

( ) ( ) ( ) ( )
2 2 2 22 2

, , ,
2 ,

TOA l l l TOA l TOA l l l
r x x y y n n x x y y= − + − + + − + −           (19) 

 1, 2,..........,where l L=                                                                     

Let  

( ) ( )
2 22

, , ,
2

TOA l TOA l TOA l l l
m n n x x y y= + − + −                      (20) 

 
 

be the noise term in eq. (19) and introduce a dummy variable R  of the form: 

 
2 2

R x y= + .                                                           (21) 

 

 

Substituting eq. (20) – eq. (21) into eq. (19) yields: 

 

( ) ( )
2 22

, ,TOA l l l TOA lr x x y y m= − + − +  

     2 2 2 2 2

, ,2 2TOA l l l l l TOA lr x x x x y y y y m⇒ = − + + − + +  

2 2 2

, ,
2 2 ,   1, 2,....,

l l TOA l TOA l l l
x x y y R m r x y l L⇒ − − + + = − − =               (22) 

 

 

Let 

1 1

2 2

2 2 1

2 2 1

2 2 1L L

x y

x y

x y

− − 
 − − =
 
 
− − 

M M M
A                                                    (23) 
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[ ] y 
T

x R=θ                                                      (24) 

 

,1 ,2 ,
   

T

TOA TOA TOA L
m m m =  Lq                                                (25) 

and 

 
2 2 2

,1 1 1

2 2 2

,2 2 2

2 2 2

,

TOA

TOA

TOA L L L

r x y

r x y

r x y

 − −
 

− − =
 
 

− −  

M
b                                                          (26) 

 

The matrix form for eq. (22) is then: 

 

Aθ + q = b                                                            (27) 

 

where the observed TOAr  of eq. (5) is now transformed to b, θ  contains the source location to be 

determined and A is constructed from the known receiver positions. When { ,TOA lm } are 

sufficiently small such that  

 

( ) ( )

( ) ( )

( ) ( )

2 2

,1 1 1

2 2

,1 2 2

2 2

,1

2

2

2

TOA

TOA

TOA L L

n x x y y

n x x y y

n x x y y

 − + −
 
 

− + − ≈
 
 
 

− + − 

M

q                                           (28) 

 

 

can be considered a zero-mean vector, that is  { } 0,E ≈q  we can approximate eq. (27) as: 

 

≈Aθ b .                                                                (29) 

 

 The LS cost function based on eq. (29), denoted by ( ),LLS TOAJ %θ , is: 

 

( ) ( ) ( ),

T

LLS TOA
J =% % %θ Aθ - b Aθ - b  

                           = 2T T T T T− +% % %θ A Aθ θ A b b b                                               (30) 

Which is a quadratic function in θ% , and is a sole minimum in ( ),LLS TOAJ θ% . The LLS estimate 

corresponds to: 

( ),arg min LLS TOAJ=
%

)
%

θ

θ θ                                                    (31) 

which can be easily computed by differentiating eq. (30) with respect to θ%  and equating the 

resulting expression to zero: 
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( ),
0

LLS TOAJ

=

=
)

%

%

%

θ θ

θ

θ
 

2 2 0T T⇒ − =
)

A Aθ A b  
T T⇒ =

)
A Aθ A b  

( )
1

T T
−

⇒ =
)
θ A A A b                                                      (32) 

 

The LLS position estimate can be obtained from the first and second entries of θ
)

, that is, 

 

1 2

T

    =     

) ))
x θ θ                                                    (33) 

 

Eq. (33) is also known as the least squares calibration method [27]. 

 

3.2 Subspace Approach  

The subspace positioning approach using TOA measurement is presented as follows. We first 

define a (  x 2L ) matrix X: 

 

1 1

2 2

L L

x x y y

x x y y

x x y y

− − 
 − − =
 
 

− − 

M M
X                                                  (34) 

 
which is parameterized by x. With the use of X, the multidimensional similarity matrix [28], 

denoted by D, is constructed as: 

 

= TD XX                                                        (35) 

 

whose ( , )m n entry can be shown to be  

 

[ ] ( )( ) ( )( )
, m n m nm n

x - x x - x + y - y y - y=D  

( ) ( ) ( ) ( )
2 2 2 2 2 2

0.5 ( ) ( )m m n n m n m nx x y y x x y y x x y y = − + − + − + − − − − −
 

 

( )2 2 20.5
m n mn

d d d= + +                                                         (36) 

 

where ( )
2 2( )

mn nm m n m n
d d x x y y= = − + −  is of known value because it represents the 

distance between the m th and n th receivers. We then represent D  using Eigen Value 

Decomposition (EVD): 

 

= Λ TD U U                                                               (37) 
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Where [ ]  = L
1 2 L

U u  u u  is an orthonormal matrix whose columns are corresponding eigen 

vectors and ( )1 2, ,......., Ldiag= λ λ λΛ is the diagonal matrix of eigen values of D with 

1 2 0Lλ ≥ λ ≥ ≥ λ ≥L . Noting that the rank of D  is 2, we have 3 4 0.Lλ = λ = λ =L  As a result 

eq. (37) can also be written as: 

 

       
T

S S S=D U Λ U  

     ( )1/2 1/2
T

S S S S
= U Λ U Λ  

                                   ( )1/2 1/2
T

S S S S
= U Λ Ω U Λ Ω                                           (38) 

 

Where [ ] ( )1 2,  ,S S diag= = λ λ1 2U u  u Λ and 

1 1 1

2 2 2
1 2,S diag

 
= λ λ 

 
Λ denote the signal subspace 

components while Ω  is the rotation matrix such that
T =ΩΩ I . Comparing eq. (35) and eq. (38) 

yields: 

 
1/2

S S=X U Λ Ω                                                      (39) 

 

We then determine the unknown rotation matrix  

 

( )
†

1/2

S S
=Ω U Λ X  

( ) ( ) ( )
1

1/2 1/2 1/2
T T

S S S S S S

−

 =   
U Λ U Λ U Λ X  

1/2 T

S S

−= Λ U X                                                              (40) 

 

where  
†

 is moore penrose pseudo inverse. 

 

Substituting eq. (40) into eq. (39) results in  

 
T

S S=X U U X                                                             (41) 

 

which implies that the position x can be extracted from the eigen vectors of the  signal subspace. 

As ,  1, 2,...., ,ld l L=  is not available, we construct a practical D according to  

 

[ ] ( )2 2 2

,
0.5

m n mnm n
d d d= + +D .                                            (42) 

 

If the measurement error is present [28], 
1/2

S SU Λ  is the LS estimate of X up to a rotation. And 

hence eq. (41) becomes an approximate relation.  

 

To derive the position estimate, we first rewrite X as  

 

                  1 T= −X Y x                                                           (43) 

 

Where  
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1 1

2 2

L L

x y

x y

x y

 
 
 =
 
 
 

Y
M M

                                                           (44) 

 

Using the subspace relation 
T T

S S n n= −U U I U U  where [ ]3 4  n L= LU u u u  corresponds to the 

noise subspace and Substituting eq. (43) into eq. (41), we get: 

 

 

1T T T

n n n nx ≈U U U U Y                                                    (45) 

 

Following, the LLS procedure in eq. (29) – eq. (32), the subspace estimate of x using TOA 

measurements is computed as: 

 

( )( )†

1
T

T T

n n n n=
)
x U U U U Y                                                (46) 

 

1

1 1
=

T T

n n

T T

n n

Y U U

U U
                                                         (47) 

 

The classical multidimensional scaling approach [29] is a modified subspace technique. 

 

3.3 Weighted Linear Least Squares Approach  

Since LLS is a simple approach and provides an optimum estimation performance only when the 

disturbances in the linear equations are independent and identically distributed. From eq. (28), it 

is clear that because of the noise vector q the LLS TOA-based positioning approach is 

suboptimal. The localization accuracy can be improved if we include a symmetric weighting 

matrix, say, W, in the cost function, denoted by ( ),WLLS TOAJ %θ . The final obtained expression is the 

WLS cost function which is of the form: 

  

                              
( ) ( ) ( ),   =  

                      =  2

T

WLLS TOA

T T T T T

J

− +

% % %

% % %

θ Aθ - b W Aθ - b

θ A WAθ θ A Wb b Wb

                         (48)                  

                                                    

According to eq. (27) – eq. (28), we have { }E =b Aθ  which corresponds to the linear unbiased 

data model. The optimum W, can be obtained similarly as best linear unbiased estimator (BLUE) 

[30, 31], which is equal to the inverse of the covariance of q. That is, the weighting matrix is 

similar to that if the maximum likelihood methodology. Employing eq. (28), we obtain: 

  

                          

{ }

( )

1

1
2 2 2 2 2 2

,1 1 ,2 2 ,

2 2 2 2 2 2

,1 1 ,2 2 ,

 = 

    4 , 4 ,........, 4

1 1 1 1
     =  diag , ,........,       

4

T

TOA TOA TOA L L

TOA TOA TOA L L

E

diag d d d

d d d

−

−

 
 

 ≈ σ σ σ 

 
  σ σ σ 

W qq

                           (49) 
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As { }l
d are not available, a small error condition can be obtained by replacing ld with 

,TOA lr which is valid an optimum W, for sufficiently small error condition: 

                        
2 2 2 2 2 2

,1 ,1 ,2 ,2 , ,

1 1 1 1
  = , ,........

4
TOA TOA TOA TOA TOA L TOA L

diag
r r r

 
  σ σ σ 

W                           (50) 

Following eq. (31) – eq. (32), the WLLS estimate of  θ  is: 

                                                     
( )

( )

,

1

 = arg min

    = 

WLLS TOA

T T

J

−

)

)
%

θ

θ θ

A WA A Wb

                                                   (51) 

The Weighted Linear Least Square position estimate is given by eq. (33). 

 

 

With only a moderate increase of computational complexity [31], eq. (51) is superior to eq. (32) 

in terms of estimation performance. The localization accuracy can be improved by making use of 

3
  
)
θ according to the relation eq. (21) as follows. When 

)
x of eq. (51) is sufficiently close to x, 

we have: 
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2
2

1 1 1

1

 = 

                2

x x x

x x

     − + −     

 ≈ − 

) ) )

)

θ θ θ

θ

                                             (52) 

Similarly, for
2

  
)
θ : 

                                                  ( )
2

2

2 2
2y y y   − ≈ −   

) )
θ θ                                                      (53) 

 

Based on eq. (21) and with the use of eq. (52) – eq. (53), we construct: 

 

                                                          = +h Gz w                                                                       (54) 

where  

                                                       
2 2

1 2 3

T
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0 1

1 1

 
 

=  
  

G                                                                    (56) 

 

                                                             
2 2

T

x y =  z                                                                  (57) 

 

and 

                                    ( ) ( )
1 2 3

2 2
T

x x y x R      = − − −      

) ) )
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Note that z  is the parameter vector to be determined. The result of BLUE is used to compute the 

covariance of w in x
)

 and is of the form [31]: 

 

    { } ( )
1

1 2 3 1 2 3
      

T
T

E x y R x y R
−

              − − − − − − =              

) ) ) ) ) )
θ θ θ θ θ θ A WA          (59) 

 

 

Employing eq. (58) – eq. (59), the optimal weighting matrix for eq. (54), denoted byΦ , is then:  

                            ( )( ) ( )
1

1

2 , 2 ,1 2 ,2 ,1T
diag x y diag x y

−
− =   

Φ A WA                                     (60) 

 

As a result, the WLLS estimate of z is  

 

                                                      ( )
1

T T
−

=
)
z G ΦG G Φh                                                            (61) 

 

As there is no sign information for x in z , the final position estimate is determined as:  

 

                                     ( ) [ ] ( ) [ ]
1 21 2

sgn   sgn
T

    =     

) )) ) )
x θ z θ z                                        (62) 

 

Where sgn represents the signum function [32]. This technique is called the two-step WLS 

estimator [33] where eq. (21) is used in an implicit manner. Similarly an explicit way is to use 

Lagrangian multipliers [34, 35] to minimize eq. (48) subject to the constraint of eq. (21). 

 

4. SIMULATION RESULTS  

The performance evaluation of the various linear TOA based localization approaches is simulated 

using MATLAB[TM] Version 7.10.0.499 (R2010A) on Microsoft Windows XP®, Professional 

Version 2002, Service Pack 3, 32 bit operating system installed on Intel[R], Core[TM] 2 Duo 

CPU, E4500 @ 2.20GHz, 2.19GHZ, 2.0Gb of Ram.  

 

The simulation is done in a 2- Dimensional region with a size of (1100m x 1100m), where the 

unknown source is assumed to be at position (x, y) = (200, 300), and the receivers are positioned 

in known coordinates at (0, 0), (0, 1000), (1000, 1000) and (1000, 0) respectively. And the 

sensors are deployed in a rectangular area where the source is surrounded by four receivers and is 

shown in Figure 2.  It is also assumed that { },TOA l
n are zero- mean uncorrelated Gaussian process 

with variances { }2

,TOA l
σ , and zero- mean property indicates LOS transmission. The range error 

variance 
2

,TOA lσ  is proportional to 
2

ld with
2 2

, = /l TOA lSNR d σ . The signal-to- noise-ratio (SNR) = 

30dB has been assumed.  All the methods estimate the position.  The implementation flow of the 

two step WLS and the CRLB is shown in Figure 3 and 4 respectively. Figure 5, shows the plot of 

Mean Square Position Error (MSPE) defined as ( ) ( ){ }2 2
x x y y− + −
) )

E of different linear 

approaches and CRLB for SNR in the range [-10, 25] dB, based on 1000 independent runs, which 

is given by ( ) ( )
1000 2 2

1
/1000i ii

x x y y
=
 − + −
 ∑
) )

, where ( ),i ix y
) )

, denotes the position estimate of 

the i th run. From the Figure, it can be seen that the Two-step WLS estimator achieves the 

optimal estimation performance, while the LLS, SA and WLLS approaches are suboptimal. 
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Figure 2: Position of Source and Receivers  

 

Table 1: Estimated TOA positions obtained using different linear approaches. 

 

Method x
)

 in meters y
)

 in meters 

Linear Least Squares 201 302 

Subspace Approach 197 297 

Weighted Linear Least Squares 199 300 

Two Step Weighted Least Squares 200 300 

 

  

Table 1 gives the results of the position estimate, and results of the two step WLS approach is 

better when compared with the other linear approaches. The two step WLS accurately estimates 

the positions. The accuracy is higher in case of Two- step WLS while the other approaches have 

lower localization accuracy.  
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Figure 3: Flowchart showing the computation of Two- Step WLS approach 
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Figure 4: Flowchart showing the computation of CRLB 

 

 
 

Figure 5: Mean Square Position Error Computation of the different linear based approaches 
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5. CONCLUSIONS  

The work presented addresses the problem of position estimation of a sensor node in a Wireless 

Sensor Network, using TOA measurements in LOS environments. The CRLB for the position 

estimation problem has been derived first and later four methods namely LLS, SA, WLLS and 

Two Step WLS methods of linear approach have been derived and presented. Extensive 

simulations have been carried out and the results of different methods have been compared.  The 

comparison reveals that the two step WLS method is superior to the rest of the linear approaches 

in LOS environments.  

We have restricted our studies to the linear approaches. The work can be extended to the 

nonlinear approaches also and shall be reported in a future communication. Tracking mobile 

nodes is an interesting problem which may require a combination of two or more approaches to 

improve the accuracy of the position estimate. 
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