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ABSTRACT 

Vehicle detection in traffic scenes is an important issue in driver assistance systems and self-guided 

vehicles that includes two stages of Hypothesis Generation (HG) and Hypothesis Verification (HV). The 

both stages are important and challenging. In the first stage, potential vehicles are hypothesized and in the 

second stage, all hypotheses are verified and classified into vehicle and non-vehicle classes. In this paper, 

we present a method for detecting front and rear on-road vehicles without lane information and prior 

knowledge about the position of the road. In the HG stage, a three-step method including shadow, texture 

and symmetry clues is applied. In the HV stage, we extract Pyramid Histograms of Oriented Gradients 

(PHOG) features from a traffic image as basic features to detect vehicles. Principle Component Analysis 

(PCA) is applied to these PHOG feature vectors as a dimension reduction tool to obtain the PHOG-PCA 

vectors. Then, we use Genetic Algorithm (GA) and linear Support Vector Machine (SVM) to improve the 

performance and generalization of the PHOG-PCA features. Experimental results of the proposed HV 

stage showed good classification accuracy of more than 97% correct classification on realistic on-road 

vehicle dataset images and also it has better classification accuracy in comparison with other approaches. 
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1. INTRODUCTION 

Each year, on average, at least 1.2 million people die as a result of worldwide vehicle accidents 

and they injure at least 10 million people. It is predicted that damage property, hospital bill and 

other costs associated with vehicle accidents will add up to 1-3 percentage of the world's domestic 

product [1].  

There are at least three reasons for the increasing research in this area: 1) the statistics show that 

most deaths in vehicle accidents caused by car collision with other vehicles, 2) improved machine 

vision algorithms, 3) availability of low cost high computational power [1]. Consequently, the 

development of on-board automotive driver assistance systems with aiming to alert a driver about 

possible collision with other vehicles and also driving environment has attracted a lot of attention 

over the last 20 years among vehicle manufactures, safety experts and universities. Several 

national and international companies have launched over the past several years to research new 

technologies for reducing accidents and improving safety [2]. 

Robust and reliable vehicle detection in images is the critical step for these systems and self-

guided vehicles as well as traffic controllers. This is a very challenging task since it is not only 

affected by the size, shape, color, and pose of vehicles, but also by lighting conditions, weather, 

dynamic environments and the surface of different roads. A vehicle detection system must also 
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distinguish vehicles from all other visual patterns which exist in the world, such as similar 

looking rectangular objects [3]. 

Almost every vehicle detection system includes two basic stages: 1) Hypothesis Generation (HG) 

which hypothesized all regions in the image that potentially contain a vehicle, and 2) Hypothesis 

Verification (HV) which verifies the hypotheses [4,5]. 

Various HG methods have been suggested in the literature and can be classified in three basic 

categories [1]: 1) knowledge-based, 2) stereo-based and 3) motion-based. Knowledge-based 

methods employ information about color and vehicle shape as well as general information about 

the context such as: a) shadow [6,7], b) symmetry [8,9,10], c) horizontal/vertical edges [11,5,12], 

d) color [13,14], e) texture [15,16], and f) vehicle lights [17,18]. Stereo-based approaches usually 

employ the Inverse Perspective Mapping (IPM) to estimate the locations of people, vehicles and 

obstacles [19,20,21] in the images. Motion-based approaches detect object such as people, 

vehicles and obstacles using optical flow [22,23]. However, generating a displacement vector for 

each pixel is a time-consuming task and impractical for real time systems. To attack this problem, 

discrete methods employ the image features such as color blobs [24] or local intensity minima 

and maxima [25]. 

In the HV stage, correctness of  hypotheses are verified and sorted into vehicle and non-vehicle 

classes. The HV approaches can be divided into two categories [1]: 1) template-based and 2) 

appearance-based. The template-based methods employ the predefined patterns of the vehicle 

class and perform correlation between the template and the image. In [26], a HV algorithm was 

proposed based on the presence of the license plates and rear windows. This can be considered as 

a loose template of vehicle class. Handmann et al. [27] attempted to employ the template of  'U' 

shape which describes the bottom and sides edge of a vehicle. During verification, if they could 

find the 'U' shape, the image region was considered as a vehicle.  

In the appearance-based methods, the characteristics of the vehicle appearance are learned from a 

set of training images which capture the variability in the vehicle class. Usually, the variability of 

the non-vehicle class is also modelled to improve performance. To begin, each training image is 

presented by a set of global or local features [4]. Then, the decision boundary between vehicle 

and non-vehicle classes is learned either by training a classifier (e.g. Support Vector Machine, 

Adaboost and Neural Network) or by modelling the probability distribution of the features in each 

class (e.g. employing the Bayes rule assuming Gaussian distributions) [28,29,30]. In [31], 

Principle Component Analysis (PCA) was used for feature extraction and linear Support Vector 

Machine (SVM) for classification of vehicle images. Goerick et al. [32] employed Local 

Orientation Code (LOC) to extract the edge information of ROI and NNs to learn the 

characteristics of vehicles. In [33], a multilayer feedforward neural network-based method was 

proposed with the linear output layer for vehicle detection. Features extraction by application of 

Gabor filters was investigated in [34], Gabor filters provide a mechanism to extract the line and 

edge information by tuning orientation and changing the scale. In [35], an Adaboost classifier 

[36] trained on Haar features was used to classify detections. Papageorgiou and Poggio [37] have 

presented by acquisition of Haar wavelet transform for feature extraction and SVMs for 

classification. In [12], multiple detectors were built with employing Haar wavelets, Gabor filters, 

PCA, truncated wavelets, and a combination of wavelet and Gabor features using SVM and 

neural networks classifiers. A comparison of feature and classifier performance was presented, 

the conclusion was the feature fusion of the Haar and Gabor features can result in robust 

detection. In [38], a similar work was performed. Negri et al. [38] compared the performance of 

vehicle detectors with Adaboost classification that was trained using the Haar-like features, a 

histogram of oriented gradient features, and a fusion of them. The conclusion was that a feature 

fusion can be valuable. A statistical method was used in [39], performing vehicle detection 

employing PCA and independent component analysis (ICA) to classify on a statistical model and 

its speed was increased by modelling the PCA and ICA vectors with a weighted Gaussian mixture 
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model. In [40], a general object detection scheme was proposed using PCA and Genetic 

Algorithm (GA) for feature extraction and feature subset selection respectively.  

In this paper, in the HG stage, three different knowledge-based cues are applied to take the 

advantages of all the cues and also besides these, the data are prepared for the HV stage. Also, in 

the HV stage, a four-step method is used to optimize the features and rise the classification 

accuracy. The rest of the paper is organized as follows: in Section 2, the proposed method is 

described in detail. Our experimental results and comparisons are mentioned in section 3. The last 

section is the conclusion and future works. 

2. PROPOSED METHOD 

As before, the vehicle detection system includes two stages of the hypothesis generation and 

verification, in this section we describe the solutions that are employed in two stages. 

2.1. Hypothesis Generation (HG) 

Three different clues of shadow, texture and symmetry are used in this stage. The procedure starts 

with detecting shadow underneath a vehicle and using the aspect ratio, the ROI is determined. 

The advantage of shadow is that all of vehicles will be detected [41,42]. In the next step, the ROI 

is tested whether it has enough entropy or not. For this purpose, the rows with low entropy are 

removed from the ROI. If too few rows remain, the detected shadow is rejected (the shadow does 

not belong to a vehicle). Finally, the horizontal symmetry of the remaining  rows of the ROI is 

verified. In this step, asymmetric ROI is classified as background (which means the detected 

shadow is rejected) and symmetric ROI is considered as a hypothesis. In this step, besides 

separating the symmetric ROIs from background, the boundaries of the symmetric ROI is 

modified and it also improves the performance of the HV stage. This stage was inspired by the 

work of [42]. The three mentioned steps are described in the following. 

2.1.1. Shadow 

Shadow is the first clue that is searched in the image. Using shadow, the positions of the present 

vehicles can be indicated that is based on the fact that the shadow underneath a vehicle is darker 

than the observed surface of the road. After detecting the shadow underneath a vehicle, the region 

above the shadow is considered as a ROI that will be further analyzed.  

The presented work in [7] forms the basis for detecting the shadow underneath a vehicle. There is 

no lower boundary for the intensity of the shadow underneath a vehicle but based on the intensity 

distribution of the road surface, an upper boundary can be defined for it, although it will not be 

fixed. The value of this threshold depends on the color of the surface of the road and its 

illumination. 

The intensity distribution of the surface of the road is estimated without pre-knowledge about the 

location of the road in the image. It is achieved by means of a simple algorithm for detecting the 

free-driving-space. The free-driving-space is defined as the part of the observed road directly in 

front of the camera. For estimation of the free-driving-space, to begin, edges in the image are 

estimated, then the space is discovered, defined by the lowest central homogeneous region in the 

image and delimited by the edges (Figure 1).  

We assume that the intensity values of the road surface are normally distributed and estimate the 

mean value m and variance σ of the distribution. The upper bound for the shadows can be 

considered Threshsh =m-3σ. Although there are alternative approaches to estimate the free-

driving-space with more refinement but this procedure is sufficient to estimate m and σ for our 

application.  

For detecting the shadows underneath vehicles we need to estimate the edges that correspond to 

the transitions from the road surface to the dark areas underneath the vehicles. These edges are 
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usually horizontal. For this purpose, to begin, the points of the image are found that their intensity 

values are lower than the threshold (the dark areas). Next, within the image is searched for 

vertical transitions from brighter intensity values to the darker ones (scanning the image bottom-

up). This operation can be done efficiently by simply shifting the image vertically and then 

subtracting the two images (Figure 2). By this implementation, the obtained image has fewer 

horizontal edges than in the case of using a normal edge detector. 

The equation which gives the thresholded image is as follows. 



 ≥−+∧≤

=
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else  : 0
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where Threshv  is the intensity-value difference for the vertical edge estimation. The 

horizontal line segments are discovered in two successive lines. By thresholding the 

length of a line segment, the lines belonging to potential vehicles can be roughly 

separated and the remaining line segments are considered the background. Finally, the 

region above detected shadow is considered as a ROI. The ROI is estimated by the aspect 

ratio and slightly wider regions are used for the further analysis of each ROI (Figure 2.c). 

 
 

(a)                  (b)                             (c)                                        (d) 
Figure 1.  Estimation procedure for the intensity distribution of the 'free-driving-space'.(a) the 

original image. (b) the edges estimation in the image. (c) the rough estimation of the free-driving-

space. (d) the histogram of the intensity distribution of the free-driving-space. A Gaussian is fit to 

this histogram. 

   

                     (a)                     (b)                           (c) 

Figure 2.  Hypotheses generated based on shadow. (a) pixels identified as shadow based on 

Threshsh. (b) the shadow points based on Threshsh and Threshv that exhibit a vertical transitions 

from a brighter intensity values to the darker ones (scanning the image bottom-up). (c) scanning 

the image bottom-up, a ROI is defined above horizontal detected shadow presented in Figure b. A 

ROI is only further analyzed if its size indicates the possibility to contain a vehicle and in this 

case slightly wider regions (green boxes) are used for the ROIs for the further analysis. 

2.1.2. Texture 

Local entropy based on the information theory presented by Shannon in [43] can be considered as 

a measure for the information content. In [15], texture was employed on the grounds that their 

vehicle detection algorithm intended to focus on the parts in the image with high information 

content. 
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For our application, the entropy is employed to investigate the ROIs that are detected by the 

previous step (shadow). If a vehicle is observed in the ROI, it is expected in horizontal direction 

in between boundaries of the ROI, the estimated entropy will be high. For this purpose, the local 

entropy is computed along the lines of the ROI and the lines that indicate lack of entropy are 

removed from the ROI. If the number of remaining lines is lower than a threshold, the detected 

shadow line will be removed which means, it does not belong to a vehicle. In this case, we do not 

remove the whole of the segment lines in the ROI since a part of another potential vehicle may 

exist in the ROI and by removing its segment lines, the vehicle may be not detected by the 

shadow step in the further analysis. 

The entropy is defined as follows: 
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x
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x
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where p(rx) is a probability distribution of rx that in here is local intensities. The intensity 

distribution p(rx) of a line in a ROI is derived from its histogram of intensities. 

2.1.3. Symmetry  

Good horizontal symmetry can be obtained in uniform background areas. Therefore, estimating 

their symmetry would be useless. The preceding steps of the HG procedure already reject the 

uniform regions before entering to the symmetry step. Besides this, these steps prepare the data 

for the symmetry step in such a way that this step can be done efficiently. Furthermore, 

employing the preceding steps causes the data which should be analyzed in the symmetry step are 

decreased. This makes the process of finding the axis and width of the symmetry efficient. 

In here, the estimation method of the local horizontal symmetry will be explained briefly. The 

notation is as follows: 

G(u) : a one dimensional function defined over a line of the ROI (that obtained from the 

texture step) 

wmax : the width of the ROI 

w : the width of the symmetry interval 

xs : location of a potential symmetry axis 

Any function G(u) can be broken into a sum of its even part Ge(u) and its odd part Go(u): 
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For shifting the origin of the function G(u) to any potential symmetry axis xs, substitution u = x - 

xs is used. The even function of G(x) = G(x-xs) for a given interval of width w about symmetry 

axis xs is defined as: 
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The odd function of Go(x) is defined as: 
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For any pair {xs,w}, the values of either E(x,xs,w) or O(x,xs,w) are expressed appropriately by their 

energy content. However, there is a problem in this case since the mean value of the odd function 

is always zero, whereas the mean value of the even function in general is some positive number. 

Therefore a normalized even function that its mean value is zero is defined as follows: 
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The normalized measure is constructed with En and O for the degree of symmetry S(xs,w): 
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S(xs,w) indicates the measure of symmetry for any symmetry axis xs with the symmetry 

width w which has the following property: 

    1),(1 ≤≤− wxS s  (8) 

Furthermore, S = 1 in the case of ideal symmetry, S = 0 for asymmetry and S = -1 for 

ideal anti-symmetry. 

S(xs,w) provides us the measure for symmetry regardless of the width of the interval being 

considered. For example, in the case of estimating the same measure of symmetry for two 

different axis of symmetry, one should select the estimation corresponding to the largest width w. 

To account the width, the measure SA(xs,w) is defined: 
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For detecting two dimensional symmetry, SumSA(xs,w) should be computed as follows:  

 
(10) 

where n is the number of the ROI lines. For each symmetry axis, w is increased to wmax  and the 

maximum value of SumSA(xs,w) is recorded. After doing this for each symmetry axis, we find the 

maximum value of the recorded values. The xs and w corresponding to the maximum value will be 

the symmetry axis of the ROI and the interval width respectively which are denoted as {�� s, ��}. 

Then, we look for more accurate location of the symmetrical part observed within the ROI and its 

corresponding measure of symmetry. For example, more areas close to the boundaries of the ROI 

belong to the background instead of the vehicle. For this purpose, we remove the lines in the 

lower and upper quart of the ROI which exhibit relatively low symmetry values SA(xs,w).  

With denoting the height of the ROI by h, we determine the upper and lower boundaries for the 

refined symmetry region: 
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Finally, we modify the estimation of the interval width. For this purpose, ��  is increased to wmax 

and the w corresponding to the maximum value of SA(��s,w) will be the modified symmetry width. 

This provides us with the smallest box that contains the symmetrical part observed within the 

ROI. We call this box Sym.ROI. We use (12) to find the symmetry measure of the Sym.ROI that is 

denoted as SM.ROI.  
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If SM.ROI value is lower than a pre defined threshold Threshsym  , the detected shadow line will be 

removed that means Sym.ROI contains no vehicle and otherwise Sym.ROI  will be considered as a 

hypothesis. Figure 3 shows a detailed block diagram of the proposed HG stage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  the HG stage (including the shadow, texture and symmetry steps) 
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2.2. Hypothesis Verification (HV) 

The framework in this stage is feature extraction from the hypotheses and classification them into 

vehicle and non-vehicle classes. Therefore the performance of this stage is directly depended to 

employ a classifier that is well trained by the appropriate features. For achieving this purpose, we 

propose a framework that is shown in Figure 4. Pyramid Histograms of Oriented Gradients 

(PHOG) features are extracted from an image dataset as the primitive features since they have 

shown good results in object detection [40], facial expression recognition [44], human motion 

classification [45] and image categorization [46]. Then Gaussian low-pass filter is applied on the 

image. Following this, the size of the obtained image is reduced and the PHOG features are 

extracted again from this image. This work will be to improve the classification accuracy since it 

leads to extract other effective features from the image. To improve the classification accuracy 

more and reduce the dimensionality, we also apply PCA to these PHOG features to generate what 

we call the PHOG-PCA feature vector. Then, we divide the samples into two parts of Training 

Data and Test Data as shown in Figure 4.  

It is well known that feature weighting is effective for pattern classification as shown in 

[47,48,49]. It is expected that the classification accuracy can be further improved by weighting 

the proper first PHOG-PCA features since some local regions are less relevant for vehicle 

detection than the others. For this purpose, we use a GA feature weightener. The Training Data is 

divided into two parts of data1 and data2. We employ linear SVM for vehicle/ non-vehicle 

classification which is trained with the data1 and then the data2 is used for validation of the 

classifier. The classification accuracy is returned to the GA as one of the fitness factors. After the 

convergence of the GA, linear SVM is trained regarding the Optimum Weights and the Training 

Data. Next, we test it with the Test Data and the classification accuracy of the proposed HV stage 

is obtained. The overview of the HV stage is shown in Figure 4. 

 
Figure 4.  the HV stage 
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2.2.1. Pyramid Histograms of Oriented Gradients (PHOG)  

PHOG descriptor is a spatial pyramid representation of HOG descriptor, and reached good 

performance in many studies, e.g. [50,51,52]. In this paper, the PHOG features are extracted from 

vehicle and non-vehicle samples to represent by their local shape and spatial layout. As illustrated 

in Figure 5, the PHOG descriptor consists of a histogram of orientation gradients over each image 

sub-region at each resolution. 

For extracting the PHOG features, the edge contours are extracted by acquisition of the Canny 

edge detector for entire image as shown in Figure 5. Following this, each image is divided into 

cells at several pyramid level. The grid at resolution level l has 2	 cells along each dimension. The 

orientation gradients are computed using a 3×3 Sobel mask without Gaussian smoothing. 

Histogram of edge orientations within each cell is quantized into K bins. Each bin in the 

histogram represents the number of edges that have orientations within a certain angular range. 

The histograms of the same level are concatenated into one vector. The final PHOG descriptor for 

an image is a concatenation of all vectors at each pyramid resolution that introduces the spatial 

information of the image [50]. Consequently, level 0 is represented by a K-vector corresponding 

to the K bins of the histogram, level 1 by a 4K-vector, and the PHOG descriptor of the entire 

image is a vector with dimensionality K ∑ 4	
	∈
 . The PHOG descriptor is normalized to sum to 

unity that ensures images with more edges are not weighted more strongly than others. Figure 5 

shows the PHOG descriptor procedure and the PHOG features of the example images. As can be 

seen, vehicle images have similar PHOG representations whereas non-vehicle images have 

different PHOG representations far enough from the vehicle ones. 

   

 

 

  

 
 

 

 

z  

 
 

 
 

 

Figure 5.  Shape spatial pyramid representation. Top row: a vehicle image and grids for levels l = 0 to l = 2; 

Below: histogram representations corresponding to each level. The final PHOG vector is a weighted 

concatenation of vectors (histograms) for all levels. Remaining rows: another vehicle image and a non-

vehicle image, together with their histogram representations. 

2.2.2. Gaussian Low-pass Filter   

By eliminating the high frequencies of the image, the image is blurred. Gaussian low-pass filter 

does this by beneficiary of a Gaussian function. It is widely used to reduce the image noise and 

detail. It is also used in computer vision as a pre-processing step in order to enhance image 

structures at different scales. In two dimensions, the Gaussian low-pass filter can be expressed as:  
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where x is the distance from the origin in the horizontal axis, y is the distance from the origin in 

the vertical axis, and σ is the standard deviation of the Gaussian distribution. To construct 

Gaussian low-pass filter, two parameters x and s are used. The values of x and s indicate the size 

of the filter mask and the sigma respectively, and the sigma indicates the filter frequency. Any 

value of x is more, the filter mask will be bigger and also any value of s is more, the filtered 

frequency will be increased. Figure 6 shows the results of applying Gaussian low-pass filter on 

three sample vehicle and non-vehicle images and also the PHOG features representation of the 

filtered images.  

 
 

 
  

   
 

 

 
 

    

 

(a) (b) (c) (d) (e) 

Figure 6.  the PHOG features representation for sample vehicle and non-vehicle images after applying 

Gaussian low-pass filter. Column (a): the original vehicle and non-vehicle images; Column (b): the results 

of applying Gaussian low-pass filter on the images of column (a); Columns (c),(d) and (e): the PHOG 

features representation of the corresponding filtered images of column (b).  

2.2.3. Principal Component Analysis (PCA) 

The total number of the extracted PHOG features is rather high. Also, these features are likely 

irrelevant and redundant. PCA was applied in [53,54] for reducing the dimensionality of the 

feature vectors. PCA can be defined as the orthogonal projection of the input data onto a lower 

dimensional linear subspace, such that the variance of the projected samples is maximized. 

Dimension reduction and noise reduction are two advantages of employing PCA. In this paper, 

we utilize this idea to reduce the dimensionality of the feature vectors. The PCA algorithm can be 

summarized in the following: 

Let {��|i = 1, . . .,N} be a set of M-dimensional vectors. We compute the mean vector of input 

vectors that is defined as �̅ = 
�

!
∑ �" 

!
�#�  and then we compute the covariance matrix Σ that is 

defined as follows: 

Σ = 
�

!
 ∑ ��� − �̅�!

%#� ���  −  �̅�&                               (14) 

By solving the eigen equations of the covariance matrix Σ, the optimum projection matrix U is 

obtained 

ΣU = ΛU,   (U'& = I)                         (15) 
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and then the PCA scores for any PHOG features can be computed by using the following 

equation. We called these new features PHOG-PCA features.  

y = '&���  − �̅�                                (16) 

In order to reduce the dimensionality, we just keep the first d principal axis that they keep the 

significant discriminant information. 

2.2.4. Genetic PHOG-PCA Feature Weighting 

GA is a probabilistic optimization algorithm and a branch of evolutionary algorithms. In the past, 

it has been used to solve different problems such as object detection [40], face recognition 

[55,56], vehicle detection [4], image annotation [57], gender classification [58] and target 

recognition [59].  

In this study, we utilized the GA for the PHOG-PCA features weighting to reduce the 

classification error of the classifier. Thus, we formed a population consisting of the chromosomes 

representing the weights for the features of the two classes of vehicle and non-vehicle and used 

them in the GA process. The best chromosome is the one leading to the lowest test classification 

error. The procedure in finding the optimum weights via the GA is as follows: 

1) Feature weighting encoding: Let the number of the PHOG-PCA features be L, so each 

chromosome will be represented with L genes that each gene take values from the range of 

[0-5], which in our study is divided into 10 discrete levels. 

2) Calculating the fitness of these chromosomes: We forced weights 0.5 in value to 0 during our 

trial. These embellishments resulted in GA-optimized classifiers with reduced feature sets. 

With some training data and regarding non-zero weights, the linear SVM is trained using the 

chromosome whose fitness value is to be calculated. Then, some test data is presented to the 

trained classifier and classification accuracy is calculated in percentage form. The fitness 

function is as follows: 

          Fitness�c� = CA4�c� – α � 
3�4�

5
 � �17� 

where c is the chromosome, CA(c) is the classification accuracy using the linear SVM 

classifier. α represents the tradeoff between the two criteria (using α =0.01). N(c) is the 

number of non-zero weights. Finally, L is the total number of the features (which is fixed at 

315 for all experiments). In our experiments, the classification accuracy is often more than 

75%. So we used CA
4
(c) instead of CA(c) because it can be more distinctive fitter 

chromosome than others. 

3) Initial population: All the genes of the first chromosome are ‘5’, which means the weights of 

all the features are equal. The other chromosomes are generated randomly. In all of our 

experiments, we used 1000 generations and a population size of 800. In most cases, the GA 

converged in less than 1000 generations. 

4) Crossover: We used uniform crossover, in this case each bit of the offspring is selected 

randomly from the corresponding bits of the parents. The crossover rate used in all of our 

experiments was 0.9. 

5) Mutation: We choose uniform mutation that is, each bit has the same mutation probability. 

The mutation rate used in all of our experiments was 0.08. 

6) Elitism: We used the elitism strategy to prevent fitness of the next generation be smaller than 

the largest fitness of the current generation, the best 40 chromosomes are preserved for the 

next generation automatically. 
 

 

 

 



Signal & Image Processing : An International Journal (SIPIJ) Vol.4, No.4, August 2013 

42 

3. EXPERIMENTAL RESULTS 

3.1. Dataset 

The vehicle dataset used contains 1646 non-vehicle images and 1648 front and rear view vehicle 

images. Some of these images are from the MIT vehicle dataset and the Caltech-101 dataset, 

while the rest images have been gathered with different types, poses and colors (although all 

images were converted to grayscale). Some of the images contain the vehicle and other 

background objects. We converted all images to jpg format and normalized size of each image to 

128×128 pixels (see Figure 7). 

 

      

      

      
Figure 7.  Some vehicle and non-vehicle training sample images 

3.2. Experiments 

In our experiments, we used the linear SVM classifier and the extracted PHOG features from all 

collected images with 3 levels of pyramids and 40 orientation bins in the range of [0, 360] in each 

level. Therefore, the 3 level PHOG descriptor of an image is an 840-vector. 

Also, we used a 7-fold cross-validation to estimate both the accuracy and generality of the linear 

SVM classifier. In this case, all of the examples are partitioned into 7 subsamples and the 7th 

subsample is retained as Test data while the remaining 6 subsamples are used as Training Data. 

The cross-validation is then repeated 7 times with all of the 7 subsamples used exactly once as the 

test data. It should be mentioned that with the aim of comparing the results of the different steps 

of the HV stage, we used the same folds in all following experiments for the cross validation. In 

the first experiment, we applied the PHOG descriptors and the linear SVM classifier. Table 1 

shows the result. 

Table 1.  the classification results with the PHOG features extracted from the dataset images 

Number 

of 

Features 

True 

Positive 

(%) 

True 

Negative 

(%) 

Classification 

Accuracy 

(%) 

840 96.06 92.59 94.32 

 

In second experiment, to improve the classification accuracy, the Gaussian low-pass filter is 

applied on the dataset images and then the size of the obtained images is reduced to 64×64 pixels. 

Next, the PHOG features are extracted again from these images. Table 2 compares the results of 

the classification using the linear SVM classifier and the extracted PHOG features from the 

dataset images as well as the filtered images. In this table, K, L, X and S are the number of bins, 

the number of pyramid levels, the size of the filter and the standard deviation respectively.  

According to Table 2, we find that employing the PHOG features extracted from the dataset 

images and also the filtered images will climb the classification accuracy compared with 

employing only the PHOG features extracted from the original dataset images. As another result 

of this table, exploiting the features extracted with the 3 levels of pyramids has always better 

performance compared with using the 2 levels of pyramids. It is also observed while using the 3 
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levels of pyramids, it is often better to use k=20 rather than k=40. As final result in this step, the 

best classification accuracy (95.69 %) is obtained using k=20, L=2, X=5 and S=5. In this case, the 

total number of features is equal to (840+420=)1260 and we apply these features in the next step. 

Table 2.  the classification results with the PHOG features extracted from the dataset images and also the 

filtered images   

K L X S 

True 

Positive 

(%) 

True 

Negative 

(%) 

Classification 

Accuracy 

(%) 

20 2 10 15 97.45 93.68 95.57 

20 1 10 15 96.84 93.01 94.93 

20 2 10 10 97.51 93.68 95.60 

20 1 10 10 96.72 92.89 94.81 

40 2 10 15 97.52 93.59 95.56 

40 1 10 15 96.97 92.95 94.96 

40 2 10 10 97.21 94.11 95.66 

40 1 10 10 96.91 92.77 94.84 

20 2 5 5 97.51 93.86 95.69 

20 1 5 5 97.09 92.77 94.93 

40 2 5 5 97.27 94.06 95.67 

40 1 5 5 96.84 92.89 94.87 

20 2 5 10 97.51 93.74 95.63 

20 1 5 10 97.21 93.30 95.26 

40 2 5 10 97.33 93.80 95.57 

40 1 5 10 97.27 93.13 95.20 

20 2 5 2 97.21 94.11 95.66 

20 1 5 2 96.78 93.01 94.90 

40 2 5 2 97.09 94.20 95.65 

40 1 5 2 96.72 93.07 94.90 

 

It should be mentioned that for increasing the classification accuracy more, the Gaussian low-pass 

filter was applied again on the filtered images and then the PHOG features were extracted from 

them but in this case, the classification accuracy was not increased and even it often led to 

reduction of the classification accuracy so we avoid mentioning these experiments and their 

results. 

In third experiment, we applied PCA to the PHOG features for improving the classification 

accuracy more and reducing the dimensionality in two different cases. In the first case, PCA was 

applied to the PHOG features extracted from the original dataset images. In the second case, PCA 

was applied to the PHOG features extracted from the original dataset images and also the filtered 

images. Table 3 shows the results corresponding to the second case with employing different 

number of the first PHOG-PCA features. The best classification accuracy in the first case was 

obtained equal to 96.05 % with employing the 370 first PHOG-PCA features (from 840 features). 

Since the second case resulted in the better results, we avoid mentioning other results for the first 

case. 

The results of the two cases show that employing PCA in general will amplify the classification 

accuracy. In the second case (Table 3) with employing the 315 first PHOG-PCA features (from 

1260 features), we achieve the best classification accuracy (96.84 %) that is better than the best 

classification accuracy in the first case. In the second case, besides increasing classification 

accuracy, another significant point is, even though the number of features is more than the first 

case but the number of effective features has decreased from 370 to 315 features that is shown 

employing the features extracted from the filtered images is a good idea so we use these features 

in the next step. 
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Table 3.  the classification results with employing PCA to reduce the dimensionality of the PHOG 

descriptors extracted from the dataset images as well as the filtered images 

Number 

of 

Features 

True 

Positive 

(%) 

True 

Negative 

(%) 

Classification 

Accuracy 

(%) 

100 97.63 94.71 96.17 

200 97.88 95.44 96.66 

250 98.12 95.38 96.75 

270 98.12 95.38 96.75 

300 98.12 95.50 96.81 

315 98.18 95.50 96.84 

330 98.18 95.50 96.84 

350 98.18 95.50 96.84 

400 98.18 95.50 96.84 

450 98.05 95.52 96.79 

500 98.05 95.52 96.79 

600 98.05 95.46 96.76 

 

In fourth experiment, we used the GA with the configuration mentioned in section 2.2.4 to 

optimize the weights of these features. We also used the same folds in the previous experiments 

for the cross validation and in this case, we used 5 folds of Training Data (that we called Data1) 

for training of linear SVM and 1 fold of Training Data (that we called Data2) for validation of 

the learned classifier to guide the GA during the weight optimization. After the convergence of 

the GA, we trained the linear SVM with the Training Data regarding the optimum weights and 

tested it by application of Test Data. Applying the feature weighting led to decline in the number 

of the features from 315 to 303 as well as improvement  of  the classification accuracy by 0.92 %. 

Table 4 shows the result. 
 

Table 4.  the classification results with employing the GA to weight the PHOG-PCA features 

 (proposed HV method ) 

Number 

of 

Features 

True 

Positive 

(%) 

True 

Negative 

(%) 

Classification 

Accuracy 

(%) 

303 98.48 97.03 97.76 

 

Figure 8 shows the results of applying our proposed method on some sample images.  

 
 
Figure 8. Applying our proposed method on some sample images to detect on-road vehicles. Red rectangle: 

The ROI has been considered as non-vehicle by the entropy step; Yellow rectangle: The ROI has passed the 

entropy step but it has been considered as non-vehicle by the symmetry step; Green rectangle: The ROI has 

passed the symmetry step too but it has been considered as non-vehicle by the classifier; Blue rectangle: 

The ROI has passed all the steps and it has been classified as a vehicle 
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The results of applying our proposed method on another sample image is shown in Figure 9. As 

can be seen, the vehicle in the right side has been considered as non-vehicle mistakenly by the 

entropy step since the vehicle does not have a rich texture, ( it has few edges) and also a non-

vehicle ROI in the left side has been considered as vehicle mistakenly. 

 

 
Figure 9.  Two examples of false detections  

With the aim to investigate more about the accuracy of the proposed HV stage, we compare it 

with the methods presented in [40,60]. We implemented the method presented in [40]. Next, we 

applied it on our dataset images. In [40], to begin, the features are extracted from the dataset 

images by PCA and then the images are classified by the SVM classifier. Table 5 shows the 

results of classifying with the different number of the first PCA features.   

Table 5.  the classification results using the different number of the first PCA features 

Number 

of 

Features 

True 

Positive 

(%) 

True 

Negative 

(%) 

Classification 

Accuracy 

(%) 

50 88.77 87.31 88.04 

100 89.02 88.56 88.79 

150 89.62 89.06 89.34 

200 90.47 89.35 89.91 

250 91.09 89.80 90.45 

300 90.47 89.77 90.12 

 

In [40], after extracting the features, the genetic algorithm is employed to select features from the 

proper first PCA features. According to Table 5, the 250 first PCA features shows the better 

performance and since still other useful features may be between 250 to 300 first features so we 

used the GA to select an optimum subset of the 300 first PCA features. It should be mentioned 

that we also used the same folds in the previous experiments for the cross validation. Table 6 

shows the result. 

Table 6.  the classification result using the selected PCA features by the GA 

Number of 

Features 

True 

Positive 

(%) 

True 

Negative 

(%) 

Classification 

Accuracy 

(%) 

82 95.45 94.41 94.93 

 

It can be seen in Table 6, the classification accuracy using the selected features by the GA has 

reached to 94.93 % while our proposed method shows 97.76 %. So the classification accuracy has 

been increased by 02.83 % according to our approach. 

In the following, we also compare our HV stage with the method presented in [60]. The dataset 

used in [60] is shown in Table 7. 
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Table 7.  the vehicles dataset [60] 

Dataset 
#vehicle 

images 

#non-

vehicle 

images 

Source 

Training 1154 1154 CALLTECH2001 

Validation 155 256 CALLTECH1999 

Testiing 120 180 
GRAZ  + INRIA  + 

their own images 

 

In [60], an analysis of ways to integrate the features and classifiers has been presented for vehicle 

recognition in presence of illumination noise unseen in the training stage. They found that 

employing their ensemble method has better performance than the others. In this case, Local 

Receptive Field (LRF) features are classified by a Multi Layer Perceptron (MLP) classifier and 

once again by a SVM classifier and also HOG features are classified by a SVM classifier. Next, 

to integrate the classifiers, they used Heuristic Majority Voting (Heuristic MV) approach. To 

construct the effect of penumbra and white saturation (the two effects prone to happen in outdoor 

environments) two artificially light transformations over the dataset was applied (see Figure 10). 

Then, the classification accuracy was obtained over the testing datasets. Table 8 summarizes their 

results. Consequently, the highest classification accuracy belongs to Heuristic MV approach with 

an average accuracy 91.4 %.  

 

 

 

 
Figure 10.  32×32 pixel image samples. In the left column, some original samples under normal condition; 

in the middle and right columns, the respective images under white saturation and penumbra 

Table 8.  the classification accuracy over the testing dataset [60] 

Classifier 
Normal 

(%) 

Penumbra 

(%) 

Saturation 

(%) 
Average (%) 

LRF/MLP 87.0 88.0 85.7 86.9 

LRF/SVM 90.0 90.0 83.7 87.9 

HOG/SVM 92.0 78.0 84.3 84.76 

Heuristic MV 94.3 91.7 88.3 91.4 

 

We applied our proposed HV method over the datasets, Table 9 shows the results. 

Table 9.  the classification accuracy of the proposed HV method over the same testing dataset 

Classifier 
Normal 

(%) 

Penumbra 

(%) 

Saturation 

(%) 
Average (%) 

Proposed HV 

method 
96.0 92.7 90.3 93.0 
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Table 9 shows that by employing the proposed HV method, the classification accuracy has been 

enhanced by 1.7, 1.0 and 2.0 % compared to Heuristic MV approach over normal, Penumbra and 

white saturation datasets respectively. This shows the proposed HV method has better 

performance over noisy images in addition to normal images. The proposed HV method gained 

an average accuracy of 93.0 %, which means the average accuracy has been grown by 1.6 % 

compared to Heuristic MV approach. 

4. CONCLUSION AND FUTURE WORKS 

Generally, in this paper, a two-stage approach has been proposed to robustly detect preceding 

vehicles (front and rear vehicle view). The first stage is the hypothesis generation (HG) which 

contained a combination of the three clues of shadow, entropy and symmetry without prior 

knowledge about the position of the road. In the hypothesis verification (HV) stage, all the 

hypotheses were verified by a strong classifier. For this purpose, we have proposed a four-step 

method for classifying the vehicle candidate images into vehicle and non-vehicle classes. To 

begin, we extracted the PHOG features from an image dataset as well as the image obtained from 

employing the Gaussian filter on the image as the primitive features. Next, we applied the PCA to 

reduce the dimensionality of the PHOG descriptors and produce the reduced PHOG-PCA 

features. Finally, we used the GA to find the optimum weights for these features with respect to 

both the classification accuracy and the number of used features to improve their performance 

and generalization. Our tests showed the HG stage has the ability to detect the approximate 

location of the vehicles with appropriate accuracy and also the HV stage achieved 97.76 % 

classification accuracy on the realistic on-road vehicle images. 

Combining multiple cues can be useful for developing more robust and reliable systems. We have 

also used the combination of the shadow, entropy and symmetry cues in the HG stage in this 

study. In past, combining multiple cues has produced promising results (e.g., combination of 

Local Orientation Coding (LOC), entropy, and shadow [27], color and shape [61], shape, 

symmetry, and shadow [62] and motion with appearance [63]). For future work, combining 

different cues can be explored to achieve effective fusion algorithm as well as cues which are fast 

to compute. 

In HV stage, in previous works, concentration has been usually on feature extraction while many 

of the features are not relevant and it has great impact on the classification accuracy. Therefore, 

applying a feature selection or weighting strategy seems to be beneficial. For future work, the 

other features such as Gabor, Haar-Like, Wavelet can also be extracted and then feature selection 

or weighting is applied on concatenation of their normalized vectors. Moreover, the proposed HV 

stage can also be exerted on the concatenation. In this study, we used the PHOG features as a 

spatial descriptor and by beneficiary of Gabor features as a frequency descriptor besides the 

PHOG features, better results can be achieved since in this case, the image is described in both 

spatial and frequency domain. As a result, we can benefit from the advantage of both. In another 

case, after extracting features with different types (e.g. Gabor, PHOG), the features of each type 

can be classified by separated classifiers and then the outputs of the classifiers can be integrated 

(by investigating different methods) and finally the classification is done.  

To complete the proposed system, detecting the passing vehicles can be added by acquisition of 

moving information. Moreover, detecting vehicles in night time can also be appended [64]. For 

this purpose, to begin, by determining the light condition of above region of the image, the day or 

night can be realized. Then, certain algorithm is employed to detect vehicles in each case. Finally, 

we also pointed out adding detection of other traffic objects such as pedestrians, motor cycles and 

traffic signs to the proposed system for its completeness. 
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