
Signal & Image Processing : An International Journal (SIPIJ) Vol.5, No.2, April 2014

DOI : 10.5121/sipij.2014.5209 95

APPLICATION OF PARALLEL ALGORITHM

APPROACH FOR PERFORMANCE

OPTIMIZATION OF OIL PAINT IMAGE FILTER

ALGORITHM

Siddhartha Mukherjee

Samsung R&D Institute, India - Bangalore

ABSTRACT

This paper gives a detailed study on the performance of image filter algorithm with various parameters

applied on an image of RGB model. There are various popular image filters, which consumes large amount

of computing resources for processing. Oil paint image filter is one of the very interesting filters, which is

very performance hungry. Current research tries to find improvement in oil paint image filter algorithm by

using parallel pattern library. With increasing kernel-size, the processing time of oil paint image filter

algorithm increases exponentially. I have also observed in various blogs and forums, the questions for

faster oil paint have been asked repeatedly.

KEYWORDS

Image Processing, Image Filters, Linear Image Filters, Colour Image Processing, Spatial Image Filter, Oil

Paint algorithm, Parallel Pattern Library.

1. INTRODUCTION

This document provides an analytical study on the performance of Oil Paint Image Filter

Algorithm. There are various popular linear image filters are available. One of the very popular

and interesting image filters is Oil Paint image effect. This algorithm, being heavy in terms of

processing it is investigated in this study.

There related studies are detailed in the Section 7.

2. BACKGROUND

Modern days, human beings have hands full of digital companions, e.g. Digital Camera, Smart

Phones, Tablets and laptops so on. Most of these are having built-in camera, which are widely

used compared to traditional cameras. The usage of these has started a new stream of

applications, which include various categories e.g. image editing, image enhancement, camera

extension application and so on. Almost all of these applications include applying different kinds

of image filters.

Image filters are of different kinds, with respect their nature of processing or mathematical model.

The execution time of any image filter is a very important aspect, which specifies whether the

filter is acceptable for an application with respect to its acceptable execution performance in a

given environment. E.g. The exaction time of any image filter, clearly specifies, whether the filter

can be used for pre-processing or post-processing. Oil Paint is one of the very popular linear

Signal & Image Processing : An International Journal (SIPIJ) Vol.5, No.2, April 2014

96

image filters, which is very heavy in terms of execution time. The due course of this paper

portrays the investigation of the performance of oil paint image filter.

3. INVESTIGATION METHOD

A simple Win32 windows application is developed for simulation to analyse different types of

image filters. The purpose of this windows application is to accept different JPG image files as an

input, and apply different kinds of image filters on to it. In the process of applying image filters

the application keeps log of processing time. The overall operation of the application is explained

here.

3.1. Operational Overview

The application is realised with two primary inputs: input jpg image files and configuration of

image filter parameters. The application is designed with three major components: user interface

(UI), jpeg image encoder-decoder and image filter algorithm.

The UI is developed using Microsoft’s Win32 APIs. For this sub-module I have written

approximately 300 LOC in C.

The image encoder and decoder component is designed with WIC (Windows Imaging

Component), provided by Microsoft and developed with approximately 100 LOC in C.

The following flowchart diagram shows the operational overview of the test environment. During

this process of testing, the processing time is logged and analysed for the study. The Oil paint

image filter algorithm is developed using the approach as mentioned in reference [3]. This

algorithm and its subsequent improvements are in developed with C language, in approximated

300 LOC.

Start
Wait for User

Input

Is input image

available? No

Decode Image.

Yes

Is input configuration
for image filter

available?

Show User

Interface

Display Image on

User Interface
Wait for User Input

No

Apply Image Filter

Yes

Update log file with

processing time
Encode output Image.

Display Image on

User Interface
End

Signal & Image Processing : An International Journal (SIPIJ) Vol.5, No.2, April 2014

97

3.2. Implementation Overview

Considering the above workflow diagram, main focus of the current study is done with the

application of image filter (marked as “Apply Image Filter” operation). Other operations are

considered to be well known and do not affect the study. The code snippet below will provide the

clear view of implementation. The user interface can be designed in various ways; even this

experiment can be performed without a GUI also. That is why the main operational point of

interests can be realized with the following way.

Decoder

The interface for decoding is exposed as shown here.

/* ***
 * Function Name : Decode
 * Description: The function decodes an image file and gets the decoded buffer.
 *
 * ***/
HRESULT Decode(LPCWSTR imageFilename, PUINT pWidth, PUINT pHeight, PBYTE* ppDecodedBuffer, PUINT pStride,
PUINT pBufferSize, WICPixelFormatGUID* pWicPixelFormatGUID);

The implementation of the decoder interface is provided here.

HRESULT Decode(LPCWSTR imageFilename, PUINT pWidth, PUINT pHeight, PBYTE* ppDecodedBuffer, PUINT pStride,
PUINT pBufferSize, WICPixelFormatGUID* pWicPixelFormatGUID)
{
 HRESULT hr = S_OK;
 UINT frameCount = 0;
 IWICImagingFactory *pFactory = NULL;
 IWICBitmapDecoder *pBitmapJpgDecoder = NULL;
 IWICBitmapFrameDecode *pBitmapFrameDecode = NULL;

 do
 {
 /* Create Imaging Factory */
 BREAK_IF_FAILED(CoCreateInstance(CLSID_WICImagingFactory, NULL, CLSCTX_INPROC_SERVER,

IID_IWICImagingFactory, (LPVOID*)&pFactory))

 /* Create Imaging Decoder for JPG File */
 BREAK_IF_FAILED(pFactory->CreateDecoderFromFilename(imageFilename, NULL, GENERIC_READ,
 WICDecodeMetadataCacheOnDemand, &pBitmapJpgDecoder))

 /* Get decoded frame & its related information from Imaging Decoder for JPG File */
 BREAK_IF_FAILED(pBitmapJpgDecoder->GetFrameCount(&frameCount))

 BREAK_IF_FAILED(pBitmapJpgDecoder->GetFrame(0, &pBitmapFrameDecode))

 /* Get Width and Height of the Frame */
 BREAK_IF_FAILED(pBitmapFrameDecode->GetSize(pWidth, pHeight))

 /* Get Pixel format and accordingly allocate memory for decoded frame */
 BREAK_IF_FAILED(pBitmapFrameDecode->GetPixelFormat(pWicPixelFormatGUID))

 *ppDecodedBuffer = allocateBuffer(pWicPixelFormatGUID, *pWidth, *pHeight,

pBufferSize, pStride))
 if(*ppDecodedBuffer == NULL) break;

 /* Get decoded frame */
 BREAK_IF_FAILED(pBitmapFrameDecode->CopyPixels(NULL, *pStride,

*pBufferSize, *ppDecodedBuffer))

 }while(false);

 if(NULL != pBitmapFrameDecode) pBitmapFrameDecode->Release();
 if(NULL != pBitmapJpgDecoder) pBitmapJpgDecoder->Release();
 if(NULL != pFactory) pFactory->Release();

 return hr;
}

Decoder Apply Image

Filter
Encoder

Decoded

Buffer
Processed

Buffer Image

Files

Image

Files

Signal & Image Processing : An International Journal (SIPIJ) Vol.5, No.2, April 2014

98

Encoder

The interface for encoding is exposed as shown here.

/* ***
 * Function Name : Encode
 *
 * Description: The function encodes a decoded buffer into an image file.
 *
 * ***/
HRESULT Encode(LPCWSTR outFilename, UINT imageWidth, UINT imageHeight, PBYTE pDecodedBuffer, UINT cbStride,
UINT cbBbufferSize, WICPixelFormatGUID* pWicPixelFormatGUID);

The implementation of the encoder interface is provided here.

HRESULT Encode(LPCWSTR outFilename, UINT imageWidth, UINT imageHeight, PBYTE pDecodedBuffer, UINT cbStride,
UINT

cbBbufferSize, WICPixelFormatGUID* pWicPixelFormatGUID)
{
 HRESULT hr = S_OK;
 UINT frameCount = 0;
 IWICImagingFactory *pFactory = NULL;
 IWICBitmapEncoder *pBitmapJpgEncoder = NULL;
 IWICBitmapFrameEncode *pBitmapFrameEncode = NULL;
 IWICStream *pJpgFileStream = NULL;

 do
 {
 /* Create Imaging Factory */
 BREAK_IF_FAILED(CoCreateInstance(CLSID_WICImagingFactory, NULL, CLSCTX_INPROC_SERVER,
 IID_IWICImagingFactory, (LPVOID*)&pFactory))

 /* Create & Initialize Stream for an output JPG file */
 BREAK_IF_FAILED(pFactory->CreateStream(&pJpgFileStream))

 BREAK_IF_FAILED(pJpgFileStream->InitializeFromFilename(outFilename, GENERIC_WRITE))

 /* Create & Initialize Imaging Encoder */
 BREAK_IF_FAILED(pFactory->CreateEncoder(GUID_ContainerFormatJpeg,
 &GUID_VendorMicrosoft,
 &pBitmapJpgEncoder))

 /* Initialize a JPG Encoder */
 BREAK_IF_FAILED(pBitmapJpgEncoder->Initialize(pJpgFileStream, WICBitmapEncoderNoCache))

 /* Create & initialize a JPG Encoded frame */
 BREAK_IF_FAILED(pBitmapJpgEncoder->CreateNewFrame(&pBitmapFrameEncode, NULL))
 BREAK_IF_FAILED(pBitmapFrameEncode->Initialize(NULL))

 /* Update the pixel information */
 BREAK_IF_FAILED(pBitmapFrameEncode->SetPixelFormat(pWicPixelFormatGUID))
 BREAK_IF_FAILED(pBitmapFrameEncode->SetSize(imageWidth, imageHeight))
 BREAK_IF_FAILED(pBitmapFrameEncode->WritePixels(imageHeight, cbStride,

 cbBbufferSize, pDecodedBuffer))

 BREAK_IF_FAILED(pBitmapFrameEncode->Commit())
 BREAK_IF_FAILED(pBitmapJpgEncoder->Commit())

 }while(false);

 if(NULL != pJpgFileStream) pJpgFileStream->Release();
 if(NULL != pBitmapFrameEncode) pBitmapFrameEncode->Release();
 if(NULL != pBitmapJpgEncoder) pBitmapJpgEncoder->Release();
 if(NULL != pFactory) pFactory->Release();

 return hr;
}

Signal & Image Processing : An International Journal (SIPIJ) Vol.5, No.2, April 2014

99

/* ***
 * Utility Macros
 * ***/
#define BREAK_IF_FAILED(X) hr = X; \
 if(FAILED(hr)) { break; } \

Application of Image Filter

The image processing algorithm is the subject of study in current experiment. Details of the

algorithms are explained later. Following code snippet used to capture performances for any

simple filter (e.g. oil paint).

HRESULT ApplyOilPaintOnFile (LPCWSTR inImageFile, LPCWSTR outImageFile)
{

 HRESULT hr = S_OK;
 PBYTE pDecodedBuffer = NULL;
 PBYTE pOutputBuffer = NULL;
 UINT decodedBufferLen = 0;
 UINT inImageWidth = 0;
 UINT inImageHeight = 0;
 UINT cbStride = 0;
 WICPixelFormatGUID wicPixelFormatGUID;
 DWORD dTimeStart = 0;
 DWORD dTimeDecode = 0;
 DWORD dTimeProcess = 0;
 DWORD dTimeEncode = 0;
 char sMessage[256] = {0};

 do
 {
 /* --------- Decode. --------- */
 dTimeStart = GetTickCount();

 BREAK_IF_FAILED(Decode(inImageFile, &inImageWidth, &inImageHeight, &pDecodedBuffer,
 &cbStride, &decodedBufferLen, &wicPixelFormatGUID))

 dTimeDecode = GetTickCount() - dTimeStart;

 /* Allocate Memory for output. */
 pOutputBuffer = (PBYTE)calloc(sizeof(BYTE), decodedBufferLen);
 if(NULL == pOutputBuffer)
 break;

 /* ------------ Process Image Filter ------------ */
 dTimeStart = GetTickCount();

 BREAK_IF_FAILED(ApplyOilPaintOnBuffer(pDecodedBuffer,

 inImageWidth, inImageHeight, pOutputBuffer))

 dTimeProcess = GetTickCount() - dTimeStart;

 /* --------- Encode --------- */
 dTimeStart = GetTickCount();

 BREAK_IF_FAILED(Encode(outImageFile, inImageWidth, inImageHeight, pOutputBuffer,
 cbStride, decodedBufferLen, &wicPixelFormatGUID))

 dTimeEncode = GetTickCount() - dTimeStart;

 sprintf(sMessage,

"Grey Scale : Width=%d, Height=%d, Time(Decode)=%lu Time(Process)=%lu
Time(Encode)=%lu\r\n",

 inImageWidth, inImageHeight, dTimeDecode, dTimeProcess, dTimeEncode);

Log(sMessage);

 }while(false);

 if(NULL != pDecodedBuffer) free(pDecodedBuffer);
 if(NULL != pOutputBuffer) free(pOutputBuffer);

 return hr;
}

Signal & Image Processing : An International Journal (SIPIJ) Vol.5, No.2, April 2014

100

For time measurement standard windows API GetTickCount is used. This API retrieves the

number of milliseconds that have elapsed since the system was started.

4. OIL PAINT IMAGE FILTER IN RGB COLOUR MODEL

During this study, the input images are considered to be in RGB model. In this model, an image

consists of two dimensional arrays of pixels. Each pixel of a 2D array contains data of red, green

and blue colour channel respectively.

The Image Filters are basically algorithm for changing the values of Red, Green and Blue

component of a pixel to a certain value. Depending upon the amount of access to neighbouring

pixels in spatial domain, the performance of image filters is affected.

Histogram based algorithm for Oil Paint

This approach is mentioned in the reference [3]. For pixel at position (x, y), find the most

frequently occurring intensity value in its neighbourhood. And set it as the new colour value at

position (x, y).

The intensity (I) of a pixel is calculated by equation I = (R + G + B) / 3. Here R, G & B are Red,

Green and Blue component of a pixel.

The interface for the oil paint algorithm is exposed as follows.

/* ***
 * Function Name : ApplyOilPaintOnBuffer
 * Description: Apply oil paint effect on decoded buffer.
 *
 * ***/
HRESULT ApplyOilPaintOnBuffer(PBYTE pInBuffer, UINT width, UINT height, const UINT intensity_level, const int
radius, PBYTE pOutBuffer);

Just mentioned oil paint algorithm is implemented as follows.

Width

Height

Image represented in the form of 2D

array of pixels of size (Width x Height)

r g b

Image

Filter

Algorithm

R G B

Image represented in the form of 2D

array of pixels of size (Width x Height)

after application of Image Filter

Width

Height

Pixel at (x,y)

If radius is of value ‘R’, then

(2R+1) x (2R +1)

neighbouring pixels are

considered.

Neighbouring pixels are shown

in Grey colour for the pixel at

(x,y) with Radius is 1 as an

example.

240

(x-1, y-1)

240

(x, y-1)

236

(x+1, y-1)

236

(x-1, y)

215

(x, y)

240

(x+1, y)

235

(x-1, y+1)

231

(x, y+1)

218

(x+1, y+1)

1) The right side provides the larger and clear picture of the neighbouring pixels or Radius 1, with respect to

pixel at (x, y). The intensities of the respective pixels are also provided (as an example).

2) The pixels at (x-1, y-1), (x, y-1), (x+1, y) have the maximum occurring intensity i.e. 240.

3) The each colour channel of the pixel at (x, y) is set with an average of each colour channel of 3 pixels
[(x-1, y-1), (x, y-1), (x+1, y)].

Signal & Image Processing : An International Journal (SIPIJ) Vol.5, No.2, April 2014

101

HRESULT ApplyOilPaintOnBuffer(PBYTE pInBuffer, UINT width, UINT height, const UINT intensity_level,
const int radius, PBYTE pOutBuffer)
{
 int index = 0;
 int intensity_count[255] = {0};
 int sumR[255] = {0};
 int sumG[255] = {0};
 int sumB[255] = {0};
 int current_intensity = 0;
 int row,col, x,y;
 BYTE r,g,b;
 int curMax = 0;
 int maxIndex = 0;

 if(NULL == pInBuffer || NULL == pOutBuffer)
 return E_FAIL;

 for(col = radius; col < (height - radius); col++) {
 for(row = radius; row < (width - radius); row++) {
 memset(&intensity_count[0], 0, ARRAYSIZE(intensity_count));
 memset(&sumR[0], 0, ARRAYSIZE(sumR));
 memset(&sumG[0], 0, ARRAYSIZE(sumG));
 memset(&sumB[0], 0, ARRAYSIZE(sumB));

 /* Calculate the highest intensity Neighbouring Pixels. */
 for(y = -radius; y <= radius; y++) {
 for(x = -radius; x <= radius; x++) {
 index = ((col + y) * width * 3) + ((row + x) * 3);

 r = pInBuffer[index + 0];
 g = pInBuffer[index + 1];
 b = pInBuffer[index + 2];

 current_intensity = ((r + g + b) * intensity_level/3.0)/255;
 intensity_count[current_intensity]++;

 sumR[current_intensity] += r;
 sumG[current_intensity] += g;
 sumB[current_intensity] += b;
 }
 }

 index = (col * width * 3) + (row * 3);

 /* The highest intensity neighbouring pixels are averaged out to get the exact color. */
 maxIndex = 0;
 curMax = intensity_count[maxIndex];

 for(int i = 0; i < intensity_level; i++) {
 if(intensity_count[i] > curMax) {
 curMax = intensity_count[i];
 maxIndex = i;
 }
 }

 if(curMax > 0) {
 pOutBuffer[index + 0] = sumR[maxIndex]/curMax;
 pOutBuffer[index + 1] = sumG[maxIndex]/curMax;
 pOutBuffer[index + 2] = sumB[maxIndex]/curMax;
 }

}
 }

 return S_OK;
}

Experimental Results

The experimental is conducted with images of different size and application of oil paint with

different radius. The following data shows the time of execution with different parameters.

Signal & Image Processing : An International Journal (SIPIJ) Vol.5, No.2, April 2014

102

Input image of VGA (640x480) resolution.

The image is resized for the purpose of

documentation only.

After application of oil paint algorithm with

radius of 2. Output image resolution is VGA

640x480. The image is resized for the

purpose of documentation only.

Signal & Image Processing : An International Journal (SIPIJ) Vol.5, No.2, April 2014

103

After application of oil paint algorithm with

radius of 4. Output image resolution is VGA

640x480. The image is resized for the

purpose of documentation only.

After application of oil paint algorithm with

radius of 6. Output image resolution is VGA

640x480. The image is resized for the

purpose of documentation only.

After application of oil paint algorithm with

radius of 8. Output image resolution is VGA

640x480. The image is resized for the

purpose of documentation only.

In due course of our investigation, I have observed that the performance of oil paint image filter

increases in greater degree with increasing width, height and radius (i.e. usage of neighbouring

pixel).

More importantly, I have observed most of the high resolution images are captured by more

powerful camera. For these kinds of higher resolution photos, kernel size needs to be increased to

generate Oil Paint effect of an acceptable quality

.

Signal & Image Processing : An International Journal (SIPIJ) Vol.5, No.2, April 2014

104

5. OIL PAINT IMAGE FILTER BY PARALLEL ALGORITHM APPROACH

I tried to improve the oil paint algorithm by Parallel Algorithm approach. I have used Microsoft

Parallel Patterns Library for this purpose.

Parallel Patterns Library

The Parallel Patterns Library (PPL) is a Microsoft library designed for use by native C++

developers. PPL provides an imperative programming model that promotes scalability and ease-

of-use for developing concurrent applications. The PPL builds on the scheduling and resource

management components of the Concurrency Runtime. It raises the level of abstraction between

your application code and the underlying threading mechanism by providing generic, type-safe

algorithms and containers that act on data in parallel.

The PPL provides the following features:

1) Task Parallelism: a mechanism to execute several work items (tasks) in parallel

2) Parallel algorithms: generic algorithms that act on collections of data in parallel

3) Parallel containers and objects: generic container types that provide safe concurrent access to

their elements

Following code snippet will provide clear picture of the implementation using Microsoft PPL.

HRESULT ApplyOilPaintOnBuffer(PBYTE pInBuffer, UINT width, UINT height, const UINT intensity_level, const int
radius, PBYTE pOutBuffer)
{
 int tStart = radius;
 int tEnd =(height - radius);

 if(NULL == pInBuffer || NULL == pOutBuffer)
 return E_FAIL;

 parallel_for(tStart, tEnd, [&pInBuffer, &width, &height, &intensity_level, &radius, &pOutBuffer]
 (int col){
 int index = 0;
 int intensity_count[255] = {0};
 int sumR[255] = {0};
 int sumG[255] = {0};
 int sumB[255] = {0};
 int current_intensity = 0;
 int row,x,y;
 BYTE r,g,b;
 int curMax = 0;
 int maxIndex = 0;

 for(row = radius; row < (width - radius); row++)
 {
 /* This portion of the code remains same, as mentioned above */
 }

 });

 return S_OK;
}

Experimental Results

The experiment is conducted with same set of images, used for the experiment, mentioned in the

section above. Better execution performance is achieved with same quality, achieved in the

previous stage of experiment.

Signal & Image Processing : An International Journal (SIPIJ) Vol.5, No.2, April 2014

105

6. COMPARATIVE ANALYSIS OF BOTH APPROACHES

The improvement of the performance in terms of percentage is deduced as [100 * (T1 – T2)/ t1],

where T1 is time required for processing by 1
st
 approach and T2 is the time required for

processing time by latest approach.

Size Radius T1 T2
Improvement

(%)

VGA(640x480) 2 218 94 56.88073394

VGA(640x480) 4 531 156 70.62146893

VGA(640x480) 6 1046 281 73.13575526

VGA(640x480) 8 1685 483 71.33531157

SVGA(800x600) 2 297 78 73.73737374

SVGA(800x600) 4 826 234 71.67070218

SVGA(800x600) 6 1606 452 71.85554172

SVGA(800x600) 8 2652 734 72.32277526

XGA(1024x768) 2 499 140 71.94388778

XGA(1024x768) 4 1326 375 71.71945701

XGA(1024x768) 6 2621 733 72.03357497

XGA(1024x768) 8 4383 1248 71.52635181

FHD(1920x1080) 2 1466 343 76.60300136

FHD(1920x1080) 4 3526 967 72.57515598

FHD(1920x1080) 6 7020 1935 72.43589744

FHD(1920x1080) 8 11716 3261 72.16626835

WQXGA(2560x1600) 2 2559 686 73.19265338

WQXGA(2560x1600) 4 6973 1872 73.15359243

WQXGA(2560x1600) 6 14008 3915 72.05168475

WQXGA(2560x1600) 8 23229 6490 72.06078609

Signal & Image Processing : An International Journal (SIPIJ) Vol.5, No.2, April 2014

106

CPU & Thread Usage:

I have used ‘Microsoft Resource Monitor’ tool to analyse the CPU and Thread utilization of the

system.

The application process is run and killed several times to find the average usage. This data is very likely to

vary between various systems.

1) When PPL isn’t used, minimum approximate CPU and Thread usage captured as 0.08 & 2

2) When PPL isn’t used, maximum approximate CPU and Thread usage captured as 12.0 & 20

3) When PPL is used, minimum approximate CPU and Thread usage captured as 0.08 & 8

4) When PPL is used, maximum approximate CPU and Thread usage captured as 98 & 36

7. REFERENCES STUDIED

From reference [3] the histogram based oil paint image filter algorithm has been studied. The

algorithm (mentioned in reference [3], section ‘Oil-paint Effect’) is implemented, as explained in

the section 4 of this paper. The achieved performance of the algorithm is examined and captured

in the section 4 (sub-section: Experimental Result) here. The result shows high growth of the

processing time with respect to kernel-size. Reference [4] is another reference, where algorithm

similar reference [3] is proposed for implementation. The reference [1] and [2] are used for way

of analysis and follow the broadened scope in this arena of image processing. Reference [5] also

proposes algorithm which are similar in nature with reference [3]. So we can clearly depict

algorithms similar to reference [3] and [5], will face similar performance problem.

8. CONCLUSIONS

As in section 4 & 7, obtained result depicts huge growth in processing time with respect to the

increase in kernel size. The current paper conducts study on improving execution time of oil paint

image filter algorithm using the Microsoft technology.

As shown in section 6, I conclude Microsoft Parallel Pattern library yielded 71.6% (average)

performance improvement for Oil Paint Algorithm in given environment.

Applicability:

There are various similar image filter algorithm, where processing depends on neighbouring

pixels. The image filters, face similar performance issues, as oil paint. The approach mentioned in

this paper can be applied for similar issues.

Signal & Image Processing : An International Journal (SIPIJ) Vol.5, No.2, April 2014

107

In future, more well-known or new techniques in conjunction with the current idea can be used

for betterment. Not only in image processing in other dimensions of signal processing as well

similar approach can be tried.

Limitations and Areas of improvement:

The library for parallel execution depends on multi-core processing architecture. The result may

differ on different processing architecture. More importantly, parallel pattern library may not be

available for various operating systems (mainly, embedded devices). In those areas, the current

approach may not be effective. Other programming techniques can be incorporated in those areas.

ACKNOWLEDGEMENTS

I thank my organization to provide me the opportunity for conducting this research!

REFERENCES

[1] Dr.G.Padmavathi, Dr.P.Subashini, Mr.M.Muthu Kumar and Suresh Kumar Thakur (2009)

“Performance analysis of Non Linear Filtering Algorithms for underwater images”, (IJCSIS)

International Journal of Computer Science and Information Security. Vol.6, No. 2, 2009

[2] Aaron Hertzmann (1998) “Painterly rendering with curved brush strokes of multiple sizes”,

Proceedings of the 25th annual conference on Computer graphics and interactive techniques. Pages

453-460

[3] Feng Xiao (2000) “Oil-paint Effect”. Spring 2000/EE368 Course Project.

[4] Oil Paint Algorithm [http://supercomputingblog.com/graphics/oil-painting-algorithm/]

[5] P. S. Grover, Priti Sehgal (2004) “A Proposed Glass-Painting Filter”. University of Delhi

/icvgip/2004 / proceedings /cg1.1_109

[6] Parallel Patterns Library (PPL) [http://en.wikipedia.org/wiki/Parallel_Patterns_Library]

Authors

Siddhartha Mukherjee is a B.Tech (Computer Science and Engineering)

from RCC Institute of Information Technology, Kolkata. Siddhartha is

currently working as a Technical Manager in Samsung R&D Institute,

India- Bangalore. Siddhartha has almost 10 years of working experience in

software development. He has previously worked with Wipro

Technologies. He has been contributing for various technical papers &

innovations at different forums in Wipro and Samsung. His main area of

work is mobile application developments.

