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ABSTRACT 

 
In this contribution, we develop a novel global threshold-based active contour model. This model deploys a new 

edge-stopping function to control the direction of the evolution and to stop the evolving contour at weak or 

blurred edges.  An implementation of the model requires the use of selective binary and Gaussian filtering 

regularized level set (SBGFRLS) method. The method uses either a selective local or global segmentation 

property. It penalizes the level set function to force it to become a binary function. This procedure is followed by 

using a regularisation Gaussian. The Gaussian filters smooth the level set function and stabilises the evolution 

process.  One of the merits of our proposed model stems from the ability to initialise the contour anywhere inside 

the image to extract object boundaries. The proposed method is found to perform well, notably when the 

intensities inside and outside the object are homogenous. Our method is applied with satisfactory results on 

various types of images, including synthetic, medical and Arabic-characters images.  
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1. INTRODUCTION 

Active contour model (ACM) signifies one of the most successful techniques in dealing 

with image segmentation problems. The idea behind the ACM is to evolve a curve or a 

surface defined within an image from some arbitrary initial shape towards its interior normal 

direction and stop it on the object boundary [1]. The parametric curve is linked with an energy 

function. During the deformation, the curve tries to minimize its energy so that the final curve 

possesses a local minimum when the contour is spatially aligned with the shape or the desired 

image features. Thus the problem of segmentation is reduced to an energy minimization 

problem [2].  

In order to locate the desired image features, parametric curves are initialized close to the 

desired feature and are forced to move toward the local minimum that is located on the desired 

features under the influence of internal and external forces. The internal forces are defined 

within the curve or surface to keep the model smooth during the deformation. The external 
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forces are derived from the image data to move the curve toward the object boundary or the 

desired features within an image.  

Owing to its flexibility in allowing topological changes, the level set method has been 

extensively utilized in problems such as curve evolution, especially the curve motion by mean 

curvature as described by Osher and Sethian [3]. In the level set method, the evolution curve is 

represented implicitly via a Lipchitz functionφ , as {( , ) | ( , ) =0}C x y x yφ= . The zero level set 

of the function ( , , )t x yφ  represents the evolution curve C  at time t . The evolution of the 

curve C  in a normal direction with speed F  is obtained by solving the equation: 

 

 

 

 

where{( , ) | ( , ) =0}x y x yφ  represents the initial contour. The geodesic active contour models 

[4, 5] utilize the image gradient in order to construct an edge detector function. The objective 

of this function is to stop the contour evolution on the object boundary. The general edge 

detector function can be defined by a positive and decreasing function such as: 

 

 

where 0u is a given image in Ω  and 0*G uσ denotes a smooth version of 0u after convolving it 

with the Gaussian function. The values of 0( )g u∇  function will be positive in the homogenous 

regions and zero on the object boundary. A particular case is the motion by mean curvature in 

which ( ( , )/ | ( , ) |)F div x y x yφ φ= ∇ ∇ . Malladi et al. [6] proposed the following level set 

equation: 
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where v  is a constant, and m1 and m2 are the maximum and minimum values of the image 

gradient 0*G uσ∇ , respectively. The evolving curve stops at the boundary, i.e., points with 

the highest gradient. Caselles et al. [5] proposed a Geometric Active Contour model (GAC) 

based on the mean curvature motion: 

 

 

where v  is a constant. In GAC the curve moves in the normal direction with a speed equal to

(| |)( ( / | |) + )og u div vφ φ∇ ∇ ∇ . The curve will stop the evolution when the function g vanishes.  

All the above ACMs are termed as edge-based models [7-10] because they utilize the image 

gradient as stopping criterion for the evolving curve. Edge-based models do not perform well 

in the presence of noise and in images with weak edges or without edges. In the case of a 

discrete gradient, the curve may pass through the edges because the function 0( )g u∇  never 
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approaches zero at these points. These models possess a local segmentation property. They are 

sensitive to the position of the initial contour as they are prone to the local minima and can 
only segment the desired object with a proper initial contour. As a result, these models fail to 

detect the boundaries when the initial contour is far from the boundary of the desired object. 

They also cannot detect the interior boundary without setting a proper initial contour inside the 
desired object. 

Region-based models represent another category of ACMs [11-16]. These models deploy 

statistical information inside and outside the contour in order to control its evolution. Region-

based models are less sensitive to the position of the initial contour.   They perform well in 

the presence of noise and on images with weak edges or without edges. These models have a 

global segmentation property and can detect the interior and exterior boundaries at the same 

time, regardless of the position of the initial contour in the image. Chan and Vese [11] 

proposed a widely used region-based model, namely the CV model. Zhang et al. [12] 

proposed a ZAC model which uses statistical information inside and outside the contour to 
formulate the signed pressure force when evolving the contour. This paper proposes an improved 

ZAC model which can perform well when the edge is weak or blurred.  

This paper is organized as follows: Section 2 reviews the CV model [11]. Section 3 reviews 
the ZAC model [12]. Section 4 describes our methodology. Section 5 shows some experimental 

results and finally the conclusion is made in Section 6. 

2. THE CV MODEL 

The CV model is based on the Mumford–Shah segmentation technique [13]. It has been 

successfully implemented in binary phase segmentation. The CV model uses the statistical  

information  inside  and  outside  the  contour  with  the  aim  of  controlling  the evolution. 

The CV model is formulated by minimizing the equation: 
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average intensities inside and outside the curve C , respectively. With the level set method, 
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where ( )H φ  refers to the Heaviside function and ( )δ φ  is the Dirac function. The regularization 

version of H and δ  that were implemented in the C-V model are: 

 

 

The corresponding variation level set formulation is then: 

 

 

where µ controls the curve smoothness during the deformation, v  is a constant to increase the 

propagation speed, and 1λ  and 2λ control the image forces inside and outside the contour C , 

respectively. The values of ( )zεδ  tend to be near zero, if ε  is too small. In this case, 

extraction of the desired object may fail if the initial contour starts far from the desired 

object. The final contour location may not be accurate if ε  is large [12].  

3. THE ZAC MODEL 

Zhang et al. [12] proposed a novel level set method termed as selective binary and Gaussian 

filtering regularized level set (SBGFRLS). This approach selectively penalizes the level set 

function to be a binary function. This is followed by using a Gaussian function to regularize it. 

The Gaussian filters smooth the level set function and afford the evolution more stability. 

SBGFRLS model reduces the computational cost of the re-initialization step which in turn 

makes it more efficient than the traditional level set methods [17].  

It is worthwhile mentioning that the SBGFRLS method has the advantage of being a general and 

robust technique. It can be applied to the classical ACMs, such as t h e  GAC model [ 4 ]  as 

well as t h e  CV model [11].  

A novel signed pressure force (SPF) [18] is proposed to control the direction of the evolution 

and to stop the evolving contour at weak or blurred edges. Zhang et al.’s model is referred as 

Zhang et al. active contour (ZAC). The ZAC model uses statistical information inside and 

outside the contour to formulate the SPF. The proposed SPF function is assigned with values in 

the range [-1, 1]. It modulates the signs of the pressure forces inside and outside the region of 

interest as: 
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The formulation of the level set function in the ZAC model is given as: 

0( ( )). | |,                                                                                                      (10)spf u x x
t

φ
α φ

∂
= ∇ ∈Ω

∂
 

 

The ZAC model utilizes a binary function for the initialization of the level set function φ  

instead of using the signed distance function as in the traditional level set method. The ZAC 

model deploys the image statistical information to stop the curve evolution on the desired 

object boundaries. This makes the ZAC model insensitive to noise and can perform well in the 

case of an object with weak edges or without edges. The ZAC model is capable of 

performing both local and global segmentation, in contrast to the CV model which can only 

handle global segmentation and extracts all the objects. The ZAC model has less 

computational complexity than the GAC and CV models. 

4. THE PROPOSED MODEL 

In this paper, we propose a new edge stopping function that controls the direction of the 

evolution and stops the evolving contour at weak or blurred edges. Our model is implemented 

using the SBGFRLS method, which grants it a selective local or global segmentation property. 

Our model mainly adapts the methodology of the ZAC model [12] yet with improvement. Our 

novel modification stems from utilizing a new function termed the global threshold function 

(GTF) instead of using the SPF as in the original ZAC model. The GTF operates similarly to 

the SPF. Generally, both functions produce similar results. It controls the direction of the 

evolution and stops the evolving contour at weak or blurred edges.  

Our proposed model performs well when the intensities inside and outside the object are 

homogenous and in the binary segmentation phase, in an analogy to the ZAC model. The 

GTF has opposite signs around the object boundary in order to force the contour to shrink 

when it is outside the object and to expand when it is inside the object. The proposed GTF is 

assigned with values in the range [-1, 1] as: 
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>0; otherwise φ = -1. A Gaussian filter is to be used to smooth and regularize the level set 

function.  Finally, the procedure stops upon the convergence of the evolution of the level set 

function. The contour could be initialized anywhere inside the image to extract all exterior and 

interior boundaries, even if the initial contour does not surround all the objects in the image. 

Our model entails all the advantages pertinent to the ZAC model. Our model gives a similar 

result to the ZAC model in less computational time because the values of t  and 0( ( ))gtf u x  

are computed only once. The ZAC model can extract objects with distinctive boundaries while 

interior intensities are not homogeneous. By contrast, our model extracts both the interior and 

exterior boundaries as shown in Figure 6. 

5. EXPERIMENTAL RESULTS 

 

In each experiment, we selected values of ρ , ε , σ , k , and s  to be 1, 1.5, 1, 5 and 1, 

respectively. The values of α and t  were set according to the images. Figure 1 exhibits the 

global segmentation property of the proposed model. The initial contour is initialized far from 

the objects, as shown in the first row of Figure 1. The second row shows the segmentation 

results of our model. Clearly, our model extracts accurately all the objects in the image regardless 

of the position of the initial contour.  

Figure 1. The first row shows the initial contour; the second row shows 
the segmentation results of the proposed method with t corresponding 
to 104, 150, 132 and 138 for the first, second, third and fourth column, 
respectively and α =20.  

Figure 2 exhibits the global segmentation property of the CV model and our proposed model. 

The initial contour is initialized far from the objects, as shown in the first image of Figure 2. 

The middle image shows the segmentation results of the CV model. As is displayed, the CV 

model fails to extract all the objects in the image. The third image shows the segmentation 

result of our model. Clearly, our model extracts accurately all the objects in the image regardless 

of the position of the initial contour, while the CV model may be trapped into the local minima 

resulting in unsatisfactory segmentation. 
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Figure 2. Comparisons of the global property between the CV model 
and the proposed method. The first image shows the initial contour; the 
middle image shows the segmentation results of the CV method; and 
the third image shows the result of the proposed method with t = 172 
and α =20.  

Figure 3 presents segmentation results of the CV model and the proposed model in a magnetic 

resonance image of the left ventricle of a human heart. In an analogy to the ZAC model, our 

model also can selectively extract the desired object by setting the initial contour inside or 

surrounding the desired boundaries, while the CV model will extract all the objects. Furthermore, 

the evolution direction in our model can be controlled to obtain satisfactory segmentation results, 

while the CV model may obtain disordered results. 

 

 

 

 

 

 
 

Figure 3. Segmentation results for a magnetic resonance image of the 
left ventricle of a human heart. The first image shows the initial 
contour; the middle image shows the segmentation results of the CV 
model; and the third image shows the result of the proposed model with 
t=111 and α =5. 

Figure 4 shows the local segmentation property of the proposed model. The 
initial contour resides near or surrounding the desired objects, as shown in the 
first row of Figure 4. The second row shows the segmentation results of our 
proposed model. 
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Figure 4. Segmentation results of the proposed model. The first row 

shows the initial contours; the second row shows the segmentation 

results of the proposed method. t equals to 157, 155,138 for the first, 

second and third column, respectively and α =20.   

Figure 5 shows the global segmentation results by the proposed model for noisy images. As it can 

be seen, despite of the presence of significant noise inherit in the image, our model performs well in 

detecting the desired object boundary. 

 

 

 

 

 

Figure 5. Global segmentation results for a noisy image. The lef t  

image shows the initial contour; the right image shows the 

segmentation result of the proposed method with t  =125 and α =10.  

Figure 6 shows the local segmentation property of the ZAC model and the proposed model. As 

shown in Figure 6, the ZAC model extracts objects with distinct boundaries whereas the interior 

intensities are not homogeneous.  On the contrary, our model extracts the interior and the exterior 

boundaries. This represents the main shortcoming of our propose model. 
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Figure 6.  Local segmentation results for a real microscope cell image. 

The first image shows the initial contour; the middle image shows the 

segmentation results of the ZAC method; and the third image shows the 

result of the proposed method with t=94. The original image is sourced 

from Zhang et al. [12]. 

Figure 7 exhibits the performance of our proposed method in the case of Arabic-characters 

segmentation. As shown in this figure, our proposed model attains satisfactory segmentation 

results. 

 

 

 

 

Figure 7. The left image shows the initial contour; the right image 

shows the segmentation results of the proposed method with t = 120 

and α =20. 

6. CONCLUSIONS 

 

A novel global threshold-based active contour model with a new edge-stopping function has 

been presented. The main merits of this approach consist of its ability to control the direction of 

the evolving contour and to stop it on the weak or blurred edges. Our model is implemented 

using the SBGFRLS method. We tested this method on several categories of images including 

synthetic, medical and Arabic-characters where a satisfactory performance was attained. 
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