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ABSTRACT 

 
Segmentation of organs from medical images is an active and interesting area of research. Liver 

segmentation incurs more challenges and difficulties compared with segmentation of other organs. In this 

paper we demonstrate a liver segmentation method for computer tomography images. We revisit the 

distance regularization level set (DRLS) model by deploying new balloon forces. These forces control the 

direction of the evolution and slow down the evolution process in regions that are associated with weak or 

without edges. The newly added balloon forces discourage the evolving contour from exceeding the liver 

boundary or leaking at a region that is associated with a weak edge, or does not have an edge. Our 

experimental results confirm that the method yields a satisfactory overall segmentation outcome. 

Comparing with the original DRLS model, our model is proven to be more effective in handling over-

segmentation problems. 
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1. INTRODUCTION 

 

Human liver constitutes one of the most prominent organs. The liver is one of the most important 

organs in the human body. The liver is located in the upper right quadrant of the abdominal 

cavity and is the largest organ in the body. The liver has a weight of about 2% or 3% to the total 

body weight [1]. The liver is an unshaped organ since its shape is mainly determined by the 

surrounding structures such as the lower ribs and the diaphragm. The liver can be small and only 

located in the right half part of the abdomen or extend all to the left and cover the spleen [2].  

 

The volume of a healthy liver correlates to the individually required organ functions when a liver 

grows during childhood and adolescence; it adapts to the needs and increases in size. Later, when 

an adult gains or loses weight, the organ will also change to match the new metabolic demand. It 

performs several key functions in the human body.  Beside its main purpose as a filter for blood 

and a store for minerals and vitamins, other duties of the liver include separating bile and 
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proteins, processing of sugar and decompositions of medications. Unfortunately, the liver is 

prone to many life-threatening diseases, most notably, hepatitis C, cirrhosis, and cancer.  

 

During the last few years, computer-aided surgical planning systems (CAD) have contributed 

significantly in diagnosing and treatment of liver diseases[3]. These cutting-edge methods portray 

the structure of liver and its vessels often in the form of 3D visualizations, provide insights into 

surgical simulations with cutting guidelines. This in turn leads to a significantly shorter planning 

time. On this regard, accurate segmentation of a liver from its surrounding organs in compute 

tomography (CT) images represents one of the most daunting tasks. 

 

Developing an effective method to segment liver from CT images is a daunting task. This is 

primarily due to the very similar intensity values between the liver and its adjacent organs, the 

complexity in the geometrical structure of the liver, significant variations in shape and volume of 

liver between individuals, and the injection of contrast media. Several artefacts of pulsation and 

motion, and partial volume effects also contribute the difficulties encountered in carrying out 

automatic liver segmentation in CT images. It follows that liver segmentation from medical 

images is an active area of research. 

 

 Methods and approaches utilized in liver segmentation in the CT images are generally 

categorized into two main classes: semiautomatic and fully automatic liver segmentation 

methods. Semi-automatic liver segmentation methods entail a rather limited user intervention to 

complete the task. This intervention may vary from a manual selection for seed points to a 

manual refinement of a binary mask for the liver. The term “fully automated” denotes a liver 

segmentation process that is implemented without any intervention by an operator. This property 

is regarded as a benefit of fully automated methods as it saves processing times and causes results 

to be free from any errors and biases that may be introduced by the intervention of the user.   

 

Herein, we survey recent advances in methods used in liver segmentation. These methods fall in 

three main categories; namely, gray level based methods, model based methods, and texture 

based methods [4]. It is apparent that each category of liver segmentation methods has its own 

advantages and shortcomings. It follows that some methods may perform well in certain 

applications while fail poorly on other cases.  

 

The gray level based methods [5-15] deploy features from an image directly. Consequently, gray 

level based methods are widely used in liver segmentation. These methods rely mainly on the 

evolution of gray level toward targets.  Whilst gray level methods are generally fast, the presence 

of changes in gray level intensity of targets may affect their performance. Despite of using prior 

knowledge, success of gray level methods is significantly hindered if the liver occupies a small 

percentage of the image. Gray level is applied either manually or via an automatic rough 

segmentation. The purpose of these two procedures is to gather information germane to the gray 

level. The profound reliability of these methods is often over shadowed by their time-expensive 

nature. In most cases, gray level methods necessitate substantial computational time.  

 

Several gray level based methods utilises gradient information as a well-defined approach to deal 

with image boundaries. However, this approach becomes impractical upon the presence of 

numerous boundaries.  Under these conditions, gray level based methods may readily converge to 

wrong boundaries, resulting in over- or under segmentation.  This could be corrected by refining 

the results through manual work or via the implementation of other methods. 
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On the contrary, structure based methods [16-20] can generally handle cases with unclear liver 

boundaries by utilising prior knowledge.  Structure based methods can carry out tasks that could 

not be performed by gray level based methods.  However, these methods involve a great deal of 

training data to cover all plausible conditions of the liver. Applying these methods hold profound 

difficulty when handling non-standard liver’s shapes for the liver. In other words, it is very hard 

to develop a “universal” segmentation model for liver based on structure based methods. 

 

Instead of using gray level or shapes, texture based methods [21-24] utilises pattern recognition 

and machine learning in their search for boundaries. As a result, these methods enable one to 

collectively consider more features. Texture based methods can produce better results even when 

the boundaries of liver are not clear. An accurate account of texture feature represents one of the 

main challenges in these methods, in addition to the need for training data. Furthermore, selecting 

a proper descriptor out of many, poses another problem.  It is worthwhile noting that both 

machine learning and pattern recognition still incur much weak processing ability if compared 

with human brain and they are not able to achieve good segmentation result without the use of 

other refined methods.  

 

In most practical applications, gray level based methods often provide rather good segmentation 

results. Structure based methods are mainly based on the shape of the object, a characteristic 

affording them powerful performance. Methods that use texture properties work to simulate 

processes in human’s brain. On the other hand, level set methods have been widely used in 

segmentation of medical images [25-27]. Despite of their wide and effective uses, successful 

application of level set relies heavily on the initial position.  

 

Level set methods generally attain satisfactory if the initial contour is positioned near the target. 

3D liver segmentation methods can be grouped into two classes, namely, direct 3D segmentation 

and propagation of the 2D slice-based segmentation.  In the first group, a 3D deformable surface 

is first initialised in multiple 2D slices of the liver. This is followed by automatically updating the 

initial 3D mesh by means of forces characterized by the image gradient and the smoothness of the 

contour. As a result, direct 3D segmentation is time consuming and requires many user 

interactions. This may render outcomes to be dependent on the user choices.  

 

The second class of 3D liver segmentation stems from the slice-based propagation approach. In 

this method, the 3D CT images are re-sliced into a number of 2D slices. A 2D segmentation is 

applied on each slice that is initialized by a propagated boundary from the previous 2D slice. As 

such, this technique reduces a 3D segmentation problem to a sequence of 2D segmentation 

problems.  Each of the reduced 2D segmentation sub-problems is significantly less sophisticated 

than the original 3D segmentation problem. Furthermore, it is computationally less expensive to 

integrate 2D shape information - as a shape constraint - into the 3D segmentation procedure. 

Because the difference between adjacent slices is minimal, the final contour of one slice can 

potentially afford useful information with regard to the initial contour position, prior intensity, 

and shape information.  Acquiring prior knowledge pertinent to these aforementioned factors 

enhances the segmentation performance of the level set method of the following slices.  

 

Our main contribution in this paper is to revisit the distance regularization level set [28] (DRLS) 

model by deploying new balloon forces. These forces control the direction of the evolution and 

slow down the evolution process in regions that are associated with weak or without edges. We 

organise this contribution as follows, in Section 2 we present the DRLS model. Section 3 
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demonstrates our adapted theoretical approach. Section 4 depicts selected experimental results, 

and finally concluding remarks are presented in Section 5. 

 

2. DISTANCE REGULARIZED LEVEL SET METHOD 

 

Li et al. [28] proposed a level set method termed as Distance Regularized Level Set (DRLS) 

model. The DRLS model uses an edge-based active contour method to drive the level set function 

(LSF) to the desired boundary, and provides a simple and efficient narrowband implementation 

without re-initialization.  

 

Let :φ Ω →ℜ  be a level set function defined on domain Ω . An energy function ( )ε φ  is defined 

as: 

 

( ) ( ) ( )                                                                                                               (1)p extRε φ β φ ε φ= +  

 

where 0β >  is a constant and ( )pR φ is the level set regularization term, defined by 

 

( ) ( | |)                                                                                                                 (2)pR p dxφ φ
Ω

= ∇∫  

where p signifies an energy density function :[0, ) ,p ∞ → ℜ  defined as  

 

 
The minimization of the energy ( )ε φ can be achieved by solving a level set evolution equation. 

For a LSF, an external energy function is defined by  

 

( ) ( ) ( ),                                                                                                        (4)ext g gL Aε φ λ φ α φ= +
 

where λ andα  are the coefficient of the length term ( )gL φ and area term ( )gA φ , which is given 

by 

 

( ) ( ) | |                                                                                                                   (5)gL g dxεφ δ φ φ= ∇∫
and 

 

( ) ( )                                                                                                                           (6)gA gH dxφ φ= −∫
 

where [0,1)g ∈ is an edge indicator function given by 
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where Gσ is a Gaussian kernel with a standard deviationσ , and I is the input image. The Dirac 

delta function εδ and Heaviside function Hε  in Eqs. (5) and (6) are approximated by the 

following smooth function εδ  and Hε , respectively, as in many level set methods: 

 

 

and 

 
where ε is a constant, typically set to 1.5.  The length term ( )gL φ  was first introduced by 

Caselles et al. [29] in their proposed geodesic active contour (GAC) model. ( )gL φ  is the line 

integral of the function g along the zero level contour of φ , which is minimized when the zero 

level set of φ  is located at the object boundaries which in turn keeps the curve smooth during the 

deformation.  

 

The area term ( )gA φ  calculates the weighted area inside the evolving contour. It is introduced to 

speed up the motion of the zero level contour when the contour is far away from the desired 

object boundaries and slow down the expanding and shrinking of the zero level contour when it 

arrives at object boundaries where g is smaller. ( )gA φ represents a balloon forces in which the 

sign of α controls the direction of the level set evolution (shrinking or expanding). The level set 

evolution equation in the DRLS model is defined by: 

 

                                                  

.div( ( ) ) ( ). .div ( ). .                                        (10)
| |

pd g g
t

φ φ
β φ φ δ φ λ δ φ α

φ

 ∂ ∇
= ∇ ∇ + + 

∂ ∇ 

The problem with the DRLS model in the case of liver segmentation is that the curve will evolve 

and deviate from the liver boundary in the region with weak or without edges. In this 

contribution, we will modify the distance regularization level set method [28] (DRLSM) by 

adding a new balloon force to guide the evolution process and discourage the evolving contour 

from leaking at a region with a weak or without an edges and from going far from the liver 

boundary. 
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3. THE PROPOSED MODEL 

 

In this paper, we propose a new balloon force that controls the direction of the evolution and 

slows down the evolving contour at weak or blurred edges. Since the liver has a very similar 

intensity with its adjacent organs, this could easily result in over and/or under segmentation 

results. The DRLS model does not perform well with liver segmentation.  

We will modify the DRLS model to segment the liver contour in each 2D slice by using a new 

balloon force that controls the direction of the evolution and slows down the evolution process in 

the region with weak or without edges, which subsequently discourage the evolving contour from 

leaking at a region with a weak or without an edge and from deviating from the liver boundary. 

Our balloon term will be built using the probability density function. The methodology 

encompasses steps described in the following sections. 

 

3.1 PRE-PROCESSING 

The intensity distribution of the liver is irregular due to noises, so liver segmentation without pre-

processing is difficult. A smoothing step, in theory, would make the intensity distribution less 

variable. In our work, a Gaussian filter is used as a smoothing step.  

 

3.2 SEGMENTATION OF THE REFERENCE SLICE 

 

This step is the most important step in our 3D liver segmentation method. The segmented liver 

contour will be the initial contour for the adjacent slice so the segmentation result should be 

accurate.  The starting slice or the reference slice can be selected as the middle or the largest slice 

of the liver volume. In this contribution we used the Active Shape Model (ASM) [30] to segment 

the reference slice. 

 

3.3 2D SLICE BASED PROPAGATION APPROACH 

Since the variation of shape and intensity between the adjacent slices are very small we can use 

these information from the previous slice to segment the next slice. In our method we compute 

the mean intensity and the variance  of the segmented slice. According to [31], 

about 98% of liver pixel is located in                   Generating an 

evolution region by expanding the previous segmented slice by a number of pixels and compute 

the probability density function inside this region using the following equations: 

 

21
( )

2
1

,        if [ -3 , 3 ]
( )                                                             (11)2

0,                              otherwise

x

e x
B X

µ

σ µ σ µ σ
σ π

−
−

∈ +
= 



 

We then shrink the previous segmented slice and use it as the initial contour for its adjacent slices 

in both directions.  

 

 

 

µ σ
[ 3 , 3 ].µ σ µ σ− + [ 3 , 3 ].µ σ µ σ− +
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3.4 MODIFIED DRLS MODEL 

Since the liver boundary to be segmented is not far from the contour propagated from the 

previous slice, a shape and intensity prior information will discourage the evolving contour from 

leaking at a region with a weak edge or without an edge. We have modified the DRLSM by 

adding the probability density energy term to the evolution equation and use it as a balloon forces 

to control the direction and the speed of the evolution process 

 

( ) . ( ) . ( ) . ( )                                                                                        (12)P gE R L Bφ ρ φ λ φ α φ= + +

 

where ,   ρ λ and α are the coefficients of the regularization term, the length term, and the 

probability term, respectively. This energy functional can be minimized by solving the following 

gradient flow: 

 

                          .div( ( ) ) ( ). .div ( ). . ( )                                                                      (13)
| |

pd g B
t

ε ε

φ φ
ρ φ φ δ φ λ δ φ α φ

φ

 ∂ ∇
= ∇ ∇ + + 

∂ ∇ 
 

The above procedure is repeated until the contours in all 2D slices of the 3D image are 

segmented. A 3D liver surface is reconstructed from the contours segmented from all 2D slices.  

 

4.  RESULT AND DISCUSSION 

 

In the DRLS model, two segmentation stages are applied. The first stage is for evolving the 

contour in the direction of the object boundary, speeding up the evolution process when the 

evolving contour is far from the object boundary and slowing down the evolution process when 

the evolving contour is close to the object boundary. The second stage concerns with the 

refinement of the segmentation results. In each experiment, we selected values of ρ , λ  and α  

to be 0.02, 5 and -1 for the first stage and 0.02, 5 and 0 for the second stage, respectively. The 

zero level set is initialized as a binary function and evolves according to the evolution equation 

Eq. (13) for our model and Eq. (10) for the DRLS model.  

 

Figure 1 presents segmentation results of the DRLS model and the proposed model in a liver CT 

slice. Our model performs well and gives a satisfactory result comparing to the DRLS model. The 

DRLS model fails to segment the liver boundary and the evolving contour leaks from the region 

with weak edges. Our balloon force slows down the evolution process close to the liver boundary 

and stops the evolving contour from going far in the region with weak or without edges. 

Comparing with the DRLS model, our model is more effective in dealing with over segmentation 

problem. 

 

 

 



Signal & Image Processing : An International Journal (SIPIJ) Vol.6, No.1, February 2015 

8 

   

   

   

   

    

Figure 1. Comparisons of liver segmentation results between the DRLS model and the proposed method. 

The first column shows the liver slice in a CT scan; the second column shows the evolving region in green 

and the initial contour in red. The third column shows the ground truth segmented manually by a 

radiologist in blue and the final segmentation result of the DRLS model in red and the fourth column shows 

the ground truth segmented manually by the radiologist in blue and the final segmentation result with our 

proposed method in red. 

 

Figure 2 shows some examples of liver extraction results based on our proposed method. We 

tested our model on a liver dataset containing 10 volumes of abdominal CT images. Each volume 

has 64 slices and the size of each slice is 512x512 pixels. Each slice in the dataset is provided 

with corresponding ground truth segmented manually by a radiologist. The model deals very well 

with over segmentation problems. Our model can handle the over segmentation problem very 

well in comparison with the DRLS model that is not able to handle this task well. 
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Figure 2. The experimental result of our proposed method on a sequence of liver slices for one person. The 

green and red colours refer to the ground truth segmented manually by the radiologist and the final 

segmentation result of our proposed method, respectively. 

5. CONCLUSION 

 

In a nutshell, the original DRLS model is modified by adding a novel balloon force. The most 

advantageous feature of our method stems from its ability to guide the direction of the evolving 

contour via several desired approaches. Our model slows down the evolving contour in regions 

with blurred edges and dampens the evolving contour from exceeding boundaries of liver. 

Experimental results have shown that our method produces satisfactory outcome, especially when 

dealing with over-segmentation problems comparing with the DRLS model.  

 

ACKNOWLEDGEMENTS 

 

We would like to acknowledge and extend our gratitudes to the International Conference on 

Signal, Image Processing and Multimedia (SPM-2015) for granting us a permission to publish a 

modified version of the conference paper by Altarawneh et al. [32]. 

 

 

 



Signal & Image Processing : An International Journal (SIPIJ) Vol.6, No.1, February 2015 

10 

REFERENCES 

 

[1] J. E. Skandalakis, L. J. Skandalakis, P. N. Skandalakis, and P. Mirilas, "Hepatic surgical 

anatomy,"Surgical Clinics of North America, vol. 84, pp. 413-435, 2004. 

[2] A. Schenk, "Liver Segmentation and Its Application to Hepatic Interventions," PhD, 2012. 

[3] K. J. Mortelé, V. Cantisani, R. Troisi, B. de Hemptinne, and S. G. Silverman, "Preoperative liver 

donor evaluation: imaging and pitfalls," Liver Transplantation, vol. 9, pp. 6-14, 2003. 

[4] S. Luo, X. Li, and J. Li, "Review on the Methods of Automatic Liver Segmentation from Abdominal 

Images," Journal of Computer and Communications, vol. 2, pp. 1-7, 2014. 

[5] A. Beck and V. Aurich, "Hepatux–a semiautomatic liver segmentation system," 3D Segmentation in 

The Clinic: A Grand Challenge, pp. 225-233, 2007. 

[6] R. Pohle and K. D. Toennies, "Segmentation of medical images using adaptive region growing," 

Medical Imaging vol. 4322, pp. 1337-1346, 2001. 

[7] S. Kumar, R. Moni, and J. Rajeesh, "Automatic liver and lesion segmentation: a primary step in 

diagnosis of liver diseases," Signal, Image and Video Processing, vol. 7, pp. 163-172, 2013. 

[8] C. Platero, J. M. Poncela, P. Gonzalez, M. C. Tobar, J. Sanguino, G. Asensio, et al., "Liver 

segmentation for hepatic lesions detection and characterisation," Biomedical Imaging: From Nano to 

Macro, pp. 13-16, 2008. 

[9] D. A. B. Oliveira, R. Q. Feitosa, and M. M. Correia, "Liver Segmentation using Level Sets and 

Genetic Algorithms," VISAPP vol. 2, pp. 154-159, 2009. 

[10] H. Yang, Y. Wang, J. Yang, and Y. Liu, "A novel graph cuts based liver segmentation method," 

Medical Image Analysis and Clinical Applications (MIACA), pp. 50-53, 2010. 

[11] Y.-W. Chen, K. Tsubokawa, and A. H. Foruzan, "Liver segmentation from low contrast open MR 

scans using k-means clustering and graph-cuts," in Advances in Neural Networks, ed: Springer, 2010, 

pp. 162-169. 

[12] A. H. Foruzan, C. Yen-Wei, R. A. Zoroofi, A. Furukawa, H. Masatoshi, and N. TOMIYAMA, 

"Segmentation of Liver in Low-Contrast Images Using K-Means Clustering and Geodesic Active 

Contour Algorithms," IEICE TRANSACTIONS on Information and Systems, vol. 96, pp. 798-807, 

2013. 

[13] R. Adams and L. Bischof, "Seeded region growing," Pattern Analysis and Machine Intelligence, 

IEEE Transactions on, vol. 16, pp. 641-647, 1994. 

[14] K. Suzuki, R. Kohlbrenner, M. L. Epstein, A. M. Obajuluwa, J. Xu, and M. Hori, "Computer-aided 

measurement of liver volumes in CT by means of geodesic active contour segmentation coupled with 

level-set algorithms," Medical physics, vol. 37, pp. 2159-2166, 2010. 

[15] B. N. Li, C. K. Chui, S. Chang, and S. H. Ong, "Integrating spatial fuzzy clustering with level set 

methods for automated medical image segmentation," Computers in Biology and Medicine, vol. 41, 

pp. 1-10, 2011. 

[16] J. Liu and J. K. Udupa, "Oriented active shape models," Medical Imaging, IEEE Transactions on, vol. 

28, pp. 571-584, 2009. 

[17] T. Heimann, I. Wolf, and H.-P. Meinzer, "Active shape models for a fully automated 3D 

segmentation of the liver–an evaluation on clinical data," in Medical Image Computing and 

Computer-Assisted Intervention–MICCAI ed: Springer, 2006, pp. 41-48. 

[18] M. Erdt, S. Steger, M. Kirschner, and S. Wesarg, "Fast automatic liver segmentation combining 

learned shape priors with observed shape deviation," in Computer-Based Medical Systems (CBMS), 

2010, pp. 249-254. 

[19] H. Badakhshannoory and P. Saeedi, "A model-based validation scheme for organ segmentation in CT 

scan volumes," Biomedical Engineering, IEEE Transactions on, vol. 58, pp. 2681-2693, 2011. 

[20] S. Martin, J. Troccaz, and V. Daanen, "Automated segmentation of the prostate in 3D MR images 

using a probabilistic atlas and a spatially constrained deformable model," Medical physics, vol. 37, 

pp. 1579-1590, 2010. 



Signal & Image Processing : An International Journal (SIPIJ) Vol.6, No.1, February 2015 

11 

[21] W. Huang, Z. Tan, Z. Lin, G. Huang, J. Zhou, C. Chui, et al., "A semi-automatic approach to the 

segmentation of liver parenchyma from 3D CT images with Extreme Learning Machine," 

Engineering in Medicine and Biology Society (EMBC, pp. 3752-3755, 2012. 

[22] M. Danciu, M. Gordan, C. Florea, and A. Vlaicu, "3D DCT supervised segmentation applied on liver 

volumes," Telecommunications and Signal Processing (TSP) pp. 779-783, 2012. 

[23] S. Luo, X. Li, and J. Li, "Improvement of Liver Segmentation by Combining High Order Statistical 

Texture Features with Anatomical Structural Features," Engineering, vol. 5, pp. 67-72, 2013. 

[24] S. Luo, Q. Hu, X. He, J. Li, J. S. Jin, and M. Park, "Automatic liver parenchyma segmentation from 

abdominal CT images using support vector machines," Complex Medical Engineering, CME, pp. 1-5, 

2009. 

[25] C. Xu, d. l.pham, and j. l.prince, "Medical Image Segmentation Using Deformable Models," in SPIE 

Handbook on Medical Imaging vol. 3, J. M. Fitzpatrick and M. Sonka, Eds., ed, 2000, pp. 129-174. 

[26] N. M. Altarawneh, S. Luo, B. Regan, C. Sun, and F. Jia, "Global threshold and region-based active 

contour model for accurate image segmentation," Signal & Image Processing: An International 

Journal (SIPIJ), vol. 5, pp. 1-11, 2014. 

[27] N. M. Altarawneh, S. Luo, B. Regan, and C. Sun, "A novel global threshold-based active contour 

model," presented at the Second International Conference on Signal, Image Processing and Pattren 

Recognition (SIPP), Sydney, 2014. 

[28] C. Li, C. Xu, C. Gui, and M. D. Fox, "Distance regularized level set evolution and its application to 

image segmentation," Image Processing, IEEE Transactions on, vol. 19, pp. 3243-3254, 2010. 

[29] V. Caselles, R. Kimmel, and G. Sapiro, "Geodesic active contours," International journal of computer 

vision, vol. 22, pp. 61-79, 1997. 

[30] B. Van Ginneken, A. F. Frangi, J. J. Staal, B. M. ter Haar Romeny, and M. A. Viergever, "Active 

shape model segmentation with optimal features," medical Imaging, IEEE Transactions on, vol. 21, 

pp. 924-933, 2002. 

[31] X. Li, S. Luo, and J. Li, "Liver Segmentation from CT Image Using Fuzzy Clustering and Level Set," 

Journal of Signal and Information Processing, vol. 4, pp. 36-42, 2013. 

[32] N. M. Altarawneh, S. Luo, B. Regan, and C. Sun, "liver segmentation from ct imaged using a 

modified distance regularized level set method based on a novel balloon forces," presented at the 

International Conference on Signal, Image processing and Multimedia(SPM), Sydney, 2015. 

 

 

 

 

  


