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ABSTRACT 

 

In remote sensing, images acquired by various earth observation satellites tend to have either a high 

spatial and low spectral resolution or vice versa. Pansharpening is a technique which aims to improve 

spatial resolution of multispectral image. The challenges involve in the pansharpening are not only to 

improve the spatial resolution but also to preserve spectral quality of the multispectral image. In this 

paper, various pansharpening algorithms are discussed and classified based on approaches they have 

adopted. Using MATLAB image processing toolbox, several state-of-art pan-sharpening algorithms are 

implemented. Quality of pansharpened images are assessed visually and quantitatively. Correlation 

coefficient (CC), Root mean square error (RMSE), Relative average spectral error (RASE) and Universal 

quality index (Q) indices are used to measure spectral quality while to spatial-CC (SCC) quantitative 

parameter is used for spatial quality measurement. Finally, the paper is concluded with useful remarks.   
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1. INTRODUCTION 
 

Nowadays, various earth observation satellites such as IKONOS, Quickbird, SPOT, Landsat, etc. 

provide images at different spatial, temporal and spectral resolutions [1]. The spatial resolution of 

image is expressed as area of the ground covered by one pixel of the image. As pixel size is 

reduced, objects in the image are delineated with high accuracy. The instantaneous field of view 

(IFOV) is the portion of the ground which is sensed by the sensor. Spatial resolution depends on 

the IFOV. As finer the IFVO, spatial resolution is better, and objects in the image can be 

classified with more accuracy [2]. For example, the LANDSAT-7 satellite has capability to 

capture the image with 15m spatial resolution while GeoEye-I satellite provides 0.41m spatial 

resolution. Normally, less than 4m pixel size is considered as high spatial resolution while pixel 

size of more than 30m, is considered as low spatial resolution. Spectral resolution is characterized 

by reflectance over a variety of signal wavelength [3]. Spectral resolution is higher if bandwidth 

is narrower [3]. A Panchromatic (PAN) image contains one band of reflectance data that covers a 
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broad spectral range and while maintaining a high signal-to-noise ratio, this allows smaller 

detectors to be utilized. Therefore, a PAN image has usually low spectral resolution, but high 

spatial resolution [4]. The principal category of images obtained by remote sensing is the Multi 

Spectral images. An MS image contains more than one band and for the most part this band uses 

three-band. The spectral range of every band of a MS image is not as much as that of the PAN 

image, resulting about high spectral resolution, but low spatial resolution [5]. Numerous remote 

sensing satellites acquire images in one PAN band of high spatial resolution and a few MS bands 

of high spectral resolution. Image fusion technology used effectively in a wide variety of this 

field and has turned into an effective solution for expanding prerequisites for images of high 

spatial and high spectral resolution at the same time and this method otherwise called as 

pansharpening. However, Pansharpening is a procedure of merging high-resolution panchromatic 

and lower resolution Multi Spectral images to make a single high-resolution color image. It 

alludes to a sharpening procedure using the PAN band and a procedure of merging high-

resolution panchromatic. A variety of image fusion systems dedicated to combining multi 

spectral and panchromatic images [6], [7], [8], [9]. Image fusion is the procedure of joining high 

spatial resolution panchromatic (PAN) image and rich Multi Spectral (MS) image into a single 

image. Motivation behind pansharpening is to obtaining information of greater quality and a vital 

tool for information enhancement, spatial resolution improvement, multi-data integration, and 

change detection. In recent years, numerous image fusion systems, such as, principal component 

analysis, intensity-hue-saturation, Brovey transforms and multi-scale transforms, etc., have been 

proposed to intertwine the PAN and MS images successfully. Most of the consideration paid to 

image enhancement with distinctive remote sensing images. With such images, particularly for 

image interpretation or classification, it would be vastly improved to utilize all the information 

contained in the original data, instead of getting an optimum image display with other 

extravagant high spatial resolution images. However, there is still no pertinent technique to 

enhance the spatial information in these images, without losing their spectral resolution.  

 

This paper is organized as follows. Pre-processing is discussed in Section 2 whereas different 

state-of-the-art pansharpening techniques are described in Section 3.  Subjective and objective 

quality assessment parameters used to measure the spectral and spatial quality of the resultant 

pansharpened image are presented in Section 4. Results are provided in Section 5. Finally, 

conclusions are drawn in Section 6. 

 

2. PREPROCESSING 

 
PAN and MS images are to be pre-processed before pansharpening. Pre-processing may involve 

image registration, resampling and histogram matching of the input images. Pre-processing 

techniques before pansharpening is broad area of research [10].  Initially, in image registration, 

input images are adjusted for spatial alignments such that pixels in the input images refer to the 

same points and objects on the ground. It is followed by resizing of multispectral images to that 

of panchromatic image using the interpolation or by different up-sampling techniques [11]. In 

some cases, histogram matching is performed before applying pansharpening techniques. 

Histogram matching of MS and PAN images may reduce spectral distortion in the resultant 

pansharpened image [10, 11]. 
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3. PANSHARPENING STATE-OF-ART TECHNIQUES 

Pansharpening is performed at three different processing levels [12]. These are pixel, feature and 

decision levels. Image pansharpening techniques are classified in several ways. In [13], 

classifications are provided on the basis of spatial domain, spectral domain and scale-space 

techniques. In [14], pansharpening techniques are classified in different families such as 

component substitution (CS), relative spectral contribution and high-frequency injection. 

Pansharpening techniques can be categorized based on the approaches used by them. The 

following are the some identified categories. 

 

3.1. Component Substitute technique 

Multispectral (MS) images generally contain more than one band, i.e., red, green and blue visible 

bands. In the component substitute category, MS image is transformed into a set of components 

using linear transform techniques. PAN image contains single band, and it contains a high-

frequency component. Before, low-frequency component of the MS image is substituted with a 

high-frequency component of the PAN image, MS image is required to be resized to that of PAN 

image. Generally this substitution occurs in the transformed domain. In [15, 16], several 

component substitute approaches are discussed. In this study, it is assumed that MS and PAN 

images are registered images. The steps followed in this approach are as follows:  

 

1. Carry out up-sampling to increase the size of MS image to that of PAN image. 

 

2. Perform the forward transform to separate spatial and spectral components of the MS 

image. 

 

3. Substitute the spatial components of MS image with that of the histogram matched PAN 

image. 

 

4. Perform the backward transform to obtain the MS image back with the improved spatial 

resolution called pansharpened image.    

 

The various pansharpening algorithms like Intensity-Hue-Saturation (IHS) [17], adaptive IHS 

[18], and Principal Component Analysis (PCA) [19] are the examples of the components 

substitute family. 

 

In Intensity-Hue-Saturation, IHS colour space is used because it very well separates the intensity 

component (I) and spectral components (H and S) from the input MS images. Intensity (I) 

represents the total luminance of the image, hue represents the dominant wavelength contributing 

to the colour, and saturation describes the purity of the colour relative to grey. The basic idea of 

IHS transform is to replace the intensity component (I) of MS image by that of the histogram 

matched PAN image. The RGB of the resultant merged MS image is obtained by computing 

reverse IHS to RGB transform. The intensity band I calculated using following equation. 

 

� =  � ii M*α

�
���  
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Here, 	� are the multispectral image bands, and N is the number of bands. The value of 

coefficient 
� is taken 1/3 for N=3. Image captured with more than three bands, like IKONOS 

images, the value of α is experimentally required to be determined. To calculate the adaptive 

value of α, based on the number of bands available for the MS image, an approach known as 

adaptive IHS is proposed in [18]. In adaptive IHS approach, a value of α is determined such that 

the intensity (I) band approximates the corresponding PAN image as closely as possible. The 

mathematical formulation to determine adaptive values of α is as given below.  

 

� =  � ii M*α

�
��� ≈ ��  

 

Another method, principal component analysis (PCA) also falls into component substitute 

pansharpening category. PCA is basically mathematical model transformation [19-21]. It is 

widely used in the statistical application as well as signal processing area. In PCA, multivariate 

data sets with the correlated variables are transformed into a data set with new uncorrelated 

variables. Mostly, 1st principal component contains highest variance and it contains the 

maximum amount of information from the original image. [20].   

 

3.2. Spectral contribution pansharpening technique 

Another pansharpening technique, named Brovey transform (BT) is discussed in [22-23]. In BT, 

all the spectral bands are contributing equally to get the pansharpened image. It is based on the 

chromaticity transform. It is basically injecting the overall brightness of PAN image into each 

pixel values of normalized MS bands. Computations for each band are carried out as follow: 

                     R��� =  RR + G + B ∗ PAN 

 

                   G��� =  GR + G + B ∗ PAN 

                                              B��� =  BR + G + B ∗ PAN 

 

Brovey transform provides good contrast visibility, but it greatly distorts the spectral 

characteristics [24]. It gives satisfactory performance when MS image contains only three bands.  

 

3.3. High-frequency injection technique 

The main idea in the case of high-frequency injection technique is to extract the high-frequency 

information from the PAN image by using high-pass filtering (HPF), and later inject it into the 

MS image. General algorithm is as follow: 

 

1. Do the up-sampling process to increase the size of MS image to that of PAN image. 

 

2. Apply the high-pass filter to PAN image. 
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3. Obtain the pansharpened image by adding resultant high-pass filtered PAN image to each 

of the bands of MS image. 

 

The mathematical model for this family is as below: 

                    MS���� =  MS� � +  PAN���� 

 

This method preserves a great amount of spectral characteristics of the MS image since spectral 

information is associated with the low spatial frequency of the MS image. The cut-off frequency 

of the high-pass filtering is influence the spectral information of the MS image. Some recently 

reported methods are uses this high-frequency method as a predecessor to extract the spatial 

detail from the PAN image which is not present in the MS image.   

 

3.4. Statistical technique 

The pansharpening techniques based on the statistics explores statistical characteristics of the MS 

and PAN images. In [25], the price proposed a first statistical based approach called price method 

for pansharpening. Later, it was improved by Park et al. [26] with a spatially adaptive algorithm. 

In the price method, all high resolution (HR) pixels are modelled as a linear weight by some 

factor to one low-resolution (LR) pixel and due to this assumption; sometimes it is producing 

blocking artifacts effect. Spatially adaptive algorithm [26] was proposed to overcome this 

limitation and it used the adaptive approach to finding out the local correlation between the pixels 

resolutions in the input images.  Besides these, Bayesian method was proposed based on the 

probability theory for estimation the final pansharpened image [27]. In Frosti et al. [28], 

pansharpening is considered as an ill-posed problem that needs regularization for optimal results. 

Hence, they chose total variation (TV) regularization model which produces the pansharpened 

image with preserving the fine details of PAN image.  

3.5. Multi-resolution analysis technique 

Multi-resolution analysis (MRA) based approach basically allows the spatial transformation over 

the wide range of scale instead of local processing of the pixels. Wavelet transforms [29], 

contourlet transform [30], curvelets transform and laplacian pyramid transform [31] are the multi-

resolution based image pansharpening techniques. These techniques decomposed the MS and 

PAN images into different scale levels in order to derive the spatial information and importing it 

into finer scales of the MS images.     

  

Wavelet provides a framework for the decomposition of the images with hierarchical degraded 

resolution and separating the spatial resolution detail at each level. The special case of MRA is 

discrete wavelet transform (DWT). Pansharpening approaches discussed in [32] proposed by 

Mallat’s and  “a’ trous” are the examples of DWT. Mallat’s  approach for pansharpening is an  

orthogonal, non-symmetric, decimated and non-redundant while “a’ trous” approach is non-

orthogonal, symmetric, undecimated and redundant. Contourlet transform (CT) is proposed in 

[33]. DWT has very poor directional sensitivity and usually it is providing four subimages, which 

are referred to as LL, LH, HL and HH images. Contourlet transform (CT) is an alternative multi-

resolution method which provides an efficient directional representation and capturing the 

intrinsic geometrical structures of the natural image along with smooth contours. In CT, 

transformation stage includes two filter banks: the Laplacian pyramid to generate multi-scale 

decomposition and the directional filter bank (DFB) to reveal directional details at each 

decomposition level. These methods, generally, following the steps as listed below: 
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1. Apply the forward transform to PAN and MS images using a sub-band and directional 

decomposition wavelet/contourlet transform. 

 

2. Apply the fusion rule onto transform coefficients. 

 

3. Obtain the pansharpened image by the inverse transform. 

 

Fusion rules in the step 2, involves the substitution of original MS coefficient bands by 

coefficients of the PAN images or addition of these coefficients with some weight depending 

upon the contribution of the PAN and MS bands. Based on the applied fusion rules, they are also 

known as additive wavelet/contourlet or substitute wavelet/contourlet methods. Sometimes a 

hybrid approach is also used by combining best aspects of various fusion rules.   

3.6. Other techniques 

In spite of number of approaches to achieve the good quality of pansharpened image as discussed 

earlier, H.Yin et al. [34], proposed a novel framework for simultaneous image fusion and super-

resolution. It is based on the sparse representation of the signal. It consists of three steps. First, 

low-resolution input images are interpolated and decomposed into high and low-frequency 

components. Second sparse coefficients are computed and finally fused image is achieved using 

fusion rules. In [35], Y. Zhang presented non-RIP based analysis technique for compressive 

sensing using  ℓ� −minimization. Compressive sensing (CS) theory has recently attracted 

intensive research activities in various fields. Conventional data acquisition can be called “full 

sensing and then compression” while compressive sensing means to reduce the number of 

measurements during data acquisition so that no additional compression is required. Finally, data 

is recovered from the measurement at the receiver side. Non-RIP based analysis technique 

improves the recoverability and stability compare to RIP based analysis.    
 

4. QUALITY ASSESSMENTS 

It is desirable to improve the spatial resolution of the MS image to that of PAN. Wald et al. [36] 

formulated some useful properties to verify the quality of the pansharpened image. They are 

 

1. If pansharpened image is downsampled to its original spatial resolution then it should be 

similar to original MS image. 

 

2. Pansharpened image should be as similar as possible to MS image which could be 

captured by the sensor (assuming that it is available) having high spatial resolution 

capacity. 

 

The first property represents consistency property while, the second represents synthesis 

property. Quality of pansharpened image is measured against ideal reference image if reference 

image is available.  Otherwise quality can be measured against input MS image called non-

reference based quality assessment. Normally, the latter approach is followed.  

 

4.1. Visual assessment 

 
Generally image quality measured through visual inspections, are the global quality of the image 

like geometric shape, the size of the objects, spatial detail and local contrast of the image. By 
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comparing the pansharpened image with input MS image, it is possible to verify and observe the 

spectral (color information) and spatial (sharpness) quality of the image. Visual assessment 

technique is a subjective technique.  

 

4.2. Quantitative assessment    

 
A number of parameters used for quantitative assessment of pansharpened image. In this paper, 

quantitative parameter values of pansharpened image are calculated against the input MS image. 

Here, R and F representing MS image and resultant pansharpened images, respectively.     

 

4.2.1. Spectral quality assessment  

 
To measure the spectral quality of pansharpened image, following quantitative parameters can be 

used [12] 

1) Correlation coefficient (CC): It indicates the spectral integrity of the pansharpened image 

[32]. It is calculated globally for the entire image. CC between pansharpened image F and input 

MS image R is computed as under: 

 CC#R, F& =  ∑  #R(� −  R)&#F(� − F*&(�+#∑ #R(� − R)&,& #∑ #F(� −  F*&,& (� &(�  

 

Here, F* and R) are the mean value of the images F and R, respectively, while m and n is size of 

images. Value of CC should be as close to 1 as possible.  

 

2) Root mean square error (RMSE): It measures the changes in the radiance of the pixel values 

for each band of the input MS image R and pansharpened image F. It is important indicator when 

images under consideration contain homogeneous regions. It should be as close to zero as 

possible. RMSE is computed as follows: 

 

RMSE =  . 1m × n � �|R#i, j& −  F#i, j&|,�
6��

(
���   

 

3) Relative average spectral error (RASE): It is computed using the root mean square error 

(RMSE) as per the below given equation. 

RASE =  100
µ

 .1N � RMSE,#B�&8
���  

 

Here, µ is the mean radiance of the N spectral bands and B� represents ith band of input MS 

image. The desired value of this parameter is zero.  

 

4) Universal quality index (UQI): In [37], image quality index suggested for the final 

pansharpened image F with respect to the input MS image R is as given below: 
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Q#R, F&  ≜  4σ<= ∗ R) ∗ F*#σ<, + σ=,&#R,*** +  F,&***** 

 

The above equation can also be rewritten as 

 Q#R, F& ≜  σ<=
σ<∗σ=  ×  2 ∗ R) ∗ F*#R,*** +  F,&*****  ×  2 ∗ σ<∗σ=#σ<, + σ=,& 

 

The first factor indicates the correlation coefficient (CC) between images R and F, while the 

second factor indicates the luminance distance, and the third factor represents the contrast 

distortion between two images. In above equation, σ<= denotes the covariance between images R 

and F, R) and F* are the means while, σ<,  and σ=, signify the standard deviation of R and F, 

respectively. The best value of Q is 1 and it can be achieved if R = F for all pixels. 

 

5) Relative dimensionless global error in synthesis (ERGAS): The ERGAS is a global quality 

index and sensitive to mean shifting and dynamic range change. The value of the ERGAS 

indicates the amount of spectral distortion in the image.  

 

ERGAS = 100 ∗ hl  .1N � CRMSE#i&
µ#i& D,8

���  

Where, 
��  is the ratio of pixel sizes of input PAN and MS images, µ#i& is the mean of the iE� band 

while, N is the number of bands. The desired value of ERGAS is as close to zero as possible. 

 

4.2.2. Spatial quality assessment 

 
To assess the spatial quality of the resultant pansharpened image, several quantitative metrics are 

suggested in [38]. Zhou at.el [38], suggested spatial correlation coefficient (SCC) to measure the 

spatial quality of the image using laplacian filter. Spatial quality of the final pansharpened image 

F is assessed against input PAN image. The laplacian filter is applied to the both F and P images. 

SCC is calculated by obtaining the correlation between images. In [39], another method to assess 

the spatial quality of the pansharpened image is suggested. In that, it is suggested that the good 

pansharpened image retains all the edge information of the PAN image. Several edge detection 

techniques are applied to detect the edges in the pansharpened image, and then compared with the 

edges of the PAN image. SCC value close to 1 indicates high spatial quality of the pansharpened 

image.  

 

5. RESULTS AND ANALYSIS 

 
In our experiments, geometrically registered three data sets of input PAN and MS images are 

considered. Performance of the several state-of-art pansharpening algorithms is observed on these 

three datasets. In all three datasets, PAN images are having pixel size of 512 x 512 while MS 

images having size of 128 x 128. MS images are resized to concerned PAN image by using 

interpolation technique before applying pansharpening algorithms. Pansharpening algorithms 

discussed in Section 3, Brovey transform, IHS, adaptive-IHS, PCA and Discrete wavelet 

transform (DWT) are implemented. To compare the performance of each algorithm, subjective 
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and objective assessment techniques are applied. Visual inspection technique is applied to 

observe final pansharpened image for subjective assessment. But, it is difficult to match the 

colors of pansharpened image to the original MS image. In objective assessment, Correlation 

coefficient (CC), RMSE, RASE, universal quality index Q, and ERGAS parameters are 

calculated to estimate spectral quality while spatial-CC (SCC) is computed to approximate spatial 

quality. In our experiments, geometrically registered three data sets images are considered. 

Several state-of-art pansharpening algorithms are implemented and results are observed. Image-

1(a) and (b) shows worldview satellite urban area and seaside MS images respectively while 

Image-1(c) shows Quickbird satellite MS image. Image 2(a-c) shows the corresponding PAN 

images.  

 

 
     (a) Worldview Urban Image      (b) Worldview Seaside Image           (c) Quickbird Image 

 

Figure 1. Multispectral Images 

 

 
     (a) Worldview Urban Image    (b) Worldview Seaside Image           (c) Quickbird Image 

 

Figure 2. Panchromatic Images 

 

In all three datasets, PAN images are having pixel size of 512 x 512 while MS images having size 

of 128 x 128. In pre-processing MS images are resized to that of PAN images by using 

interpolation technique. Brovey transform, IHS, adaptive-IHS, PCA and Discrete wavelet 

transform (DWT) are implemented. Quantitative assessment parameters for various pansharpened 

algorithms for all three datasets are calculated and shown in the Tables 1. In the calculation of 

ERGAS parameter of each dataset, PAN and MS image pixel size ratio is considered as ¼.  
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Table 1.  Quantitative assessment results. 

 

Image-1:Worldview urban area image 

 Brovey IHS Adaptive-IHS PCA DWT 

CC 0.8909 0.8922 0.8941 0.8917 0.9306 

ERGAS 4.1140 7.1312 7.0991 8.3854 6.0464 

Quality 0.8904 0.8922 0.8940 0.7789 0.9282 

RASE 28.5199 28.5126 28.4608 33.5569 24.1675 

RMSE 26.4290 26.4381 26.3901 31.1155 22.4092 

SCC 0.9907 0.9986 0.9815 0.9862 0.9095 

Image-2:Worldview seaside image 

 Brovey IHS Adaptive-IHS PCA DWT 

CC 0.8286 0.8288 0.8759 0.8283 0.9393 

ERGAS 8.1074 7.6741 6.4912 8.0171 4.6738 

Quality 0.8277 0.8288 0.8758 0.7213 0.9387 

RASE 31.0202 30.6398 26.0137 32.0135 18.6590 

RMSE 27.2404 26.9064 22.8440 28.1128 16.3854 

SCC 0.9963 0.9988 0.9170 0.9877 0.7236 

Image-3:Qickbird image 

 Brovey IHS Adaptive-IHS PCA DWT 

CC 0.7335 0.7605 0.8908 0.8039 0.9522 

ERGAS 5.0523 5.1351 3.4613 5.0980 2.3865 

Quality 0.7237 0.7600 0.8902 0.7317 0.9512 

RASE 22.6808 20.3282 13.6959 19.5795 9.4678 

RMSE 13.9451 12.4986 8.4208 12.0383 5.8212 

SCC 0.9435 0.9761 0.7287 0.8942 0.6996 

 

The best values obtained for each parameter are highlighted in the tables. It is observed that, 

multi-resolution approaches (DWT) are preserving better spectral information while component 

substitution approach (IHS) improves spatial quality of input MS image. Resultant fused images 

are shown in figure 2. 

 

Figure-2(a). Worldview urban area Fused images 
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Figure-2(b). Worldview seaside Fused images 

 

 
 

Figure-2(c). Quickbird Fused images 
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6. CONCLUSIONS 

 
In this paper, various pansharpening techniques with their classification are discussed. They are 

classified based on the approach they have been using. IHS is classical CS based pansharpening 

technique, and its major drawback is the spectral distortion which it introduces during 

pansharpening process. The reason for the spectral distortion appears to may be the large 

radiometric difference between I and PAN bands. It could be overcome by computing the high 

spatial resolution image I which will ultimately reduce the difference between I and PAN bands. 

In PCA, first principal component of image is replaced with histogram normalized panchromatic 

(PAN) image. The first principal component has a largest variance and therefore, it contains most 

of the information. The remaining principal components possess band specific information and 

they are kept unaltered. One of the possible research issues is optimal replacement of principal 

component/s with PAN image. In spectral contribution-based approach, Brovey transform (BT) 

works well when images contain three bands. It preserves spectral information in the resultant 

pansharpened image. In statistical methods, it is desirable to estimate the accurate model for the 

relationship between pansharpened image, and input MS and PAN images. It is observed that 

multi-resolution based pansharpening approach generate better results.  
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