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ABSTRACT 

A variety of machine learning algorithms have been used to map wildland fire effects, but previous attempts 

to map post-fire effects have been conducted using relatively low-resolution satellite imagery. Small 

unmanned aircraft systems (sUAS) provide opportunities to acquire imagery with much higher spatial 

resolution than is possible with satellites or manned aircraft. This effort investigates improvements 

achievable in the accuracy of post-fire effects mapping with machine learning algorithms that use 

hyperspatial (sub-decimeter) drone imagery. Spatial context using a variety of texture metrics were also 

evaluated in order to determine the inclusion of spatial context as an additional input to the analytic tools 

along with the three-color bands. This analysis shows that the addition of texture as an additional fourth 

input increases classifier accuracy when mapping post-fire effects. 
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1. INTRODUCTION 

This study examines the mapping of wildland fire severity from hyperspatial sUAS imagery using 
computer vision and machine learning.  This analysis examines whether the inclusion of spatial 
context with color imagery can increase accuracy when mapping post-fire effects with a Support 
Vector Machine (SVM).  Increased mapping accuracy will provide actionable knowledge 
resulting in improved ecosystem resilience and management decisions.  

Fire consumes millions of acres of American wildlands each year, with suppression costs 
approaching $2 billion annually [15]. High intensity wildland fires contribute to post fire erosion, 
soil loss, flooding events and loss of timber resources. This results in negative impacts on wildlife 
habitat, ecosystem resilience, infrastructure, and recreational opportunities. In order to ameliorate 
these issues, remotely sensed imagery is commonly collected to assist in assessing the impact of 
the fire on the ecosystem. 

Current methods for acquiring the imagery used for assessing fire effects rely on satellites which 
provide problematically low resolution. Images obtained from, Landsat, for example, have a 
temporal resolution of 16 days and a spatial resolution of 30 meters [14]. Manned aircraft can also 
be utilized for acquiring imagery, but are expensive, have a low spatial resolution, and are often 
unavailable, especially during fire season when manned aerial resources are devoted to 
suppressing active fires. Additionally, due to lack of resources, much of the body of fire history 
contained in fire atlases omits the spatial extent of small and moderately sized fires [13]. Accurate 
historical record of fire history is necessary in order to determine departure of current fire 
frequency from historic fire frequency, a key metric for determining ecosystem resilience. 
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Omission of these fires is problematic because small and moderate fires are the most ecologically 
diverse, adversely affecting the accuracy of fire frequency departure metrics, hindering their 
ability to accurately reflect ecosystem resilience [5]. Therefore, it is essential to develop novel 
acquisition methods which allow managers to acquire and analyze imagery with higher spatial 
resolution. 

New advances in sUAS capabilities can enable the acquisition of imagery with a spatial 
resolution of centimeters and temporal resolution of minutes [11]. High-resolution imagery 
results in a huge increase in the quantity of data associated with a scene.  

In order to fully leverage this additional data, it is necessary to develop analytic tools which 
identify the extent of the burned area within the image. Individual pixels are classified by ash type 
where black ash is indicative of incomplete vegetation consumption while white ash correlates 
significantly to more complete vegetation consumption [9]. Spatial density of white ash can be 
considered a quantitative measure per unit area of vegetation consumption [20]. 

Machine learning analytics have been developed to facilitate pixel classification by ash type or 
vegetation structure, allowing the discrimination between black ash, white ash, crown vegetation 
and surface vegetation. Utilizing these classes, analytic tools can interpret the scene by relying on 
relationships between these classes. Classification of burned area extent has been achieved by 
exploiting the spectral separability between burned organic material (black & white ash) and 
vegetation [12]. The distinct spectral signatures between white and black ash has been shown to 
enable successful classification of burn severity, separating pixels with low fuel consumption 
(black ash) from high fuel consumption (white ash) [9]. In forested biomes, low severity fires are 
identifiable by detecting patches of unburned vegetation within the extent of the fire. If a patch is 
comprised only of tree crown(s), the analysis can infer the vegetation is a tree which the fire 
passed under and classify the pixels as low intensity surface fire [19]. If the patch of vegetation 
contains herbaceous or brush species, then the patch is an unburned island within the burned area 
and should be classified as unburned. 

2. PREVIOUS APPLICATION OF TEXTURE AS A MACHINE LEARNING INPUT 

FOR MAPPING POST-FIRE EFFECTS 

Many projects have used a variety of machine learning algorithms mapping wildland fire extent 
using low-resolution satellite imagery. Some of the classifiers rely on pixel-based classification 
with the classifier only considering the band values for the pixel being classified. Other 
approaches use a variety of methods for considering the spatial context of a pixel while the 
classifier attempts to identify whether a particular pixel burned. 

Gitas [3] segmented 1.1 kilometer (km) resolution imagery from the Advanced Very High 
Resolution Radiometer (AVHRR) into objects using eCognition. Fuzzy sets with membership 
functions were created for burned and unburned objects based both on spectral and shape 
information as well as relation to neighboring objects. The very low spatial resolution of greater 
than one km prohibits the ability to identify objects that are smaller than 100 hectares. This 
omission would render over 15 percent of burned area across the United States (US) undetectable 
due to fires under a square kilometer being sub-object in size [5].  

Brewer’s [2] comparison of artificial neural network (ANN) and k-Nearest Neighbor (kNN) 
classifiers incorporated the spatial context of neighboring pixels in mapping burn extent. Spatial 
context was achieved by including the values of the 12 closest neighboring pixels around the 
pixel being classified. The seven Landsat bands of post-fire imagery with 30-meter resolution 
were compared as inputs against a combination of 11 bands from pre-fire and post-fire Landsat 
images. Ground-based reference data were collected from a set of reference locations both within 
and exterior to the burn perimeter. Image pixels corresponding to these reference points were 
divided between training the classifier and validating classification results. While better results 
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were achieved with the inclusion of pre-fire imagery, the classification only using post-fire 
imagery was able to map burn extent with over 80 percent accuracy. While this approach does 
consider spatial context, using values from seven bands for the 12 neighboring pixels in addition 
to the pixel being classified increases the number of inputs to either the ANN or the kNN to 91 
total inputs. This high dimensional solution will increase the size and complexity of the feature 
space consisting of the bands for each of the considered pixels. This high dimensional data is 
likely to contain irrelevant or redundant inputs, causing the curse of dimensionality.  
Consequently, patterns are less well defined in the data, obfuscating their detection with machine 
learning classifiers [18]. 
 

3. CONSIDERATIONS FOR HIGH RESOLUTION sUAS IMAGERY 

 
These approaches show a number of issues which must be addressed while developing methods, 
analytic tools and metrics for mapping wildland fire effects with much higher resolution than is 
currently available from the current generation of satellites. A sUAS with a 12 megapixel (MP) 
camera flown at 120 meters above ground level (AGL) will have a spatial resolution of about six 
centimeters resulting in imagery with such high resolution that an object like a bush or tree will 
be represented in an image as a set of contiguous pixels. An example image (Figure 1a) of a 
portion of a burn in the Owyhee Mountains in southern Idaho, USA was acquired with a sUAS at 
120 meters AGL.  The black rectangles in the image are burned areas, which are surrounded by 
fire lines dug by a bulldozer. The unburned vegetation consists primarily of grass, Wyoming Big 
Sage and Rabbit Brush. The scene contains two Junipers. The white object near the lower left 
corner of the lower burn is a Chevrolet Suburban. 
 
In Landsat imagery which has 30 meter resolution, that same tree will be lumped together with 
everything else (other trees, bushes, grass, bare dirt) that is in the 30 by 30 meter square 
represented by a single pixel, resulting in a mixed pixel. The example image  shown in Figure 1b 
represents with 30 meter resolution the same scene captured in Figure 1a. 

Acquisition of imagery for a burn area with the purpose of mapping wildland fire effects is 
commonly accomplished by mosaicking all the images taken during one or more sUAS flights in 
order to create a single georeferenced orthomosaic of the entire scene. These hyperspatial images 
contain a very large amount of data. For example, an orthomosaic generated from multiple flights 
over Northwest Nazarene University, which has a campus covering 40 hectares (100 acres) in 
Nampa, Idaho resulted in an image consisting of two billion pixels. The very large number of 
pixels in hyperspatial imagery requires the utmost care in selecting algorithms and metrics which 
extract fire effects information. Special consideration must be given to what algorithms and 
inputs will provide the most accuracy. Additional consideration is recognizing that algorithm 
efficiency is a critical factor to be considered in order to ensure that derived mapping products are 
available to users within a reasonable amount of time. A common factor which influences the 
efficiency of machine learning algorithms is the dimensionality of the inputs, which is reflected 
by how many inputs are provided to the classifying algorithm. 

When mapping burn severity from hyperspatial sUAS imagery, all the inputs are spatial in nature. 
Color imagery is consumed by the machine learning classifiers as three inputs: the pixel values 
from the red, green and blue bands. When considering a single pixel either as training data which 
has been labeled with a class or as unlabeled data for which the classifier needs to determine the 
class, the classifier only considers the band values from that particular pixel. This resulting pixel-
based classification does not consider the relationship of that pixel to any of the neighboring 
pixels. Brewer [2] showed that improved accuracy can be achieved by providing the pixel values 
of neighboring pixels as an input to the classifier. Their approach was to provide the spatial 
context of the neighboring pixels by providing the band values of each of the neighboring pixels 
as separate inputs to the classifier, increasing the dimensionality of the input data from three 
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inputs to 39. This added dimensionality will significantly degrade the efficiency of classifiers. For 
example, increasing the input dimensionality of an ANN by a factor of n results in an increase of 
the computational complexity of the backpropagation of the ANN by a factor of n2. As a result, it 
is necessary to find a way to provide spatial context with as few additional inputs as possible in 
order to improve the classification accuracy without degrading temporal efficiency.  

 

Figure 1. (a) Burn imagery acquired by a sUAS at 120 meters AGL.  

(b) Same scene resampled to 30 meter resolution. 
 

4. USING TEXTURE AS A MEASURE OF SPATIAL CONTEXT 

 
Haralick [7] defined 14 measures of texture for image processing from which spatial context has 
been measured for a variety of related image processing applications. These texture measures 
have been used in a wide variety of uses ranging from vegetation structure [21] to land-use 
variation [8]. Texture measures have also been used as an input for image classification [19]. Of 
Haralick’s texture metrics, we investigated the utility of first order Entropy as well as second 
order Contrast, Entropy, Energy (also known as Angular Second Moment) and Homogeneity.  
 
Each of these metrics are calculated for a pixel based on a neighborhood of a specified size from 
a grayscale copy of the image. Second order metrics are calculated from a gray-level co-
occurrence matrix (GLCM) which is used to calculate how many occurrences of each 
combination of pixel values occurred for each pixel within the neighborhood. When calculating 
GLCM, the distance between pixels is specified. The texture values for each pixel are stored in a 
single band gray scale image. The metrics defined by Haralick [1973], which were evaluated as 
part of this study are defined as: 
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Where� and � are possible values of pixels within the neighborhood surrounding the pixel being 
evaluated. The probability of finding pixels with a value of � in the pixel neighborhood is 
represented as �(�). The probability of pairs of pixels � and � being found in the pixel 
neighborhood while building the GLCM for the pixel of interest is represented as �(�, �). The 
resulting texture images can be used as input along with the associated image as inputs to a 
machine learning classifier. 

5.  MEASURING  AND  EVALUATING  THE  EFFECTIVENESS  OF  A 

TEXTURE METRIC AND PARAMETERS 

An Iterative Dichotomiser (ID3) [17] was implemented to build a decision tree and report the 
information gain of each variable from the red, green and blue bands from the color image as well 
as texture. Information gain facilitated the identification of the most effective texture metric, 
neighborhood size and GLCM pixel distance for deriving texture for machine learning. By 
reporting on information gain, it was possible to observe the strength of an input’s ability to 
accurately split the training data based on the user designated labels as evidenced by the 
information content of the training data in relation to that input [6]. In order to train the ID3, 
training regions were designated for black ash, white ash and unburned vegetation on imagery 
from multiple rangeland fires. An example set of training regions associated with a burn image 
are shown in Figure 2.  

 

Figure 2. Training regions from a prescribed burn image. Training regions were used for calculating 
information gain to identify optimal texture measures. White regions are white ash, blue regions are black 

ash and yellow regions are unburned vegetation. 
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5.1. Assessment of Texture Parameters using Information Gain 

For the purpose of this analysis, texture files were generated for each texture metric using square 
neighborhoods of size 3, 7, 15, 25, 35, 45 and 55. The pixel distance for calculating the second 
order metric GLCM was also varied, creating a set of texture files for each metric and 
neighborhood size, varying the GLCM pixel offsets with values of 2, 5, 10, 15, 20, 25, 30, 35 and 
40. Information gain was calculated from training sets on imagery from four burns, averaging 
information gain across the training sets to identify the texture metric, neighborhood size and 
pixel offset which has the optimal information gain for use as a fourth input to supplement color 
imagery as machine learning inputs. The optimal neighborhood size for first order entropy was 
identified at the point of diminishing information gain as the neighborhood size was varied, 
identifying the point where the information gain gradient started to significantly reduce as 

neighborhood size continued to increase as shown in Figure 3 While neighborhood size affects 
information gain, pixel offset is not used for calculation of first order metrics. Pixel distance is 
used for calculation of the GLCM, which is only used in the calculation of the second order 
metrics. 

 

Figure 3: First order entropy information gain by neighborhood size. Information gain of red, green and 
blue image bands are also shown. 

The optimal neighborhood size and pixel distance for the second order texture metrics were 
identified by the point of diminishing information gain as both neighborhood size and pixel 
distance were varied. The information gain of the optimal neighborhood size and GLCM pixel 
distance averaged over the training sets is shown in Table 1. For comparison, the information gain 
of the three color bands averaged over the training sets is also included.  

Table 1: Optimal texture metric parameters. 

Texture Metric Info Gain Nhood 
Size  

Pixel 
Dist 

Contrast 0.53692 35 10 

Energy 0.57245 35 15 

Entropy (1st Order) 0.58227 45 - 

Entropy(2ndOrder) 0.59691 45 10 

Homogeneity 0.55731 35 15 

Red 0.79268 - - 

Green 0.79583 - - 

Blue 0.64862 - - 

 

The texture metric with the highest point of diminishing information gain is Second Order 
Entropy with an information gain of 0.59691 at a neighborhood size 45 pixels square and pixel 
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distance of 10. The Second Order Entropy information gain calculated for all the considered 
parameters is shown in Figure 4 Information gain for the remaining metrics was calculated from 
optimal parameters that were slightly less than Second Order Entropy.  

 

Figure 4: Information Gain graphed for Entropy 2, varying neighborhood size and GLCM pixel distance. 
Optimal neighborhood size of 45 by 45 and pixel distance of 10 is indicated where Information Gain of 

0.59691. 

Based on the results of this analysis, each of the texture metrics would be advantageous if used as 
an input to a machine learning classifier. Each of the texture metrics had information gain that 
was nearly as high as the blue or green bands in the color image. 

5.2. Evaluation of Optimal Texture on Machine Learning Accuracy 

Further evaluation of the value of the optimal texture (metric, neighborhood size and GLCM pixel 
offset) as a machine learning input was accomplished by assessing the accuracy of the output 
classification of a Support Vector Machine (SVM) machine learning classifier. Accuracy is 
defined as the number of samples correctly predicted by a classifier divided by the total number 
of samples [6]. To assess accuracy, the SVMs were trained on the same set of images upon which 
texture information gain was calculated. The SVM was trained using only the three color spectra, 
then trained again with each of the texture metrics (with associated optimal parameters) as a 
fourth input in addition to the color spectra. The SVM first classified the image into burned and 
unburned pixels.  The image region classified as burned was then hierarchically classified into 
white ash and black ash classes; followed by classifying the unburned regions of the image into 
canopy and surface vegetation.  Based on the spectroscopy study by Hamilton [in press], each of 
these classes are spectrally separable in the visible spectra.  Consequently, the SVM did not apply 
a kernel to convolve the data into a higher dimensional decision space.  This assumption was 
supported by initial tests which found that running the SVM with the Radial Bias Function, Chi2 
and Histogram Intersection kernels resulted in degraded image classifications.  Figure 5 shows a 
classified output from the image in Figure 1a, recording the unburned, black ash and white ash 
pixels as classified by the SVM, merged into a single classified.  

Validation data sets for each of the images were selected as regions of pixels within the image, 
then the pixels from each validation data set were run through the SVM, assessing the accuracy of 
the color bands as inputs as opposed to the inclusion of each of the texture metrics with the 
associated optimal parameters. Accuracy for each validation data set was calculated, determining 
the percentage of validation pixels the SVM classified the same as were labeled by the user.  
Validation data labeling was based on visual observation of the image by the user, supplemented 
with ground observations recorded during image acquisition flights with the sUAS. Accuracy was 
calculated as number of correctly predicted validation pixels divided by the total number of pixels 
in the validation data set multiplied by 100. In order to obtain a more complete assessment of the 
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accuracy of a set of classifier inputs, accuracy was evaluated based first on burn extent (ash vs 
unburned pixels) followed by assessment of ash type 
structure (surface vs canopy) accuracy.

Figure 5. Classified output showing unburned, black ash and white ash pixels classified from 
Unburned are colored black, black ash is colored grey and white ash is colored white.

Classification accuracy was averaged for each set of inputs (color versus color and texture) across 
multiple validation sets, then mu
listed in  

Table 2 for the metrics which had the most information gain when classification accuracy was 
averaged across all the images included in the suite of post

Table 

Texture Metric

Energy

Entropy

Entropy

Color only

 
Among the textures tested, Second Order Entropy had the largest increases in average accuracy 
with an increase of 2.69 percentage points for burn extent as well as well as an increase of 6.45 
percentage points for ash type. 

5.3. Statistical Significance of Accuracy Results

The statistical significance of increased accuracy across the validation sets for the burn images 
was established using one tailed paired T
as a fourth input along with the color bands does not improve accuracy. By contrast, the alternate 
hypothesis is that adding texture as a fourth input along w
accuracy.  In order to apply the T
three color bands and then again with texture added as a fourth input. The significance level that 
the t-test passed is 0.05 which gives it 95 percent certainty to reject the null hypothesis in favor of 
the alternate hypothesis. 

The burn extent accuracy tests with Second Order Entropy (average increase of 2.69) rejected the 
null hypothesis with a P-value of .042. Likewise, 
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accuracy of a set of classifier inputs, accuracy was evaluated based first on burn extent (ash vs 
unburned pixels) followed by assessment of ash type (black vs white) accuracy and vegetation 
structure (surface vs canopy) accuracy. 

 

Classified output showing unburned, black ash and white ash pixels classified from 
Unburned are colored black, black ash is colored grey and white ash is colored white.

Classification accuracy was averaged for each set of inputs (color versus color and texture) across 
multiple validation sets, then multiplied by 100. The resulting Mean Classification Accuracy are 

for the metrics which had the most information gain when classification accuracy was 
averaged across all the images included in the suite of post-fire images evaluated. 

Table 2: Mean classification accuracy. 

Texture Metric Burn 
Extent 

Ash  

Type  

 

Energy 86.91 78.53  

Entropy(1st Order) 84.00 75.68  

Entropy(2nd Order) 94.40 83.79  

Color only 91.71 77.33  

Among the textures tested, Second Order Entropy had the largest increases in average accuracy 
percentage points for burn extent as well as well as an increase of 6.45 

5.3. Statistical Significance of Accuracy Results 

The statistical significance of increased accuracy across the validation sets for the burn images 
established using one tailed paired T-tests. The null hypothesis is that the addition of texture 

as a fourth input along with the color bands does not improve accuracy. By contrast, the alternate 
hypothesis is that adding texture as a fourth input along with color will increase classifier 
accuracy.  In order to apply the T-test, the accuracy of the classification was taken using just the 
three color bands and then again with texture added as a fourth input. The significance level that 

0.05 which gives it 95 percent certainty to reject the null hypothesis in favor of 

The burn extent accuracy tests with Second Order Entropy (average increase of 2.69) rejected the 
value of .042. Likewise, the Second Order Entropy ash type accuracy 
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accuracy of a set of classifier inputs, accuracy was evaluated based first on burn extent (ash vs 
(black vs white) accuracy and vegetation 

Classified output showing unburned, black ash and white ash pixels classified from Figure 1a. 
Unburned are colored black, black ash is colored grey and white ash is colored white. 

Classification accuracy was averaged for each set of inputs (color versus color and texture) across 
ltiplied by 100. The resulting Mean Classification Accuracy are 

for the metrics which had the most information gain when classification accuracy was 

Among the textures tested, Second Order Entropy had the largest increases in average accuracy 
percentage points for burn extent as well as well as an increase of 6.45 

The statistical significance of increased accuracy across the validation sets for the burn images 
tests. The null hypothesis is that the addition of texture 

as a fourth input along with the color bands does not improve accuracy. By contrast, the alternate 
ith color will increase classifier 

test, the accuracy of the classification was taken using just the 
three color bands and then again with texture added as a fourth input. The significance level that 

0.05 which gives it 95 percent certainty to reject the null hypothesis in favor of 

The burn extent accuracy tests with Second Order Entropy (average increase of 2.69) rejected the 
the Second Order Entropy ash type accuracy 
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tests (average increase of 6.45) rejected the null hypothesis with a P-value of .0094. In both cases, 
the null hypothesis was rejected, supporting the alternate hypothesis which shows that both 
textures are shown to give a measurable increase in accuracy between the associated classes. 

6. CONCLUSION 

 
Each of the texture metrics were found to contain nearly as much information gain as the color 
image bands. Consequently, this study shows that there is value in including texture as an input to 
machine learning classifiers. Representing spatial context as a single input will greatly increase 
temporal performance of machine learning classifiers when mapping wildland fire burn extent.  
This will enable land managers to obtain higher accuracy burn severity maps expediently and 
economically, offering dramatic improvements over status quo imagery obtained from satellites 
or manned aircraft. This conclusion is supported by our assessment of classifier accuracy, which 
validated the accuracy of a burn classifier trained with color imagery against a burn classifier 
trained with the color bands as well as Second Order Entropy with neighborhood size 45 pixels 
square and GLCM pixel distance of 10.  
 

7. FUTURE WORK 

 
Additional evaluation will need to be conducted on imagery from additional ecosystem types, 
especially with regards to evaluating scenes with higher tree canopy cover. A collaborative 
relationship has been established with the Boise National Forest in southern Idaho, USA to 
conduct post-suppression flights over burns. To acquire additional post-fire imagery which will 
assist in development and calibration of our wildland fire burn severity mapping analytics. 
This analysis was completed using aerial imagery of burned areas using a sUAS which resulted in 
a spatial resolution of six centimeters. Additional analysis can be done evaluating the increase in 
accuracy using hyperspatial imagery as opposed to lower spatial resolution resulting from 
imagery acquired with other means.  
 
The machine learning classifier used for this analysis was an implementation of a SVM. 
Evaluation of additional machine learning algorithms, assessing accuracy for classifying burn 
imagery would be very beneficial. In addition to SVM, this research effort has already done 
preliminary work with other supervised classification algorithms including k-Nearest Neighbor, 
Artificial Neural Network and the Iterative Dichotomizer 3 Decision Tree algorithms.   

Additional validation of classifier accuracy can be accomplished by using post-fire plot 
assessments as validation data for accuracy assessment. This ground truthing data can also be 
used for assessing the accuracy of mapping burn severity from hyperspatial imagery as compared 
to burn severity mapping using Normalized Burn Ratio from Landsat imagery with 30-meter 
imagery. 
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