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ABSTRACT 

We propose a new gradient-based method for the extraction of the orientation field associated to a 

fingerprint, and a regularisation procedure to improve the orientation field computed from noisy 

fingerprint images. The regularisation algorithm is based on three new integral operators, introduced and 

discussed in this paper. A pre-processing technique is also proposed to achieve better performances of the 

algorithm. The results of a numerical experiment are reported to give an evidence of the efficiency of the 

proposed algorithm. 
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1. INTRODUCTION 

In the last few decades the interest in biometrics of government institutions, industries and 

scientific communities has grown very much. Many disciplines are engaged in the study and 

analysis of biometric traits: chemistry, engineering, law and mathematics are just few examples of 

the interested fields. 

Among the other traits, fingerprints are one of the most widely used; this is due to their low 

storage requirements, their low cost acquisition systems and their distinctiveness; indeed, even 

two twins have different fingerprints. Comparing two fingerprints without the aid of modern 

technologies requires high skills and a large amount of time, even for trained people; thus leading 

to high costs. Recent advances in computer science and improvements of hardware performances 

allowed the development of several automated fingerprint recognition systems. 

There are mainly two kinds of recognition systems: verification and identification. The former is 

mostly used in civilian applications, for instance in restricted resources access control, where the 

acquired fingerprint is compared to the ones already enrolled in the database and only two 

possible responses are expected: access granted or access denied. Identification is aimed to find 

the identity of a person, given its fingerprint; this is mainly used by law enforcement agencies for 

investigation purposes and the analysis of the crime scene. 

Fingerprint images consist of an alternation of dark and bright curves, which are usually called 

ridges and valleys, respectively. Most recognition systems compare the position and orientation 

of the minutiae, that is either a termination of a ridge or a bifurcation of a ridge. The typical 

functioning scheme of a recognition system is: 

1. Acquisition by digitalizing an inked paper or via direct scan of the finger. 

2. Pre-processing, useful to enhance both contrast and brightness of input images, and to 

reduce the noise introduced by the acquisition phase. 
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3. Feature extraction, where the system computes some particular features, that will be used 

in the following stages. 

4. Post-processing, a procedure that improves the extracted features by removing the worst 

features and codifying the right ones. 

5. Matching, where a comparison between the newly acquired image and a database 

establishes the identity of the fingerprint owner, or grants access to restricted resources. 

The orientation field is one of the most commonly extracted features, since it used for many 

purposes: classification [4], detection of singular points [5], detection of fingerprint alterations 

[6], registration before matching [7], matching performance improvement[8,[9] and as a matching 

feature in itself[10]. So, the computation of the orientation field is a very important part in any 

recognition system and thus it is one of the deeply studied phases; many techniques have been 

developed both for the feature extraction and for the post-processing. Classical approaches to the 

orientation field computation are gradient-based[11], slit- and projection-based techniques[12] 

[13], frequency domain orientation estimation[14]. Regardless of the chosen approach, creases, 

scratches, discontinuous ridge patterns and no-signal areas brings very noisy areas in the acquired 

images, thus making necessary to post-process the extracted orientation field[3].Several 

interesting techniques to improve the orientation field reliability exist in literature, such as: 

orientation regularisation by using coherence criteria [15], neural network classification of 

unreliable orientations [16], multi-scale analysis for the correction of elements that change among 

different scales [17], enhancement by exploiting a global orientation model[18] and probabilistic 

approaches[19]. 

 

This paper describes an algorithm for pre-processing step, the orientation field extraction and 

proposes a novel approach for the field regularisation. In particular, we use a bank of directional 

gradient filters to compute the local orientation of the ridge flow: the image is convolved with 

each filter and the magnitude of its response gives a measure of the reliability of the 

corresponding orientation. We combine the information coming from every filter by a weighted 

average to achieve a reliable field of orientations. The regularisation procedure is mainly based on 

three operators that can be directly applied to the orientation field to produce a different kind of 

local improvements. The proposed regularisation algorithm combines these various local 

improvements to achieve a global enhancement of the orientation field. 

 

A detailed description of our algorithm can be found in Section2; in Section3 we provide some 

experimental results, while in Section 4 we give some conclusions and future developments of 

this work. 

 

2. ALGORITHM 
 

We start with the description of the direction field and the orientation field of a fingerprint. We 

use the same definition proposed in Sherlock and Monro[21]; here we report this definition for 

the convenience of the reader. 

 

Let � ∈ ℂ be a complex number and � ∈ [0,2	)be its argument. The direction associated to�is 

given by the angle �; hence we can think the set of all the possible directions as the unit circle 

��.We can instead consider the straight line�, with ∈ ℝ, as a unique entity; so, it identifies a 

direction θwith its oppositeθ+π, and defines this entity as the orientation associated to �. Since � 

is invariant by rotations through integer multiples of 	, the set of all the possible orientations can 

be identified with the projective circle ��.When we need to describe the ridge flow of a 

fingerprint a direction field, namely a mapping from the image to ��, is unsuitable due to the 

discontinuities that arise, for instance, along the symmetry axis of a loop (see Figure 1). 
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Conversely, using an orientation field, i.e. a mapping from the image to ��, the two troublesome 

directions are identified and the field is continuous. 

 

Figure 1 – Comparison between a vector field on the left and an orientation on the right. 

We propose an algorithm to compute and refine the orientation field associated to the ridge flow 

of a given fingerprint. This algorithm is divided in the two stages: the pre-processing procedure, 

described in Section 2.1, that enhances the ridge-valley structure and even some image properties 

like contrast and brightness; the orientation extraction, outlined in Section0, that is the main step 

of our algorithm, when the orientation field is computed and refined. 

2.1 Pre-processing 

This is an important step of the algorithm, since it yields to homogeneous images with similar 

contrast and brightness, and produces the foreground mask, that allows the distinction of the 

fingerprint from background pixels. In the following, we refer to masks as matrices with values 0 

or 255; when element-wise logical operations are performed between masks, we consider their 0 

values as false entries, and their 255 values as true ones. 

The pre-processing procedure consists of three sub-steps: equalisation, discussed in Section 2.1.1, 

segmentation, outlined in Section 2.1.2, and ridge amplification, described in Section 2.1.3. 

2.1.1 Image Equalisation 

Let I bean � × � image whose elements �(�, �) with � = 1, … , � and � = 1, … , � range from 0 to 

� − 1 (when � is an 8-bit image, � = 256); additionally suppose that local minima correspond to 

ridges and local maxima to valleys. We start with a linear scaling of � in order to use the full grey 

level range. Then the histogram of the scaled image is convolved with a Gaussian kernel to 

improve its smoothness, and a simple adaptive procedure is used to compute a boundary value 

between dark pixel values, i.e. ridges, and bright pixel values, i.e. valleys. The equalised imageI  

is computed by a piece-wise linear transformation that maps the threshold value in the middle of 

the histogram, and removes small grey values variations around 0 and L − 1 which are often 

useless, see [22] for a detailed description of this equalization step. 

2.1.2 Image Segmentation 

The removal of the border is a fast preliminary step for the enhancement of the efficiency of the 

segmentation phase, since it reduces the area to process and it removes noisy parts often 

appearing on the border. 

The very first operation consists of analysing rows and columns of image, starting from the image 

border to the image centre, computing their grey level variation and, if not sufficiently high, 

setting to false the corresponding line in the foreground mask �". More precisely, we set a 
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minimum-allowed variation threshold #$, then for each line scanned a maximum variation % is 

computed and if % < #$ the corresponding line in the foreground mask is set to false. 

Since images often come from old fingerprint cards, they can present oblique lines in the image 

background, due to camera misalignment. These kind of lines, and the image part not relevant for 

the fingerprint analysis is removed from the foreground mask. Note that, �" accounts for the 

relevant part of the image and it is computed in the following procedure. We define a  5 ×
'(

) + 1+kernel ,-,as follows 

 ,- = (1,1,0, −1, −1). ⋅ (1,1, … ,1), (1) 

where the operator T stands for the matrix transposition.When ,- is convolved with the image �1, 

we get high responses at nearly horizontal lines; hence a line-fitting algorithm applied to the 

response matrix can find two lines: one near to the top border and another near to the bottom part 

of the image. So, we consider as background any pixel above the former line, and any pixel below 

the latter one. We can apply the same procedure using the kernel ,-2 and the image �12, to 

remove nearly vertical lines from of the foreground mask. A pseudo-code version of the border 

removal procedure is reported in Algorithm 1. 

Handwritten text may appear in fingerprint cards; the next step aims to remove these signals, and 

other small artifacts. We apply a median filter with a circular structuring element to balance the 

width of ridges and valleys, and a Gaussian filter that removes sharp transitions of grey level 

values. A minimum filter is then applied to the resulting image to enlarge the ridges; moreover 

the image is scaled to fit the range [0,13, squared and scaled again to the range [0, � − 13, with the 

same purpose. 

After this filtering step, a mask �4is created with true values where the image is under a fixed 

threshold #4and false values elsewhere. The mask �4is combined with the foreground mask 

�"computed in border removal procedure, by applying the element-wise logical conjunction ⋀ 

between them.The resulting mask is dilated to fill up the valleys, it is eroded to remove spurious 

parts, and the majority of its connected components are filtered out, keeping only the largest ones, 

where the holes are filled up. A final dilation is then performed to compensate for the previous 

strong erosion; the resulting mask is denoted with ��. 

�6 ∶=matrix of 255s of the same size as �1 
for each row or column vector 8 
 % ∶= max< 8(�) − min< 8(�) 
 if % < #? then 
  fill with 0s the corresponding row or column of �6 

end if 
end for 

�1 ′ ∶=convolution of �1 with ,A 
// Compute the coefficients of the top and bottom oblique line 

B(CD , ED), (CF , EF)G ∶=line-fitting algorithm applied to �1′ 
for each point (�, �) such that (� < CD� + ED) ∨ (� > CF� + EF) 
 �6(�, �) ∶= 0 
end for 
// Repeat the operations for nearly vertical lines 

�1 ′ ∶=convolution of �1 2
 with ,A2 

B(CD , ED), (CF , EF)G ∶=line-fitting algorithm applied to �1′ 
for each point (�, �) such that (� < CD� + ED) ∨ (� > CF� + EF) 
 �"2(�, �) ∶= 0 
end for 

Algorithm 1 – Pseudo-code for the border removal procedure. 
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The reliability of the foreground mask is improved by using the information coming from the 

alternation of ridges and valleys; in particular, an edge detector, such as the well-known Canny 

edge detector, can highlight sharp transitions of the grey levels, producing a lot of lines close to 

each other where ridges and valleys alternate; elsewhere only small and isolated lines are created. 

Let �J be the mask produced by the edge detector, and �Jbe the image obtained convolving 

�Jwith a Gaussian kernel; we keep only the connected components of �J with sufficiently high 

mean intensity values, where the values are taken from �J.The resulting mask is dilated, eroded, 

filtered and dilated again as we did for ��; let �J be the final mask. 

The information coming from the two masks �� and �J is brought together by logical 

disjunction; the convex hull of the resulting mask is computed giving the desired foreground 

mask, that we keep calling �". 

2.1.3 Ridges amplification 

Ridges and valleys are not always clearly separated; in the following we define a procedure to 

locally enhance the difference between them. Let �R be the restriction of the equalised image �1 to 

the significant mask�" obtained in the segmentation step. We compute �( by applying a circular 

maximum filter to �R; in the same way we compute the image �L, applying a circular minimum 

filter to �R.Let MN, MO ∈ [0, � − 13be two threshold values, a linear transformation mapping 

MNto 0and MO to 255, is applied to �(to obtain a scaled image �M,J.In a similar way, from the 

thresholdsLN and LOis obtained �L,Jfrom �L. So each value of the initial image can be 

normalized to the new local minimum and maximum, and the final image �P can be computed as 

follows: 

 

�P(�, �) = �L,J(�, �) + �R(�, �) − �L(�, �)
�M(�, �) − �L(�, �) (�M,J(�, �) − �L,J(�, �)). (2) 

A demonstration of the efficacy of our pre-processing algorithm can be seen in Figure 2 and 

Figure 3, where the initial input image is shown on the left, and the final output on the right.  

 
Figure 2 – An application of our pre-processing technique to a fingerprint image, on the left; the right 

image is the algorithm output. 
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2.2 Orientation Extraction 

For the sake of simplicity, we denote � the image computed, in the pre-processing stage, that is 

the image denoted�P in Section 2.1. 

The orientation extraction procedure is composed of three steps: the orientation estimation, 

described in Section 2.2.1;the spatial period computation outlined in Section 2.2.2; and finally the 

orientation refinement, described in Section 2.2.3. 

2.2.1 Orientation Estimation 

The estimation of the local orientation field is performed using a bank of directional gradient 

filters; each filter is composed by two components: a Gaussian in a given direction, and a 

Gaussian derivative in the orthogonal direction. More precisely, givenR ∈ ℝS, we define the 

function,T,4: [−R, R3J → ℝ: 

 ,T,4(W, ) = X(W) ⋅ YZ[\(])
^N [O_N

⋅ YZ[\(`)
^O [O_O

, (3) 

whereX() =  − aT
J + 1b, andc�, d�, cJ, dJ > 0 are shape parameters. We select �P equally 

spaced angles ��, … , �ef ∈ [0, 	) and define the following group of directional gradient kernels: 

 

 ,T,g(�, �) = ,T,4(�cos �g + �sin �g , −�sin �g + �cos �g), (4) 

Where k = 1, … , �P, �, � = 1, … , R. The response to the k-th filter gives the directional image 

derivative along the direction with angle�g. 

An orientation estimation is extracted as follows: we convolve the image �with each kernel ,T,g, 

compute the absolute value of the response, and smooth it with a Gaussian filter; we call lg the 

resulting matrix. Letmg = a�g + n
Jb mod 	; pg = lgYqrs is a complex matrix with high-

magnitude elements where ridges have orientation given by angle �g. The desired orientation 

field p is computed as: 

 

Figure 3 – Another example to assess the validity of the pre-processing technique outlined in Section 2.1. 
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p(�, �) = t lg(�, �) ⋅ Yqrsef
gu�
t lg(�, �)ef

gu�
= t pg(�, �)ef

gu�
t lg(�, �)ef

gu�
. (5) 

To describe the local orientation field we have used the upper complex half-plane representation; 

indeed p maps each pixel to an element of ��, identifiable with a complex number with phase 

angle in the interval [0, 	). Additionally, the magnitude of the complex number gives the 

reliability of the orientation in that point. As well pointed out by Kass and Witkin[23], when we 

perform operations among orientations, we have to convert them to a continuous vector field; in 

our case it is sufficient to square the orientations as complex numbers, thus doubling the angles, 

perform the necessary operations, and then take the square root of the result, that halves the 

angles and brings them back in the range [0, 	). 

 

A Gaussian smoothing must be performed to remove sharp transitions, arising from the use of NP 

pre-defined orientations; the smoothing must be preceded by squaring and followed by the square 

root computation, as described before. Finally, an absolute value normalisation must be applied to 

the orientations field; this operation deals only with magnitudes and does not need to be 

surrounded by squaring operations. 

2.2.2 Spatial Period Computation 

From the orientation field p we can estimate the distance between two consecutive ridges. Let 

be the set of the indices of entries in p; note that, these entries are selected by choosing a uniform 

grid of p.For each point (�w, �w),we consider the fixed-length segment centred at (�w, �w) and 

orthogonal to the orientationp(�w, �w); on this segment we select �xuniformly distributed points, 

and for each of these points an orientation yw,g ∈ ℂ and a value zw,g ∈ [0, � − 13,k = 1, … , �x, 

are obtained by respectively interpolating the field p and the image�. 

In order to consider the {-th segment sufficiently reliable, a minimum threshold ~ is chosen and 

the condition minB|yw,g|Ggu�,…,e~ > ~ must be fulfilled, otherwise the segment is skipped. Let us 

suppose that the {th segment is reliable, we consider the discrete signalzw,g, k = 1, … , �x,to 

which a low-pass filter is applied. From the discrete Fourier transform of the resulting signal is 

computed the spatial frequency ��,wthat corresponds to the first peak after the zero-frequency. The 

spatial frequency for the whole image can be computed as 

 

�� = 1
��

� ��,w

e�

wu�
. (7) 

The spatial period ��, i.e. the distance between two consecutive ridges, is given by �� = e~
��

. 

2.2.3 Orientation Refinement 

Let 6 be a rectangular region in the image �, and ℱ: 6 → ℂ be an orientation field defined on 6, 

possibly given by the initial estimationp; we denote with ℱ(�) the orientation ℱ(�, �) at 

point� = (�, �). ∈ 6. 

Our algorithm to refine the orientation field relies on three operators:adjuster, smoother, drifter. 

Let �� = B�gGgu�,…,e� ⊂ ℝJbe a set of �� points selected from the circumference of radius 

� ∈ ℕ centred at �; for every k = 1, … , �� , let �g = �g ∙ ı + ��g ∙ ȷ, where ı and ȷare the usual 

vectors of the canonical base forℝJ, � is the imaginary unit and⋅denotes the inner product. Let�P 

be the orientation field: 

 B(�w, �w)|{ = 1, … , ��G (6) 
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�P(�) = � sgn
e�

gu�
[�g(�)3�gJ(�)ℱ(� + �g), (8) 

where 

 

�g(�) =
ℜ ' ℱ(�S�s)

|ℱ(�S�s)|
�s����

|�s|+
∑ ℜ ¡ ℱ(�S�¢)

£ℱ(�S�¢)£
�¤���

£�¢£¥
e¦<u�

, (9) 

�g���is complex conjugate of �g, and | ⋅ | is the absolute value inℂ. Essentially �P(�) is the 

weighted sum of the field value over the circle of radius � centred in �; the weights are given by 

the function �g(�), and the sign function gives to ℱ(� + �g) the same orientation of the radial 

vector �g. 

The adjuster §of the orientation fieldℱis defined as: 

 §4[ℱ3J(�) = (1 − W)ℱ(�)J + W�P(�)J, (10) 

 

 §[ℱ3(�) = §4[ℱ3(�)
|§4[ℱ3(�)| max(|ℱ(�)|, |�P(�)|), (11) 

where W ∈ (0,1)is a relaxation parameter. In formula (10) the fields are squared before the 

addition; as above mentioned, this is a preliminary operation required to process any orientation 

field. The formula (11) gives a normalization of the adjusted field §[ℱ3 in such a way that its 

magnitude is not less than the magnitude of the field ℱ. 

The second operator, i.e. the smoother¨, is defined through operator 

 

�x(�) = � sgn
e�

gu�
[©g(�)3�gJ(�)ℱ(� + �g), (12) 

where �g(�) is defined as in (9), 

 

©g(�) =
ℜ ' ℱ(�S�s)

|ℱ(�S�s)|
ℱ(�)������

|ℱ(�)|+
∑ ℜ ¡ ℱª�S�¢«

£ℱª�S�¢«£
ℱ(�)������

|ℱ(�)|¥
e¦
<u�

. (13) 

The sum in formula (12) is different from the one in (8), because the sign function now gives to 

ℱ(� + �g) the same orientation of ℱ(�). The smoother ¨of the orientation fieldℱis defined as: 

 

 ¨4[ℱ3J(�) = (1 − W)ℱ(�)J + W�x(�)J, (14) 

 

 ¨[ℱ3(�) = ¨4[ℱ3(�)
|¨4[ℱ3(�)| max(|ℱ(�)|, |�x(�)|). (15) 

For these relations holds an observation similar to the one made for relations (10) and (11). 

The third operator, i.e. the drifter, is given in two versions: the tangent-weighted drifter ¬2 and 

the normal-weighted drifter ¬e; they are defined as follows: 

 

¬2[ℱ3(�) = � �g(�)ℱ(� + �g)
e�

gu�
, (16) 
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¬e[ℱ3(�) = � zg(�)ℱ(� + �g)
e�

gu�
, (17) 

where zg(�) is defined as 

 

zg(�) =
ℑ ' ℱ(�S�s)

|ℱ(�S�s)|
�s����

|�s|+
∑ ℑ ¡ ℱª�S�¢«

£ℱª�S�¢«£
�¤���

£�¢£¥
e¦
<u�

, (18) 

and ℑ stands for the imaginary part of a complex number. The main difference between these 

operators is that ¬e gives higher weights to field values normal to the radial vector, while ¬2 

produces higher weights to the ones tangent to the radial vector. 

 

Figure 5 – The image on the left exhibits the orientation field computed by our algorithm, while the image 

on the right shows the output of its refinement 

 

Figure 6 – Two magnified details from Figure 4; the extracted orientation is shown on the left column, its 

refined version in the right column 

 

The smoother is actually the operator that enhances the orientation field, and gives global 

coherence even in the noisy parts. Applying it to the whole field may be dangerous, since it shifts 

loops ahead along their symmetry axis; hence we need a reliable mask that hides loops, to safely 
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apply the smoother. In the following we will make use of the properties of all the three operators 

to create such a mask. 

The extraction of the orientation field throughdirectional gradient filters makes the loops shift 

ahead along the symmetry axis; the application of the smoother, as we mentioned before, 

emphasises that effect. The adjuster is very important because it has a rounding effect nearby the 

loops, and it is able to bring the loop centre back in the right position. 

Suppose that � is the image, p the orientation field, �" the foreground mask and �® the distance 

between two consecutive ridges obtained from the previous steps. The very first operation is a 

new estimation of the orientation field using directional gradient filters of radius 
¯
J �®; let p� be 

the resulting field. Let °® > 0,we apply the smoother, with radius °®�®, to globally improve the 

field, even with the already mentioned drawbacks. Let °±N > 0 be another scaling factor, 

¬2²¨[p�3³ and ¬e²¨[p�3³ are computed, both with radius °±N�®; both the tangent-weighted and 

the normal-weighted drifter have high magnitude on loops, highlighting different part of it, so if 

they are used together the loop position and extension are more accurate. A remarkable property 

in an orientation field is the duality between loops and deltas through complex conjugation; we 

will make use of it in the following. Let #� > 0 be a threshold value and �� be the mask defined 

as 

 

Figure 7 – Magnified version of two details taken from Figure 5 

 

 �� = £¬2²¨[p�3³£ + £¬e²¨[p�3³£ − £¬2²¨[p����3³£ − £¬e²¨[p����3³£
2 > −#�, (19) 

where p���� stands for the complex conjugate of the orientation field p�. The mask �� has false 

entries only on deltas. Finally a logical conjunction is applied to the mask and the initial mask 

�", to join the information coming from the segmentation step; morphological erosion is 

performed to be sure that deltas are fully uncovered. An image �� is computed from the mask 

through Gaussian blurring. 

Another orientation fieldpJ is computed using a radius of 
�
J �®; since pJ is less sensitive to 

orientation changes, the loop structure may be altered and we use the adjuster to recover it. Let § 

be the adjuster operator of radius °´�®. In this case, for each entry, we use a different strength 

value that is given by the strength image ��; in this way the adjuster does not operate on deltas, 

preserving their integrity, while loops are improved. Let #J > 0 be a fixed threshold value and �J 

the mask defined as 
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 �J = £§²¨[pN3³Z§[pO3£
J > #J. (20) 

The mask �J is then combined with the initial mask �" by logical conjunction, the smallest 

connected component are removed, and a final dilation is performed. This mask highlights the 

differences between the two orientation fields ¨[p�3 and pJ; these parts are very sensitive to 

changes in the radius used to compute the orientation fields, while an ideal fingerprint would not 

do that, thus these parts need to be improved by the smoother. 

Now we get a more accurate mask with highlighted loops and deltas; we use the same idea as in 

(19), but using the adjusted field p¯ = §²¨[p�3³. So let 

 

 �¯ = |¬2[p¯3| + |¬e[p¯3| − |¬2[p¯���3| − |¬e[p¯���3|
2 . (21) 

After having blurred the image with a Gaussian kernel, we can get a loop-delta mask as follows; 

let #¯ > 0 be a fixed threshold value, �4 the erosion of the initial mask �", we compute 

 

Algorithm 2 – Pseudo-code for the iterative smoothing 

 �¯ = (|�¯| > #¯) ∧ �4. (22) 

Finally, the smallest connected components are removed from the mask �¯. The mask �¯ is used 

to remove singularities from the differences mask �J as follows 

 

 �) = �J ∧ ¬�¯, (23) 

 

where ¬ is the usual logical negation operator. A final dilation is performed on �) before starting 

the iterative smoothing procedure, so that the mask contains only the parts of the orientation 

fields that need to be improved and covers completely the singularities. 

 

The last stage of the algorithm is an iterative smoothing procedure, where the smoother improves 

the orientation field over the mask until a halting condition is verified. In Algorithm 2 a pseudo 

code outlines our iterative smoothing algorithm. 

 

Note that, at each step of this procedure the smoothing is performed, a difference mask with the 

previous field is computed and combined with the erosion of the previous mask through a logical 

conjunction to guarantee convergence; the algorithm stops when the current mask is empty. 

A couple of examples are provided through Figure 4 and Figure 5, to witness the efficacy of our 

algorithm for the orientation refinement. In each figure, on the left the initial orientation field 

estimation is shown, while the results of the refinement procedure are exhibited on the right. 
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3. EXPERIMENTAL RESULTS 

In this section some of the results obtained through our algorithm are shown; in particular we 

want to assess the validity of the orientation extraction and refinement procedure. Several images 

have been taken as input for our method and processed using the following parameters: R =  15, 

c� = 1, d� = 2, cJ = 0.85, dJ = 2, �P = 36, �x = 31,~ = 0.25, °® = 1, °±N = 1, #� = 0.3, 

°´ = 0.7, #J = 0.5, #¯ = 0.1. In this paper we show only four, that best illustrate the good 

behavior of our method. 

Figure 6 shows two magnified details taken from Figure 4. In the upper row we can see the area 

surrounding the loop; before the refinement the orientation field does not follows the ridges 

where their curvature is very high, due to the use of directional gradient filters. However, the 

refinement procedure is able to reconstruct the real orientation field, shifting the loop centre back 

along its symmetry axis. Furthermore, we can see in the lower row of Figure 6 that the refinement 

algorithm is also able to recover the field in a noisy area, where the signal is very disturbed. 

Another example of the benefits of our method comes from Figure 7, where a detail taken from 

Figure 5 is magnified. The left image presents the initial orientation field, estimated as outlined in 

Section 2.2.1; on the right image the corresponding refined orientation field is shown. Due to a 

crease and the use of directional gradient filters, the loop centre is far from its real position; the 

refinement procedure improves the field yielding very good results, even in this case. 

 

 

Figure 8 – Another example to assess the benefits of our refinement procedure. On the left column there are 

the orientation fields before the improvement, on the right column there are their refined counterparts 
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In Figure 8 we exhibit a fingerprint image that, despite the application of our refinement 

procedure, still presents some issues. In the first column of Figure 8  there are the orientation 

fields before the application of the regularisation algorithm, while in the second column there are 

their corresponding refined version. The first two images from the top show the fingerprint 

globally; if we focus on some of its details we can observe that around loops the refinement 

performs very good, while in very noisy parts it cannot fully reconstruct the real orientation field. 

Despite the behaviour is not optimal, the procedure improves the local orientation field even in 

those areas. 

4. CONCLUSION 

This paper describes a gradient-based procedure to extract the orientation field, and introduces a 

novel approach to the regularisation of the extracted one. Some results have been shown in 

Section 3 to support the efficiency and reliability of our method. 

 

These results give an experimental evidence of the efficacy of the proposed algorithms; 

nevertheless, future investigations should be provided in order to assess precisely the algorithm 

performances. In particular, we will have to test our algorithm against a database with ground 

truth information, such as [24] and [25], and to compare this algorithm with other existing 

methods in terms of its accuracy and computational time. 

 

Another interesting study regards the theoretical properties of the operators defined in Section 

2.2.3with respect to singular points and perturbations (such as image noise, misaligned orientation 

field and so on) in the fingerprint structure. It is also worth noting the use of the proposed 

algorithm in the authentication and identification applications also included the computation of 

fingerprint minutiae. 
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