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ABSTRACT 

 

In this paper, an acoustic spectrum signature tracks matching algorithm based on the Manhattan distance 

and the Euclidean distance of signature vectors, and a multi-frame fusion algorithm are proposed for 

reliable real time detection and matching of boat generated acoustic signal spectrum signatures. The 

experiments results have shown that the proposed tracks matching algorithm has the ability to discriminate 

the tracks from different ships and the ability of matching of the tracks from the same ship; and the 

spectrum signature detection algorithm has captured the critical features of ship generated acoustic 

signals. In the process of signal spectrum signature detection, the observation of time and frequency space 

is structured by dividing input digitalized acoustic signal into multiple frames and each frame is 

transformed into the frequency domain by FFT. Then, a normalization of signal spectrum vector is carried 

out to make the detection process more robust. After that, an adaptive median Constant False Alarm Rate 

(AMCFAR) algorithm is used for the detection and extraction of boat generated spectrum signature, in 

which an extreme low constant false alarm rate is kept with relative high detection rate. Finally, the frame 

detections are accumulated to build up the track spectrum signatures. 
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1. INTRODUCTION 
 
Tracks matching plays an important role at detection and tracking of marine vehicles, including 

some underwater targets, such as submarine etc. The discrimination of targets is based on the 

comparison of the given spectra with the reference spectra available as endmembers in a spectral 

library. The comparison is done using the similarity as a criterion [1-4]. Stochastic measures such 

as spectral information divergence consider the spectral band to band variability as a result of 

uncertainty incurred by randomness. The spectrum can be modelled as a probability distribution 

so that the spectral properties can be further described by statistical moments of any order [1]. 

The hybrid approaches of spectral angle mapper and spectral information divergence is found to 

increase the discriminatory power as against the individual measures [4].  

Detection and extraction of underwater acoustic signal play an extremely important role in marine 

vehicle tracking and is one of the key technologies in underwater source detection, location, 

tracking, recognition and as well as acoustic communication [5–11]. Energy detection, feature 

detection and matched filter detection are commonly used range from high detection performance 

to low computation complexity, which can usually work well to some extent. Among these 
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researches of the underwater passive detection methods, energy detection is mostly discussed and 

used in practical for its merits of lowest computational cost and easy to realize, while shows a 

poor performance under low SNR marine environment. However, over the past several decades, 

the marine environment has been more complexed in both natural and anthropogenic influences 

that ambient noise revealed. And as a consequence, the existing underwater passive detection 

methods are facing serious challenges, for which advanced detection scheme with better 

performance is still worthy investigating, especially under low signal-to-noise ratio (SNR) region 

[12-14]. 

This paper is focused on the research of theoretic algorithm development and experiments of 

tracks matching, and automatic detection ship spectrum signature based on boat generated 

acoustic signals from hydrophone ([15-18]). In this paper, an observation space is created by 

dividing input acoustic signals into multiple frames, with each frame sampled and transformed 

into the frequency domain. Then, an Adaptive Median Constant False Alarm Rate algorithm [19] 

is used for automatic target detection of boat-generated acoustic signals in each frame to provide 

a low constant false alarm rate with relatively high detection rate. Finally, the track signal 

spectrum signature is built up by a multi-frame detection vector fusion algorithm, in which the 

signal-to-noise ratio (SNR) in the observation period has been increased in the detection phase. 

The proposed algorithms have been tested on real boat generated acoustic signals obtained from a 

hydrophone. 

2. MULTI-FRAME  SPECTRUM  SIGNATURE  DETECTION  IN TIME 

FREQUENCY DOMAIN 

In this section, the observation is created first. Then, an adaptive signal spectrum components 

detection algorithm is used for the signature detection. 

2.1. Multi-Frame Spectrum Observation Space 

The observation space for multi-frame spectrum detection and fusion is created by dividing input 

time domain signal into multiple frames, and each frame in transformed into frequency domain by 

using FFT, which is shown in Fig. 1, in which x-direction represent number of frequency bins, 

and the y-direction represent time or number of frames. 

 

 

Figure 1.  Observation space for the acoustic signal spectrum 
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2.2. Adaptive Spectrum Signature Detection Algorithm 

An adaptive CFAR spectrum signature detection algorithm used in this paper are structured based 

on the idea of median CFAR thresholding, and the normalization operation based Neyman-

Pearson (NP) criterion ([19-22]), which is widely adopted for signal detection application in 

either radar or sonar systems.  

The basic idea of the Neyman-Pearson detector is to reduce the false alarm rate and maximize the 

probability of detection. It has been proven that under the Neyman-Pearson criterion, the acoustic 

signal in the frequency domain needs to be normalized by the average noise power in the 

optimum detector [23].  

The whole multi-frame acoustic signal processing and detection algorithms employed in the paper 

is shown in Fig. 2. In which, the acoustic signals from hydrophone are sampled and converted 

into digital signals based on the Nyquist Sampling Theorem (Criterion) ([24-27]). In our 

experiments, the signals are originally sampled at 44.1kHz, then resampled to 2048 Hz, so the 

maximum frequency range in our scope is 1024 Hz. After that, the digital signal is divided into 

multiple frames with T=0.5 seconds for each frame, and the data processing period in digital 

format is N = 1024. 

 

Figure 2.  Adaptive Spectrum Signature Detection Multi-Frame Fusion Algorithms 
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The digital signals are then transformed into the frequency domain by using FFT (Fast Fourier 

Transform). Since the data processing period is 1024, we chose the same length, i.e. 1024 points 

as FFT length.  

Normally DC is the strongest component in the boat generated acoustic signals, which does not 

carry any useful information, but will affect the later processing, so it is necessary to remove DC 

component first. 

We assume that the boat generated acoustic signals are stable random process during the 

observation period, such as 15 to 20 seconds.  

In order to deal with various input signal strength and make the automatic target spectrum 

signature detection more robust, the normalization is performed in the frequency domain for the 

multi-frame spectrum fused vector by its magnitude. At this stage, each element in the multi-

frame fusion vector is divided by the magnitude of the vector (geometric length). After 

normalization, a magnitude scaling factor of 40 dB (100 times) is used to give the signal a more 

practical range. 

The multi-frame spectrum fusion vector normalization is described as follows 
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in which L is the number of frequency bins in the fusion vector and kf is the scaling factor. 

In traditional sonar systems, signal detection is realized by a constant thresholding. Instead, in our 

approach, a floating threshold vector for the multi-frame fusion vector is calculated based on an 

Adaptive Median CFAR algorithm, in which the threshold for each frequency bin is adapted by 

the median value over a sliding window. This is performed in two steps: in the first step, the 

median threshold of the normalized spectrum vector is subtracted from the original normalized 

spectrum vector. In the second step, the difference calculated in the first step is compared with a 

constant CFAR threshold (∆), and if the difference is big enough to cross the constant threshold, 

the bin is reported as the target frequency, otherwise, it is reported as noise component. The 

parameter is called sensitivity, as the bigger the ∆ is, the less sensitive our detection system is on 

weak signals. Since the CFAR threshold in each bin is adapted to its neighbourhood background 

noise, it will keep our automatic spectrum signature detection system at a very low and constant 

false alarm rate. In the following, the AMCFAR algorithm is described in details. 

The Median Constant False Alarm Rate (Median CFAR) threshold vector, 
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is calculated by feeding   into a Median filter (whose properties and size will be discussed in the 

next section) as follows: 

{ }kinorminormkinormithreshold xxxMedianx +−= ,,,, ,,,, LL
             (3)

 

The Median filter size is ),12( +k  with 3,2,1=k  . In order to deal with the boundary case, both the 

input signal spectrum vector and the threshold vector are treated as wrapped period signals. The 
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multi-frame fusion vector detection is based on the comparison of the difference between vectors 
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The  
i j

y values are either equal to 1 or 0, which are the detected frequencies based on the multi-

frame fusion detection. As boat-generated signals typically last at least 20 to 30 minutes, it is 

reasonable to treat the signal stable random process in the observation period of 15 to 20 seconds, 

and it has been proven that the proposed algorithm can significantly improve the detection rate.  

In order to increase the signal-to-noise ratio in frequency domain, a multi-frame detection vector 

fusion is used in the paper as shown in Equation 6. 
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Where M is the number of frames in the observation period, and L is the number of frequency 

bins in each frame. 

3. SIGNATURE TRACKS MATCHING 

The discrimination of targets is based on the comparison of the detected signature spectrum with 

the reference spectra stored in our spectral database, and the comparison is carried out by using 

the similarity or distance between spectrum signature vectors. The tracks matching algorithm is 

shown in Fig. 3, in which we can see that the final decision of whether the two signature tracks 

are from different ships or from the same ship is based on blocks matching and final fusion, and 

each block consisted of 15 frames, and each frame is a 1024 point spectrum vector.  

The blocks matching is based on the similarity or distance measurements between two spectrum 

signature vectors, which include Manhattan and Euclidean distance distances in our proposed 

tracking algorithms.  
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Figure 3.  Tracks matching algorithm  

Manhattan distance: Manhattan distance is also called taxicab distance. A taxicab geometry is a 

form of geometry in which the usual distance function or metric of Euclidean geometry is 

replaced by a new metric in which the distance between two points is the sum of the absolute 

differences of their Cartesian coordinates. The taxicab metric is also known as rectilinear 

distance, L1 distance, L1 distance or  
1
l norm (see 

pL space), snake distance, city block distance, 

Manhattan distance or Manhattan length, with corresponding variations in the name of the 

geometry. The latter names allude to the grid layout of most streets on the island of Manhattan, 

which causes the shortest path a car could take between two intersections in the borough to have 

length equal to the intersections' distance in taxicab geometry. 

Formal definition: The taxicab distance, d(Sig1, Sig2), between two vectors Sig1 and Sig2 in an N 

dimensional real vector space with fixed Cartesian coordinate system, is the sum of the lengths of 

the projections of the line segment between the points onto the coordinate axes. More formally, 
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where Sig1 and Sig2 are vectors Sig1 = (Sig11, Sig12,..., Sig1N), and Sig2 = (Sig21, Sig22,..., Sig2N). 

For example, in the plane, the taxicab distance between  
1
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2
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=
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Euclidean distance: In similarity measurement, we also use the Euclidean distance or Euclidean 

metric, which is the "ordinary" straight-line distance between two points in Euclidean space. With 

this distance, Euclidean space becomes a metric space. The associated norm is called 

the Euclidean norm, or a  generalized term for the Euclidean norm is the L2 norm or L2 distance. 
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The Euclidean distance between signature points Sig1 and Sig2 is the length of the line 

segment connecting them .In Cartesian coordinates, if the two spectrum signatures 

Sig1 = (Sig11, Sig12,..., Sig1N) and Sig2 = (Sig21, Sig22,..., Sig2N) are two points in Euclidean N-

space, then the distance (d) from Sig1 to Sig2, or from Sig1 to Sig2 is given by the Pythagorean 

formula: 
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Stochastic measures such as spectral information divergence consider the spectral band to band 

variability as a result of uncertainty incurred by randomness. The spectrum can be modelled as a 

probability distribution so that the spectral properties can be further described by statistical 

moments of any order. The hybrid approaches of spectral angle mapper and spectral information 

divergence is found to increase the discriminatory power as against the individual measures.  

4. RELATED WORKS AND DISCUSSION 

In this paper, a ships matching algorithm based on Manhattan distance and Euclidean distance, a 

multi-frame detection fusion and an adaptive signal spectrum detection algorithms are proposed, 

in which the tracks from different ships can be easily discriminated by both Manhattan distance 

and Euclidean distance; the spectrum signature detection algorithm captured the critical features,  

with a low false alarm and relative high detection rates in the frequency domain; and the signal-

to-noise ratio in each frequency bin is increased by a multi-frame fusion algorithm. The input 

acoustic signal is sampled and divided into multiple frames. Then each frame is transformed into 

the frequency domain by using FFT. After that, the target generated frequency spectrum will be 

detected based on accumulated and normalized spectrum vector by the proposed adaptive 

algorithm, in which the basic idea of the detection algorithm is that of using, for each frequency 

bin, different, adaptive CFAR (Constant False Alarm Rate) thresholds [8] rather than a single, 

constant threshold (which is often the case in acoustic systems), which is described below. Then, 

a multi-frame fusion on is carried out by accumulating single frame detection result vectors in the 

observation period, for example, in 15 seconds, equivalent of 30 frames in our experiments. 

Finally, the tracks matching is carried out based on the given Manhattan distance and Euclidean 

distance measurements.  

The basic idea of CFAR thresholding is that every single threshold of each frequency bin is 

computed based on the surrounding background noise. The higher the background noise, the 

higher the threshold is set. Moreover, our algorithm uses a median filter window centered at each 

frequency bin to adapt the threshold value. To the best of our knowledge, while this idea is often 

used in radar system to obtain lower false alarm rate with relatively higher target detection rate, it 

is applied here for the first time to sonar-generated acoustic signals.  

Since the Median Filter is good at removing high frequency spot noise, it is a very effective way 

to calculate the threshold vector, which is independent of specific signals. As such, the Adaptive 

Median CFAR algorithm proves superior to other common approaches such as constant 

thresholds or average-based thresholds. The major advantage of the Median filter is in its ability 

to remove interferences such as strong signal or noise spikes without affecting the sharpness of 

edges (retaining sharp edges after filtering). Conversely, with an Averaging Low Pass Filter, 

which is equivalent to the Average CFAR algorithm, sharp edges will be blurred after filtering. 

Moreover, every bin in the averaging window will affect the threshold value, especially when the 

signal or a noise spike is strong. Evidence of the superiority of the median filter with respect to 

average filters for signal detection can also be found in [15]. 
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The size of Median Filter window is an odd number, which can be )12(,,7,5,3 +kL . From our 

experiments, a window size of 5 has been proved to be the most appropriate. 

The combination of multi-frame spectrum fusion and adaptive CFAR detection makes the whole 

detection system extremely robust and reliable. As boat-generated signals have relatively long 

duration, we have used a multi-frame spectrum fusion, i.e. time-integration over multiple frames 

which significantly improves the SNR. Although this step introduces a delay in early detection of 

incoming boats in the order of 15 seconds, this is completely negligible with respect to the typical 

travelling speeds of monitored boats. The Adaptive Median Filter Constant False Alarm Rate 

(AMCFAR) algorithm is used to detect boat signature with relatively high detection rate while 

maintaining a low and constant false alarm rate.  

5. EXPERIMENTAL RESULTS OF TRACKS MATCHING AND ADAPTIVE 

SIGNATURE DETECTION ALGORITHM BASED ON THE MULTI-

FRAME FUSION  

The test signals are provided by Soncom PTY LTD from “C-Buoy/Off-Buoy Processor Sea 

Trials’ at Low Islets, Australia (16.3833° S, 145.5667° E) on 17 June 2002. The proposed tracks 

matching, multi-frame spectrum fusion and adaptive signature detection algorithms have been 

successfully tested on several real ship generated signals in the following, which include the 

signals called “Naiad1” and “SF6” for reference. 

5.1. SPECTRUM SIGNATURE DETECTION TEST 

The proposed algorithms have been coded in Matlab, and the signature detection results have 

been shown in Figs. 4 and 5. Fig. 4 (a) shows us that the “Naiad1” boat signal has a pretty wide 

frequency band with a quite weak strength, which spreads between about 40 to 1k Hz, with the 

main frequency component at about 200 Hz and the strength of these frequency components 

between 0.5 to 4 dB. Fig. 4 (b) shows us the binary detections based on the Median CFAR 

threshold, in which the floating CFAR threshold vector has adapted to its original normalized 

multiple spectrum fusion vector to avoid any false detections.  Fig. 4 (c) shows us the detected 

spectrum signature of “Naiad1” in the observation period with the normalized multiple frame 

spectrum vector, in which we can see that the spectrum signature has been reliably detected 

without any false detections. 

 

Figure 4 Experimental results of “Naiad1” with the adaptive median CFAR algorithm with the sliding 

window size of 5, and proposed multiple frame fusion algorithms (block size: 45; initial frame number: 40). 
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5.2. “SF1” BOAT SIGNAL TEST 
 

The proposed Adaptive Median CFAR detection and Multi-Frame spectrum fusion Algorithms 

have also been tested on “SF1’” boat signal, and the test results are shown in Fig. 5. Fig. 5 (a) 

shows us that the “SF1” boat signal has also a pretty wide frequency band, which spreads 

between about 50 to 380 Hz, and 700 to 900 Hz, with the main frequency component at about 200 

Hz 750 Hz, and the strength of these frequency components between 5 to 25 dB. Fig. 5 (b) shows 

us the binary detections with the Median CFAR threshold, in which the floating CFAR threshold 

vector has adapted to its original normalized multiple spectrum. accumulated spectrum fusion 

vector, in which the SNR has been significantly improved, and it also shows us the normalized 

multiple spectrum fusion vector (blue) vs its fusion vector to avoid any false detections. Fig. 4 (c) 

shows us the detected spectrum signature of “SF6” in the observation period (red) with the 

normalized multiple frame spectrum fusion vector (green), in which we can see that the spectrum 

signature has been reliably detected without any false detections. The overall procedure is 

computationally light, thus allowing us cost-effective real-time implementation even on systems 

with limited computational power and size constraints such as on-board embedded computers. 

 

 
 
Figure 5 Experimental results of “SF1” of the proposed multiple frame spectrum fusion and adaptive 

median CFAR algorithm with sliding window size of 5.  (block size: 45; initial frame number 10) 

   

5.3. TRACKS MATCHING BASED ON MANHATTAN DISTANCE- “NAIAID1”  

VERSUS “SF1” SIGNALS 

The proposed tracks matching algorithm has been tested on signal “Naiad1” and “SF1”. Each 

track has 9 blocks, and each block is consisted of 15 frames, and the spectrum signature of each 

block is calculated based on the single fame detection and fusion in the same block. The spectrum 

signatures of the two tracks are shown in Table 1 (a), (b) and (c). 
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Table 1(b).  Detected block spectrum signatures (block size: 15 frames; number of blocks: 9). 
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Table 1(c).  Detected block spectrum signatures (block size: 15 frames; number of blocks: 9). 
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In Table 1, we can see that the spectrum signatures in two tracks of different ships are quite 

different, and the similarities of the spectrum signatures from the same ship are much more than 

that from the different ships, but there are also some variations in the same track. 

The calculated Manhattan distances between the two tracks in Table 1 are shown in Table 2.   

Table 2.  The Manhattan distances between Track 1 (Naiad1) and Track 2 (SF1) 

 

Table 2 shows us that the Manhattan distances between Track 1 (Naiad1) and Track 2 (SF1) are 

around 1600. 

 

5.4. TRACKS MATCHING BASED ON EUCLIDEAN DISTANCE- “NAIAID1”  

VERSUS “SF6” SIGNALS 

The calculated Euclidean distances between the two tracks in Table 1 are shown in Table 3. 

Table 3.  The Euclidean distances between Track 1 (Naiad1) and Track 2 (SF1) 

 Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8 Block 9 

Naiad1/ 

SF6 

139.11 141.42 140.58 140.51 140.45 139.93 139.90 138.52 140.71 

 

Table 3 shows us that the Manhattan distances between Track 1 (Naiad1) and Track 2 (SF1) are 

around 140. 

5.5. TRACKS MATCHING BASED ON MANHATTAN DISTANCE- “NAIAID1” 

VERSUS “NAIAID1” SIGNALS 

The matching of two tracks that are actually from the same target ship is tested by using the data 

from the same track but shifted by about one block. 

The calculated Manhattan distances between the two tracks (Naiad1 and Naiad1 by shifting 

around 1 block) are shown in Table 4 . 

Table 4.  The Manhattan distances between Track 1 (Naiad1) and Track 2 (Naiad1) 

 Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8 Block 9 

Naiad1/ 

Naiad1 

251.19 395.77 239.82 392.91 282.74 312.61 303.35 769.51 547.03 

 

 

 Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8 Block 9 

Naiad1/ 

SF1 

1547.18 1685.19 1829.72 1549.87 1367.08 1585.52 1575.00 1964.62 1912.40 
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Table 4 shows us that the Manhattan distances between Track 1 (Naiad1) and Track 2 (Naiad1) 

with 1 block shift) are around 300. 

5.6. TRACKS MATCHING BASED ON EUCLIDEAN DISTANCE- “NAIAID1”  

VERSUS “NAIAID1” SIGNALS 

The calculated Euclidean distances between the two tracks (Naiad1 and Naiad1 by shifting 

around 1 block) are shown in Table 4 . 

Table 5.  The Euclidean distances between Track 1 (Naiad1) and Track 2 (Naiad1) 

 Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8 Block 9 

Naiad1/ 

Naiad1 

34.86 48.96 33.02 46.88 35.65 39.72 38.04 81.39 51.71 

 

Table 5 shows us that the Euclidean distances between Track 1 (Naiad1) and Track 2 (Naiad1) 

with 1 block shift) are around 40. 

5.7 TRACKS MATCHING (DISCRIMINATION) BASED ON MANHATTAN 

AND EUCLIDEAN DISTANCES 

The power of discrimination (difference) or matching (similarity) of proposed algorithms are 

tested by plotting the Manhattan and Euclidean distances of tracks from different target tracks or 

from the same target tracks on the same space, drawing a line to separate them. 

TRACKS MATCHING (DISCRIMINATION) BASED ON MANHATTAN DISTANCE:  

The Manhattan distances between Track 1 (Naiad1) and Track 2 (Naiad1) (with 1 block shift) is 

shown in Figure 6 in red lines, and the Manhattan distances between Track 1 (Naiad1) and Track 

2 (SF1) are shown in green lines. 

 

Figure 6. The Manhattan distances between Track 1 (Naiad1) and Track 2 (Naiad1) (with 1 block shift), 

and distances between Track 1 (Naiad1) and Track 2 (SF1). 

Figure 6 shows us that the tracks distances of different target ships “Naiad1” versus “SF1” are 

around 1600, but the tracks distances of the same target ship “Naiad1” versus “Naiad1” are 
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around 300. So, by drawing a line around 1000, it is very easy to separate the tracks of the same 

ship from the tracks from different ships.  

TRACKS MATCHING (DISCRIMINATION) BASED ON EUCLIDEAN DISTANCE: 

The Euclidean distances between Track 1 (Naiad1) and Track 2 (Naiad1) (with 1 block shift) is 

shown in Figure 7 in red lines, and the Euclidean distances between Track 1 (Naiad1) and Track 2 

(SF1) are shown in green lines. 

 

Figure 7. The Euclidean distances between Track 1 (Naiad1) and Track 2 (Naiad1) (with 1 block shift) , 

and distances between Track 1 (Naiad1) and Track 2 (SF1). 

Figure 7 shows us that the tracks distances of different target ships “Naiad1” versus “SF1” are 

around 140, but the tracks distances of the same target ship “Naiad1” versus “Naiad1” are around 

40. So, by drawing a line around 90, it is very easy to separate the tracks of the same ship from 

the tracks from different ships.  

 

6. CONCLUSION AND FUTURE WORK  
 
In this paper, an acoustic spectrum signature tracks matching algorithm based on the Manhattan 

distance and the Euclidean distance of signature vectors, and a multi-frame fusion algorithm are 

proposed for reliable real time detection and matching of boat generated acoustic signal spectrum 

signatures. In which, an adaptive median constant false alarm rate algorithm has been used for 

effective spectrum signature detection of boat-generated acoustic signals, in which a low constant 

false alarm rate is kept with relatively high detection rate. The proposed algorithms have been 

tested on many real acoustic signals recorded from hydrophone at a site on the Australian 

coastline, two of them are shown in the paper. The statistical analysis and experimental results 

showed that the proposed algorithms have increased the SNR significantly in the observation 

period, and have kept a very low false alarm rate and relatively high detection rate for the whole 

detection system. 

 

The following conclusions can also be drawn: 

 

1) The experiments results have shown that the proposed tracks matching algorithm has the 

ability to discriminate the tracks from different ships and the ability of matching of the tracks 

from the same ship; and the spectrum signature detection algorithm has captured the critical 

features of ship generated acoustic signals.  
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2) The proposed multi-frame fusion algorithm has increased the SNR significantly, and made 

the whole detection more robust. 

 

3) The proposed Adaptive Median CFAR algorithm is used to detect target frequency signature 

from a multiple frame fusion spectrum vector, keeping our automatic target detection system 

at low and constant false alarm rate. This algorithm has been proven that it is especially good 

for detecting LOFAR target frequency components. 

 

4) A magnitude normalization (in the frequency domain) is used to keep our automatic detector 

more robust to noise and spurious frequencies. 

 

5) With the default sensitivity value, most target frequency components are correctly detected. 

Further decreasing the sensitivity value makes the false detection rate (alarm rate) lower, but 

at the same time less target frequency components will be detected. 

 

6) The boat-generated frequency spectrum signature can be detected with high accuracy. In the 

experiment reported in this paper, the detected boat-generated frequencies of ‘Naiad1’ and 

‘SF1’ are very close to the “ground truth”. 

 

Future work: 
 

1) Recognition - The detected spectrum signatures can be used for ship recognition and tracking 

in the future, in which the study of similarity measures between ship spectrum signatures, 

and the neural network can also be possibly applied for the recognition of detected ships, 

based on a database of collected spectrum signatures. 

 

2) Tracking-The proposed real time processing and detecting based sonars can be connected 

into a worldwide undersea network, in which the ships around each sonar can be detected, 

tracked, and displayed in a control center. 

 

3) Arrays processing - Sonar array processing based on the proposed algorithm as a building 

block can also be used to increase the SNR of input signal, or detect the direction of 

incoming ships, [29-35] 
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