
International Journal of VLSI design & Communication Systems (VLSICS) Vol.2, No.3, September 2011

DOI : 10.5121/vlsic.2011.2302 21

TEST GENERATION FOR ANALOG AND

MIXED-SIGNAL CIRCUITS USING HYBRID SYSTEM

MODELS

Tarik NAHHAL
1
 and Thao Dang

2

1
Department of Mathematics and Computer Science, Hassan II University, Casablanca,

Morocco t.nahhal@fsac.ac.ma

2
VERIMAG, 2 avenue de Vignate 32000 Gières, France

Thao.Dang@imag.fr

ABSTRACT

In this paper we propose an approach for testing time-domain properties of analog and mixed-signal

circuits. The approach is based on an adaptation of a recently developed test generation technique for

hybrid systems and a new concept of coverage for such systems. The approach is illustrated by its

application to some benchmark circuits.

KEYWORDS

Hybrid System, Formal Methods in Conformance Testing, Analog and Mixed-Signal Circuit.

1. INTRODUCTION

The increasing need for analog and mixed-signal circuits has motivated the development in

design and test tools for these circuits[27]. Analog and mixed signal testing is considered to be a

very difficult task. Even when the area of the analog part in a mixed-signal circuit is small, the

cost of its testing covers a significant proportion of the global manufacturing cost.

In comparison with the digital counterpart, the specific difficulties of analog and mixed-signal

testing are the following. While digital testing can use simple fault models (such as stuck-at-

faults), fault models in analog designs are often complex and reflect the process-related

disturbances, such as parameter deviations or size changes which have an infinite domain of

possible values. In addition, the performance measures (such as transfert curves, frequency

characteristics) are more complex than patterns of 1’s and 0’s at the outputs in a digital circuit.

In this work, we focus on the problem of automatic test generation, which involves computing a

set of input patterns that permit detecting a given fault (for example, by comparing the differences

in the outputs with some predetermined tolerance thresholds). Test generation has been

considered for analog circuits such as in [13], [25], [20], for mixed-signal circuits such as in [2],

[15], [14], [29],[30], using a variety of techniques, such as static test generation [23],[28],

sensitivity computation [13], Monte-Carlo simulation [25], [26], and optimization [5].

Following the model-based design approach, we propose a new test generation method for analog

and mixed-signal circuits using hybrid system models. Hybrid systems are systems that combine

International Journal of VLSI design & Communication Systems (VLSICS) Vol.2, No.3, September 2011

22

discrete event systems and continuous systems and can naturally describe the behaviors of these

circuits. Formal verification of these circuits using these models has been investigated in [7], [10].

Our test generation method is built upon on an adaptation of a recently developed test generation

technique for hybrid systems, guided by a coverage measure [18]. The rest of the paper is

organized as follows. First, we briefly introduce the model and important testing notions, such as

conformance relation, test cases, test verdicts, coverage. We then formally state our testing

problem and present our test generation algorithm. Finally, we demonstrate the application of the

approach to three benchmark circuits.

2. TESTING PROBLEM

As a model for hybrid systems, we use hybrid automata [1]. In most classic versions of hybrid

automata, continuous dynamics are defined using ordinary differential equations (ODEs). The

behaviors of analog and mixed-signal circuits are however described using differential algebraic

equations (DAEs). We thus adapt the model to capture this particularity. Mathematically, the

behaviour of a (non-linear) analog circuit can be described by a set of DAEs:

Where x(t) ∊ �n
 denotes the state variables (internal voltages, currents, and outputs),

denotes their time derivatives, w ∊ W ⊆ �m
 is the circuit parameter vector, and

u: �+⟶U ⊆ �p
 is the input signal. When considering mixed-signal circuits that exhibit both

logical and continuous, their behavior can be naturally modeled using hybrid automata. Before

presenting the model, we remark that DAEs and ODEs are different in both theoretical and

numerical properties. We shall briefly discuss the DAE solving method we use in Section IV.

2.1. Hybrid Automata

A hybrid automaton is an automaton augmented with continuous variables.

Definition 1 (Hybrid automaton). A hybrid automaton is a tuple A= (X, Q, F, A, I, G,R) where

• X ⊂ �n
 is the continuous state space. We denote by V (A) the set of continuous variables

of A.

• Q is a finite set of locations (or discrete states).

• E is a set of discrete transitions.

• F = {Fq | q ∈ Q } such that for each q ∈ Q, Fq = (fq,Uq,Wq) defines a DAE

where w ∊ Wq ⊆ �m

is the parameter vector, and u: �+⟶Uq ⊆ �p
is the input signal.

We assume the existence and uniqueness of solutions of these differential algebraic

equations. Note that during the evolution of the system, the parameter w is constant.

• I={ Iq ⊆ �n
 | q ∊ Q } is a set of staying conditions.

• G ={ Ge | e ∊ E } is a set of guards such that for each discrete transition e ∈ , Ge⊆ Iq

• R={ Re | e ∈ E} is a set of reset maps. For each e=(q,q’) ∈ E, Re : Gq ⟶2 Iq’
 defines

how x may change when A switches from q to q’.

International Journal of VLSI design & Communication Systems (VLSICS) Vol.2, No.3, September 2011

23

A hybrid state is a pair (q, x) where q ∈ X and the hybrid state space is S=Q × X state (q, x) can

change in two ways: by continuous evolution and by discrete evolution. In location q the

continuous evolution of x is governed by the DAE

Let ϕ(t, x, u(·), p) be the solution of the DAE with the initial condition x, the parameter p

and under the input u(·). A continuous transition: where h > 0 is a

positive real number means that x’= ϕ(h, x, u(·), p) and for all t ∈[0,h[

ϕ(t, x, u(·), p) ∈ Iq . In other words, x’ is reached from x under the input u(·), and we say

that u(·) is admissible starting at (q, x) for h time. For a state (q, x), if there exists a

transition e = (q, q’) ∈ E and x ∈ Ge, then the transition e is enabled, the system can

switch from location q to q’ and the continuous variables can be assigned to a new value

x’ ∈ Re (x). This denoted by: and we say that the discrete transition e is

admissible at (q, x). We use the notation (q,x) ⟶(q’, x’) to simply indicate that (q’, x’) is

reachable from (q, x). We assume that discrete transitions are instantaneous. The hybrid automata

we consider are assumed to be non-Zeno.

For simplicity of presentation, we first assume a single initial state of the automaton

denoted by (qinit, xinit), and additionally all the paremeter set Pq are singletons. An

extension of the framework to a set of initial states and sets of parameters will be

discussed when we present our test generation algorithm.

Note that this model is non-deterministic. Indeed, in continuous dynamics the non-

determinism is represented by the set of admissible input functions. The discrete

transitions are non-deterministic because there might be continuous states at which the

system can either continue with the same continuous dynamics or make a transition. Also,

multiple transitions can be enabled at the same continuous states, and additionally, the

reset maps could also be set-valued. This non-determinism is useful for describing

disturbances from the environment and imprecision in modeling and implementation. To

define our testing framework, we need the notions of inputs and observations.

Inputs

An input of the system which is controllable (by the tester) is called control input; otherwise, it is

called disturbance input. We consider the following inputs:

• Continuous inputs. All the continuous inputs of the system are controllable. Since we

want to implement the tester as a computer program, we are interested in piecewise-

constant continuous input functions. Hence, a continuous control action, such as (ūq, h)

where ūq is the value of the input and h is the time step, specifies that the system

continues with the dynamics Fq under the input u(t) = ūq ¯ for exactly h time. We say that

(ūq, h) is admissible at (q, x) if u(t) = ūq is admissible starting at (q, x) for h time.

• Discrete inputs. The discrete transitions are partitioned in controllable and

uncontrollable discrete transitions. Those are controllable correspond to discrete control

inputs, and the others to discrete disturbance inputs. The tester emits a discrete control

action to specify whether the system should take a controllable transition (among the

enabled ones) or continue with the same continuous dynamics. In the latter case, it can

also control the values assigned to the continuous variables by the associated reset map.

International Journal of VLSI design & Communication Systems (VLSICS) Vol.2, No.3, September 2011

24

We denote a discrete control action of this type by the corresponding transition, such as

(q, q’).

In the remainder of the paper, for simplicity of explanation, we use the following

assumption: a continuous control action is of higher priority than any discrete input

actions. This means that after a continuous control action (ūq, h) is applied, no discrete

transition can occur during h time, i.e. until the end of that continuous control action.

This assumption is not restrictive, from a modeling point of view. As we shall see later,

by considering all the possible values of h we can capture the cases where a discrete

transition can occur before the termination of a continuous control action.

Definition 2 (Admissible Input Sequence). For a state (q, x), a sequence of input actions

i0, i1 . . . ik is admissible starting at (q, x) if the following conditions are satisfied:

• The first input action i0 is admissible at (q, x).

• For each i = 1, 2, 3, . . . , k:

- ii is admissible at (qi, xi) where (qi, xi) is the state such that .

Intuitively, this means that an admissible control sequence does not cause the automaton A to be

blocked.

Definition 3 (Trace). Given an admissible input sequence γ= i0, i1 . . . ik, the trace starting at

(q, x) under γ is defined as follows:

We use the notation to indicate that (q’, x’) is reachable from (q, x) after γ.

Admissible Control Sequences

It follows from the above assumption that uncontrollable discrete transitions cannot occur during

a continuous control action. However, they can occur between control actions. Hence, the result

of applying a control action is nondeterministic. Given a state (q, x) and a control action c, let σ =

σ0, σ1 , … σk be an input sequence that satisfies the following:

• σ0=c and all the other σi with i > 0 are disturbance input actions.

• σ is an admissible input sequence starting at (q, x).

Let ∑ (c, (q, x)) be the set of all sequences like σ. We can now define the set of traces reachable from

 (q, x) after a control action c as:

We also define the set of successors of (q, x) after a control action c as

Reach((q, x), c) = {(q’, x’) | ᴲ σ ∈ ∑ (c, (q, x)) }.

 We can now proceed to define an admissible control action sequence (or admissible control

sequence for short). Given a sequence of two control actions γ= c0, c1, we define

International Journal of VLSI design & Communication Systems (VLSICS) Vol.2, No.3, September 2011

25

where is the concatenation operator. Note that if c0 is admissible at (q, x) then

Reach((q, x), c0) is not empty; therefore, we say that γ = c0, c1 is admissible starting at (q, x)

if ∑ (γ, (q, x)) is not empty.

For a sequence γ of more than two control actions, ∑ (γ, (q, x)) can be defined similarly. We

denote by SC(A) the set of all admissible control action sequences. We can also define the set of

traces starting at (q, x) after an admissible control sequence γ as follows:

Observations

In this work, we focus on behavior of analog signals and thus the properties of interest involve

only continuous variables. We assume a set Vo(A) ⊆ V (A) of continuous variables of the hybrid

automaton that are observable by the tester. We also assume that any change in location can be

observed by the tester. Given a hybrid state s = (q, x), cont(s) gives the continuous component of

s. The definition can be extended to a sequence of states τ = (q0, x0), . . . , (qk, xk) as follows:

cont(τ) = x0, . . . , xk. The projection of a continuous state x on Vo(A), denoted by π (x, Vo(A)),

is called an observation.

Definition 4 (Observation Sequence). Let γ= c0, c1, . . . , ck be an admissible control sequence.

Let (qinit, xinit) be the initial state of A. The set of observation sequences associated with γ is

2.2. Specification and System under Test

We assume that the specification is modeled as a hybrid automaton A and the system under test

(such as an implementation) by another hybrid automaton As such that:

• Vo(A) ⊆ Vo(As) and

• SC(A) ⊆ SC(As).

Note that we do not assume that we know the model As. For a given observation sequence O of

A, the operator of projecting O on a set V of variables is defined componentwise, denoted by

π (O, V). Again, we can naturally extend this definition to a set of observation sequences

π (S, V) = {π (O, V) | O ∈ S}.

2.3. Testing Problem

The goal of testing is to make statements about the relation between the traces of a system under

test and a specification. The system under test As often operates within some environment. In our

testing problem, the tester plays the role of the environment and it performs experiments on As in

order to study the relation between A and As. The tester works as follows. It emits an admissible

control sequence to the system under test and measures the resulting observation sequence in

order to produce a verdict v ∈ {P, F, I}. The verdict P means ‘pass’ (the observation sequence is

allowed by the specification), F means ‘fail’ (the observation sequence is not allowed by the

specification), and I means ‘inconclusive’ (neither a ‘pass’ nor a ‘fail’ verdict can be assigned).

The observations are measured at the end of each continuous control action and after each

discrete (disturbance or control) action. Conformance is an important property of the relation

between the system under test and the specification.

International Journal of VLSI design & Communication Systems (VLSICS) Vol.2, No.3, September 2011

26

Figure 1. Test architecture.

Definition 5 (Conformance). We say that the system under test As is conform to the specification

A, denoted by A ≈ Ap, iff for all γ SC(A) : π(SO(As, γ), Vo(A)) ⊆ SO(A, γ).

Note that since SC(A) ⊆ SC(As), a control sequence which is admissible for A is also admissible

for As.

2.4. Test case

A test case is represented by a (finite) tree where each node is associated with an observation and

each path from the root with an observation sequence. Each edge of the tree is associated with a

control action.

The observation sequences of the trees are grouped into three disjoint sets: the set Op of

observation sequences that cause a ‘pass´ verdict, the set Of that cause a ‘fail´ verdict, and the set

Oi that cause an ‘inconclusive´ verdict. Note that an observation sequence must cause a unique

verdict.

Since a hybrid automaton might have an infinite number of infinite traces of a hybrid automaton;

however, the tester can only perform a finite number of test cases in finite time. Therefore, we

need to select a finite portion of the input space of A and test the conformance of As with respect

to this portion. The selection is done using a coverage criterion that we formally define in the next

section. Hence, our testing problem is formulated as to automatically generate a set of test cases

from the specification model to satisfy this coverage criterion.

2.5. Test Coverage

Test coverage is a way to evaluate testing quality. More precisely, it is a way to relate the number

of tests to carry out with the fraction of the system’s behaviors effectively explored. As

mentioned earlier, the classic coverage notions mainly used in software testing, such as statement

coverage and if-thenelse branch coverage, path coverage (see for example [24], [22]), are not

appropriate for the trajectories of continuous and hybrid systems defined by differential

equations. However, the geometry of the hybrid state space can be exploited to define a coverage

measure which, on one hand, has a close relationship with the properties to verify and, on the

other hand, can be efficiently computed or estimated.

 In circuit testing, fault coverage is an important concern. A fault is said to be detected by a test

input pattern if, when applying the input pattern to the circuit, different output patterns can be

observed, for the reference (non-faulty) circuit and the faulty circuit. Generally, faults can be

categorized into catastrophic and parametric faults. Examples of catastrophic faults include a

change in the circuit topology, a global deviation of the circuit behavior. Parametric faults refer to

small changes in the parameters that do not affect the circuit functionality. For example, a band-

pass filter which has a frequency response with the correct shape but it passes a larger range of

frequencies. It is often assumed that beyond a deviation of 10% is considered to have caused

faults.

International Journal of VLSI design & Communication Systems (VLSICS) Vol.2, No.3, September 2011

27

For this reason, we are motivated in defining a coverage measure that describes how ‘well’ the

visited states represent the set of all reachable states of the system. This measure is defined using

the star discrepancy notion in statistics, which characterises the uniformity of the distribution of a

point set within a region. We first briefly recall the star discrepancy. The star discrepancy is an

important notion in equidistribution theory as well as in quasi-Monte Carlo techniques (see for

example [4]).

Star Discrepancy: Let P be a set of k points inside

B= [l1, L1]×… ×[ln, Ln]. Let � be the set of all subboxes J of the form:

with "i ∈ [li, Li] (see Figure 2 for an illustration). The local discrepancy of the point set P with

respect to the subbox J is defined as follows :

where A(P, J) is the number of points of P that are inside J, and λ(J) is the volume of the

box J. The star discrepancy of P with respect to the box B is defined as:

Note that 0 < D*(P, B) ≤ 1. Intuitively, the star discrepancy is a measure for the �irregularity of a set of points. A large value D (P, B) means that the points in P are not

much equidistributed over B. When the region is a hyper-cube, the star discrepancy

measures how badly the point set estimates the volume of the cube. Since a hybrid system

can only evolve within the staying sets of the locations, we are interested in the coverage

with respect to these sets. For simplicity we assume that all the staying sets are boxes.

Figure 2. Illustration of the star discrepancy notion.

Definition 6 (Test Coverage). Let P = {(q, Pq) | q ∈ Q ⋀ Pq ⊂ Iq} be the set of states. The

coverage of P is defined as:

International Journal of VLSI design & Communication Systems (VLSICS) Vol.2, No.3, September 2011

28

Where ||Q|| is the number of locations in Q.

If a staying set Iq is not a box, we can take the smallest oriented box that encloses it, and apply the

star discrepancy definition in (2) to that box after an appropriate coordination change. We can see

that a large value of Cov(P) indicates a good space-covering quality. If P is the set of states

visited by a test suit, our objective is to maximize Cov(P).

3. TEST GENERATION

Our test generation is a combination of the Rapidly exploring Random Tree (RRT) algorithm (a

successful robot motion planning technique [17], [32]) and a guiding tool used to achieve a good

coverage of the system’s behaviors we want to test. We call the resulting algorithm gRRT. In this

section, we present only the main ideas of gRRT, and a detailed description of the algorithm can

be found in [18].

The algorithm constructs a tree denoted by T, the root of which corresponds to the initial state

s0 = (q0, x0). The construction of the tree is summarized in Algorithm 1. In each iteration, a hybrid

state sgoal = (qgoal, xgoal) is sampled to indicate the direction towards which the tree is expected to

evolve. Expanding the tree towards sgoal is done by making a continuous step as follows:

• First, a starting state snear = (qnear, xnear) for the current iteration is determined. It is natural

to choose snear to be a state near sgoal. The distance between two hybrid states is defined as

an average length of the traces from snear to sgoal (see [18] for more detail).

• Next, the procedure CONTINUOUSSTEP tries to find the input ūqnear to take the system

from snear towards sgoal as closely as possible after one time step h. This results in a new

continuous state xnew. A new edge from snear to snew = (qnear, xnew), labeled with the

associated continuous control action is then added to the tree. To find snew, when the set U

is not finite it can be sampled, or one can solve a local optimal control problem.

Then, from snew, we compute its successors by all possible discrete transitions. Each time we add

a new edge, we label it with the associated control or disturbance action. The algorithm

terminates after reaching a satisfactory coverage value or after some maximal number of

iterations. To extract a test case from the tree, we project the states at the nodes on the observable

variables of A. In Algorithm 1, the function SAMPLING plays the role of guiding the

exploration, which will be described later. To deal with a set of initial states, we can sample a

finite number of initial states and thus the tree can have more than one root. Similarly, to deal

with parameter sets, we can consider a finite number of parameter values associated and associate

them with each initial state. Along a path from each root, the parameter vector remains constant

and is used to determine the corresponding continuous dynamics.

International Journal of VLSI design & Communication Systems (VLSICS) Vol.2, No.3, September 2011

29

Coverage Estimation

To evaluate the coverage of a set of states, we estimate a lower and upper bound of the star

discrepancy of a point set (exact computation is not an easy problem). These bounds as well as

the information obtained from their estimation are used to decide which parts of the state space

have been ‘well explored’ and which parts need to be explored more. Let us briefly describe this

estimation method. Let B=[l1, L1]×… ×[ln, Ln]. We define a box partition of B as a set of boxes

Π={b
1
,…,b

m
} such that :

and the interiors of the boxes b

i
 do not intersect. Each such box is called an elementary

box . Given a box b = [α1, β1]×… ×[α n, βn] ∈ Π, we define b
+
 = [l1, β1]×… ×[l n, βn] and

 b
-
 = [l1, α 1]×… ×[l n, α n] (see Figure 2 for an illustration).

For any finite box partition Π of B, the star discrepancy D*(P,B) of the point set P with respect to

B satisfies: C(P, Π) ≤ D*(P,B) ≤ B(P, Π) where the upper and lower bounds are:

and

Coverage-Guided Sampling

In each iteration, we want to bias the goal state sampling distribution according to the current

coverage of the visited states. More concretely, we first sample a discrete location and then a

continuous state. Let P = {(q, Pq) | q ∈ Q ⋀ Pq ⊂ Iq} be the current set of vi sited states. The

discrete location sampling distribution depends on the current continuous state coverage of each

location:

We now show how to sample xgoal, assuming that we have already sampled a discrete location

qgoal = q. The sampling process consists of two steps. In the first step, we sample an elementary

box bgoal from the set Π; in the second step we sample a point xgoal in bgoal uniformly. The

elementary box sampling distribution in the first step is biased in order to optimize the coverage.

The intuition behind this guiding strategy is to favor the selection of an elementary box such that

a new point x added in this box results in a reduction of the lower and upper bounds. In words,

the essential idea of this guiding method is that we use the information about the current coverage

in order to improve it (see [18]). An important remark is that when the propery of interest

involves only a subset of continuous variables, we can define a coverage measure with respect to

the projection of the state space on these variables, and use it to guide the sampling process.

Before continuing, we recall that the gRRT algorithm preserves the probabilistic completeness of

the RRT algorithm.The proof can be found in [18]. Roughly speaking, the probabilistic

completeness property states that if the trace we seach for is feasible, then the probability that the

algorithm finds it approaches 1 as the number k of iterations approaches infinity. This property is

a way to explain a good spacecovering property of the RRT algorithm and its successes in solving

practical motion planning problems [17]. Our test generation algorithm has been tested on a

number of control applications, which proved its scalability to high dimensional systems [18].

International Journal of VLSI design & Communication Systems (VLSICS) Vol.2, No.3, September 2011

30

4. APPLICATION TO BENCHMARK CIRCUITS

We have implemented a test generation tool using the above described algorithm. For circuit

applications, we use the well-known RADAU algorithm for solving DAEs [12]. Before

presenting the experimental results obtained for three benchmark circuits, we recall that solving

high index1 and stiff DAEs is computationally expensive, and in order to evaluate the efficiency

of the test generation algorithm, we have chosen two practical circuits with DAEs of this type.

The three circuits we treated are: a transistor amplifier, a voltage controlled oscillator, and a

Delta-Sigma modulator circuit.

4.1. Transistor Amplifier

The first example is a transistor amplifier model, taken from [12]. Its diagram is shown in Figure

3, where the variable yi is the voltage at node i; Ue is the input signal and y8 = U8(node 8) is the

output voltage. The circuit equations are a system of DAEs of index 1 with 8 continuous

variables. The matrix M is given by:

Figure 3. Transistor amplifier circuit [12].

International Journal of VLSI design & Communication Systems (VLSICS) Vol.2, No.3, September 2011

31

The function f is given by:

The circuit parameters are: Ub = 6; UF = 0.026; R0 = 1000; Rk = 9000, k = 1, . . . , 9;

Ck = k10
−6

; α = 0.99; "= 10
−6

.The initial state yinit = (0,Ub/(R2/R1 + 1),

Ub/(R2/R1 + 1),Ub,Ub/(R6/R5+1),Ub/(R6/R5+1),Ub, 0)

1The differential index of a DAE is a measure of the singularity of the DAE. It characterizes the difficulty in numerically solving the

equation.

We are interested in studying the influence of circuit parameter uncertainty on the transient

properties, such as overshoot, stabilisation time. The uncertainty we consider is indeed a

perturbation in the function describing the relation between the current through the source of the

two transistors and the voltages at the gate and source

With

The input signal Ue(t) = 0.1sin(200 / t). We used the gRRT algorithm to generate a test case,

which indicates the presence of traces with overshoots (the acceptable interval of U8 in the non-

perturbed circuit is [−3.01, 1.42]). Figure 4 shows the generated observation sequences projected

on the variable U8 over time.

Figure 4. Test generation result for the transitor amplifier (first figure: zoom in the first 0.03s).

International Journal of VLSI design & Communication Systems (VLSICS) Vol.2, No.3, September 2011

32

4.2. Voltage Controlled Oscillator

The second circuit we examined is a voltage controlled oscillator (VCO) circuit [11], shown in

Figure 5. The behavior of this circuit can be represented by a system of DAEs with 55 continuous

variables. We are interested the oscillating frequency of the variables vC1 and vC2 . Indeed, this

frequency is a linear function of the input voltage. We study the influence of a time-variant

perturbation in C2 on the frequency. This perturbation is modeled as an input signal. In this

example we show that, in addition to conformance relation, using this framework, we can test a

property of the input/output relation. More precisely, for a given input sequence, we want

compare the observation sequences of the specification A and those of the system under test As,

with respect to a property.

Figure 5. Voltage controlled oscillator (VCO) circuit.

As an example, the oscillating period T ± 0 of a variable x1 = vC2 can be expressed using a simple

automaton with one clock y in Figure 6 (similar to a monitor automaton in [10]). The question is

to know if given an oscillating trace in A, its corresponding trace in As is also oscillates with the

same period. This additional automaton can be used to determine test verdicts for the traces in the

computed test cases. If we are additionally interested in a property which states that all traces of

the system under test oscillate with the period T ± 0. If an observation sequence corresponds to a

path entering the ‘Error´ location, then it causes a ‘fail´ verdict.

Since we cannot use finite traces to prove a safety property, the set of observation sequences that

cause a ‘pass´ verdict is empty, and therefore the remaining observation sequences (that do not

cause a ‘fail´ verdict) causes a ‘inconclusive´ verdict. We consider a constant input voltage uin =

1.7. The generated test case shows that after the transient time, under a time variant deviation of

C2 which ranges within ±10% of the value of C2 = 0.1e−4, the variables vC1 and vC2 oscillate with

the period T ∈ [1.25, 1.258]s (with ɛ = 2.8e − 4). This result is consistent with the result presented

in [11]. The number of generated states was 30000 and the computation time as 14mn. In this

experiment, the coverage measure was defined on the projection of the state space on vC1 and vC2 .

Figure 7 shows the explored traces of vC2 over time.

International Journal of VLSI design & Communication Systems (VLSICS) Vol.2, No.3, September 2011

33

Figure 6. Automaton for an oscillation specification.

Figure 7. Variable vC2 over time

4.3. Delta-Sigma Circuit

The third example is a Delta-Sigma modulator [19], which is a mixed-signal circuit. The Delta-

Sigma modulation is a very popular technique to perform analog to digital conversion. Its

principle can be briefly explained as follows. When the input sinusoid is positive and its value is

less than 1, the output takes the +1 value more often and the quantization error which is the

difference between the input and the output of the quantizer is fed back with negative gain and

‘accumulated’ in the integrator .

Then, when the accumulated error reaches a certain threshold, the quantizer switches the value of

the output to −1 for some time, which reduces the mean of the quantization error. A third-order

Delta-Sigma modulator is modeled as a hybrid automaton, shown in Figure 9. It is called third

order since it uses a third order filter to process noise. Higher-order modulators achieve better

performance but induce stability problems. A modulator is said to be stable if under a bounded

input, the states of its integrators are bounded. Stability analysis for such circuits is still a

challenging problem [19], due to the presence of two sources of non-linearities: saturation and

quantization. The discrete time dynamics of the system is as follows:

International Journal of VLSI design & Communication Systems (VLSICS) Vol.2, No.3, September 2011

34

Where matrix A, vectors a and b are constants depending on the various gains of the model,

x(k) ∈ �3
 represents the integrator states, u(k) ∈ � R is the input, y(k) ∈ � is the input of the

quantizer. Thus, its output is v(k) = sign(y(k)), and one can see that whenever v remains constant,

the system dynamics is affine continuous.

Figure 8. Model of a third-order modulator: Saturation blocks model saturation of the integrators.

Figure 9. Third-order Delta-Sigma modulator.

The test generation algorithm was performed for the initial state x(0) inside the set

[−0.01, 0.01]3
 and the input values u(k) ∈ [−0.5, 0.5]. After exploring only 57 states, saturation

was already detected. The computation time was less than 1s. Figure 10 shows the values of (sup

x1(k))k as a function of the number k of time steps. We can see that the sequence

(sup x1(k))k leaves the safe interval [−x1
sat

 , x1
sat

] =[−0.2, 0.2], which indicates the instability of

the circuit. This instability for a fixed finite horizon was also detected in [7] using an

optimization-based verification method.

International Journal of VLSI design & Communication Systems (VLSICS) Vol.2, No.3, September 2011

35

Figure 10. Test generation result for the Delta-Sigma circuit.

5. RELATED WORK

Related work in analog and mixed-signal circuit testing was already discussed in the introduction.

Here, we only discuss related work in hybrid systems testing. Classical model-based testing

frameworks using finite labeled transition systems has been applied to digital circuits,

communication protocols and software. They have recently been extended to hybrid systems. The

paper [21] proposed a framework for generating test cases from simulation of hybrid models

specified using the language CHARON. A probabilistic test generation approach, similar to ours,

was presented in [9]. This paper also proposed a coverage measure based on a discretized version

of dispersion.While in our work, the coverage measure is used to guide the simulation, in [9] it is

used as a termination criterion. The RRT algorithms have also been used to solve other problems

such as hybrid systems control and verification [8], [6].

6. CONCLUSIONS

To conclude, in this paper we described a test generation technique for analog and mixed signal

circuits using a hybrid system framework. The application of the proposed technique was

demonstrated with a number of benchmark circuits. A number of directions for future research

can be identified.First, we are interested in enriching our framework to capture partial

observability and measurement imprecisions. In order to facilitate the application to practical

circuits, we need a tool for automatic generation of hybrid automata from commonlyused circuit

descriptions, such as Spice netlists. On the other hand, as mentioned earlier, an efficient and

reliable simulation method is a key ingredient in our approach. The state of the art SPICE

simulator is prone to convergence problems when the dynamics of the circuit has fast variations

caused by components with stiff characteristics. In collaboration with researchers at INRIA

Rhône-Alpes, a topic of our undergoing research is to integrate in our test generation tool a

simulation algorithm based on the non-smooth approach [3].

International Journal of VLSI design & Communication Systems (VLSICS) Vol.2, No.3, September 2011

36

REFERENCES

[1] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho, X. Nicollin, A. Olivero, J.

Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems. Theoretical Computer Science,

138:3–34, 1995.

[2] B. Ayai, N. Ben-Hamida, and B. Kaminska. Automatic test vector generation for mixed-signal

circuits. In Proc. European Design and Test Conference.,pages 458-463, March 1995.

[3] V. Acary and F. Pérignon. SICONOS: A software platform for modeling, simulation, analysis and

control of Non Smooth Dynamical system. Proc. Of MATHMOD, ARGSIM Verlag, 2006.

[4] J. Beck and WWL. Chen. Irregularities of Distribution. Cambridge Univ. Press, 1987.

[5] B. Burdiek Generation of Optimum Test Stimuli for Nonlinear Analog Circuits Using Nonlinear

Programming and Time-Domain Sensitivities. In Proc.DATE, pages 603-609, 2001.

[6] M. S. Branicky, M. M. Curtiss, J. Levine, and Stuart Morgan. Sampling-based reachability algorithms

for control and verification of complex systems.Proc. Thirteenth Yale Workshop on Adaptive and

Learning Systems, New Haven, CT, 2005.

[7] T. Dang, A. Donzé, and O. Maler. Verification of analog and mixed-signal circuits using hybrid

systems techniques. In FMCAD, LNCS, Springer, 2004.

[8] A. Bhatia and E. Frazzoli. Incremental Search Methods for Reachability Analysis of Continuous and

Hybrid Systems. HSCC, LNCS 2993, pages 142-156, Springer, 2004.

[9] J.M. Esposito, J. Kim, and V. Kumar. Adaptive RRTs for validating hybrid robotic control systems.

In Int. Workshop on the Algorithmic Founddations of Robotics , 2004.

[10] G. Frehse, B. Krogh, R. Ruttenbar, and O. Maler. Time domain verification of oscillator circuit

properties. Proceeding of Workshop on Formal Verification of Analog Circuits (ETAPS Satellite

Event), Edinburgh, ENTCS 153(3): 9-22, 2005.

[11] D. Grabowski, D. Platte, L. Hedrich and E. Barke Time Constrained Verification of Analog Circuits

using Model-Checking Algorithms. Proceeding of Workshop on Formal Verification of Analog

Circuits (ETAPS Satellite Event), Edinburgh, ENTCS 153(3): 37-52, 2005.

[12] E. Hairer, C. Lubich and M. Roche. The Numerical Solution of Differential-Algebraic Systems by

Runge Kutta Methods. Lecture Notes in Mathematics 1409, Springer-Verlag, 1989.

[13] N. B. Hamida, K. Saab, D. Marche, B. Kaminska, and G. Quesnel. LIMSoft: Automated Tool for

Design and Test Integration of Analog Circuits. In Proc. International Test Conference, 1996.

[14] N. Ben-Hamida, K. Saab, D. Marche, and B. Kaminska. A perturbation based fault modeling and

simulation for mixed-signal circuits. In Proc. IEEE Asian Test Symposium, pages 182-187, 1997.

[15] H. Kerkhoff, R. Tangelder, H. Speek, and N. Engin. MISMATCH: A Basis for Semi-automatic

Functional Mixed-Signal Test-Pattern Generation. In Proc. IEEE Int. Conf. on Electronics, Circuits,

and Systems, pages 1072-1075, 1996.

[16] KuffnerLaValle00 J. J. Kuffner and S. M. LaValle. RRT-connect: An efficient approach to single

query path planning. In Proc. IEEE Int. Conf. On Robotics and Automation, 995–1001, 2000.

[17] S. M. LaValle and J. J. Kuffner. Rapidly-exploring random trees: Progress and prospects. In

Algorithmic and Computational Robotics: New Directions, pages 293–308. A K Peters, Wellesley,

MA, 2001.

[18] T. Nahhal and T. Dang. Test Coverage for Continuous and Hybrid Systems In Computer Aided

Verification CAV’07, LNCS, Berlin.

[19] B. Pérez-Verdú and F. Medeiro and A. Rodríguez-Vázquez. Top-Down Design of High-Performance

Sigma-Delta Modulators, chapter 2. Kluwer Academic Publishers, 2001.

[20] R. Shi and W.T. Tian. Automatic Test Generator of Linear Analog Circuits Under Parameters

Variations. In Proc. Asian and South Pacific Design Automation Conference, 1998.

International Journal of VLSI design & Communication Systems (VLSICS) Vol.2, No.3, September 2011

37

[21] L. Tan, J. Kim, O. Sokolsky and I. Lee. Model-based Testing and Monitoring for Hybrid Embedded

Systems. In IRI, 487-492, 2004.

[22] J .Tretmans. Testing Concurrent Systems: A Formal Approach. In Int. Conference on Concurrency

Theory CONCUR, LNCS 1664, Springer, 1999.

[23] W. Verhaegen, G. Van der Plas, and G. Gielen. Automated test pattern generation for analog

integrated circuits. In Proc. IEEE VLSI Test Symposium, pages 296-301, 1997.

[24] H. Zhu, P.A.V. Hall, and J.H.R. May. Software Unit Test Coverage and Adequacy. In ACM

Computing Surveys, 29, 4. Dec. 1997.

[25] M. Zwolinski, S.J. Spinks, C.D. Chalk, and I.M. Bell. Generation and Verification of Tests for

Analog Circuits Subject to Process Parameter Deviations.In IEEE Int. Symp. Defect and Fault

Tolerance in VLSI Systems, Paris, October 1997.

[26] Afaq Ahmad. A Simulation Experiment on a Built-In Self Test Equipped with Pseudorandom Test

Pattern Generator and Multi-Input Shift Register (MISR).In VLSICS, December 2010, Volume 1,

Number 4.

[27] S. L. Haridas1 and N. K. Choudhari2. A Low Power VITERBI Decoder Design with Minimum

Transition Hybrid Register Exchange Processing For Wireless Applications. In VLSICS, December

2010, Volume 1, Number 4.

[28] Subashri T, Arunachalam R, Gokul Vinoth Kumar B and Vaidehi. Pipelining Architecture of AES

Encryption and Key Generation with Search Based Memory. In VLSICS, December 2010, Volume 1,

Number 4.

[29] Mouna Karmani, Chiraz Khedhiri and Belgacem Hamdi. Design and test challenges in Nano-scale

analog and mixed CMOS technology. In VLSICS, June 2011, Volume 2, Number 2.

[30] Chiraz Khedhiri1, Mouna Karmani1 and Belgacem Hamdi. A BIST Generator CAD Tool for

Numeric Integrated Circuits. In VLSICS, June 2011, Volume 2, Number 2.

[31] Shweta S. Meshram1 and Ujwala A. Belorkar. Design Approach for Fault Tolerance in FPGA

Architecture. In VLSICS, March 2011, Volume 2, Number 1.

[32] S. Karaman and E. Frazzoli. Sampling-based Algorithms for Optimal Motion Planning. In Journal of

Robotics Research, June 2011, Volume 30, Pages 846--894.

International Journal of VLSI design & Communication Systems (VLSICS) Vol.2, No.3, September 2011

38

Authors

Tarik NAHHAL received his M.Sc. in

Computer Science from Evry

University of science and Technology,

France, in 2004 and his PhD in

Computer Science from Joseph Fourier

University, France 2007. He is currently

an Assistant Professor in the

Department of Mathematics and

Computer Science at the Hassan II

University in Casablanca, Moroco.His

research interests include formal

methods for testing and monitoring of

Embedded Systems.

Thao Dang received her diplome d'Ingénieur and

her M.Sc. in Electrical Engineering in

1996 from Ecole Nationale

Supérieured'Ingénieurs Electriciens of

Grenoble.She received her PhD in

automatic Control in 2000 from the

VERIMAG laboratory in Grenoble In

2001 she worked as a postdoctoral

research associate at the Department of

Computer and Information Science of

the University of Pennsylvania. Since

2002, she is a research scientist at the

CNRS and a membre of the VERIMAG

laboratory. Her research interests are

modeling, verification and control of

hybrid system and their application in

design and analysis of embedded real-

time systems.

