
International Journal of VLSI design & Communication Systems (VLSICS) Vol.2, No.4, December 2011

DOI : 10.5121/vlsic.2011.2403 27

 FPGA IMPLEMENTATION OF DEBLOCKING FILTER

CUSTOM INSTRUCTION HARDWARE ON NIOS-II

BASED SOC

Bolla Leela Naresh

1
 N.V.Narayana Rao

 2
 and Addanki Purna Ramesh

3

Department of ECE, Sri Vasavi Engg College, Tadepalligudem, West Godavari (dt),

Andhra Pradesh, India
leelanaresh.b@gmail.com

hyma_369@yahoo.com

purnarameshaddanki@gmail.com

ABSTRACT

This paper presents a frame work for hardware acceleration for post video processing system implemented

on FPGA. The deblocking filter algorithms ported on SOC having Altera NIOS-II soft core processor.SOC

designed with the help of SOPC builder .Custom instructions are chosen by identifying the most frequently

used tasks in the algorithm and the instruction set of NIOS-II processor has been extended. Deblocking

filter new instruction added to the processor that are implemented in hardware and interfaced to the NIOS-

II processor. New instruction added to the processor to boost the performance of the deblocking filter

algorithm. Use of custom instructions the implemented tasks have been accelerated by 5.88%. The benefit

of the speed is obtained at the cost of very small hardware resources.

KEYWORDS

Deblocking filter, SOC, NIOS-II soft processor, FPGA

1. INTRODUCTION

Video broadcasting over the internet to handheld devices and mobile phones is becoming

increasingly popular in the recent years. Also High Definition TVs are becoming common. But

due to the limitation in the transmission bandwidth the videos will generally be encoded using

video coding techniques which uses DCT and quantization that brings blockiness in the decoded

video. In such scenario a smoothing filter to remove the blockiness is crucial which is called as

deblocking filter. This deblocking filter algorithm requires high amount of processing

requirement with the increase of the resolution of the images like High Definition Resolution. For

example a HD image that has 6.23 million pixels in it needs 187 million pixels to be processed in

one second to achieve widely accepted frame rate of 30 fps (frames per second). This means the

video post processing system running at 300 MHz frequency (The high frequency systems will

suffer from the high power consuming there by less battery life) gets just 1.6 cycles to process

one pixel. Hardwired architectures which especially designed for particular algorithms can

achieve this kind of processing requirements but they are lack of flexibility and can’t be changed

with the change in algorithms. Whereas processor based System on Chips gives enough flexibility

to cope up with the change in algorithms but their programmable nature will not give the

performance requirements like above. Therefore identifying application specific custom

International Journal of VLSI design & Communication Systems (VLSICS) Vol.2, No.4, December 2011

28

instruction blocks to accelerate the ported image post processing algorithm onto the processor

based SOC will be a good choice. This approach is called as Fine Grain Acceleration. Fine grain

acceleration of algorithms is a classic approach to accelerate the algorithms that requires high

processing requirement. In fine grain acceleration technique the small parts of the algorithm

which will be executed multiple times there by contributing good amount of final processing

requirement as identified and these algorithm sections are accelerated by keeping dedicated

hardware. This hardware will be activated by extended instructions of the processor. These

instructions added to the instruction set (ISA) of the processor are called custom instructions. To

come up the custom instructions required to achieve the frame rate mentioned above, we have

chosen a framework with RISC processor and custom instruction addition capability. The Altera

FPGA tools can be used to build such platform. Tools likes Altera SOPC (System on

Programming Chip) builder, NIOS-II RISC processor and NIOS-II software development IDE

eases to build the required platform to come up with the right custom instruction to speed up the

deblocking filter. The SOPC builder technology provided simple way of adding the custom

instructions to the NIOS-II soft processor and the NIOS-II IDE provides easy way of providing

the software interface to the custom instruction added to the NIOS-II processor. In the next

sections of the processor we give the details of the deblocking filter algorithm and the details of

the developed system. Then we propose the custom instructions to accelerate the deblocking filter

algorithm. And in the last section of the document we give the cycle count numbers and

comparison with the latest hardware implementation of the deblocking filter are given.

2. DEBLOCKING FILTER ALGORITHM

There are two building blocks within many video coding standards like H.264, MPEG-4 or VC-1

which can be a source of blocking artifacts. The most significant one is the block-based

integer/fractional discrete cosine transforms (DCTs) in intra and inter frame prediction error

coding. Coarse quantization of the transform coefficients can cause visually disturbing

discontinuities at the block boundaries. The second source of blocking artifacts is motion

compensated prediction. Motions compensated blocks are generated by copying interpolated

pixel data from different locations of possibly different reference frames. Since there is almost

never a perfect fit for this data, discontinuities on the edges of the copied blocks of data typically

arise. To reduce such blocking artifacts and improve the quality of the decoded video deblocking

filter is necessary. The deblocking filter is a smoothing filter which will be applied on the edge of

the block. Since we are targeting for a generic deblocking filter which should be used for videos

encoded by any standard, we consider that the blocking artifacts can come at the minimum at 4X4

level and we apply the filtering at that level on whole video frame. Since the deblocking filter

should not smoothens the real edge information present in the video frame, the filtering process

considers the absolute differences between the pixels on the either side of the edge and if this

difference crosses certain programmable thresholds called as alpha and beta then only the

filtering is applied. The equations of the smoothing filter are taken from H.264 standard and are

given below. The p0, p1, p2 and p3 and q0, q1, q2 and q3 given in the equations are pixel values

on either side of an edge between two 1X4 blocks present in a 4x4 block as shown in the Figure

1.

International Journal of VLSI design & Communication Systems (VLSICS) Vol.2, No.4, December 2011

29

Figure 1: An edge between two 4X4 blocks

The equations of the absolute differences to determine the filter condition are:

The equations of the deblocking filter are:

International Journal of VLSI design & Communication Systems (VLSICS) Vol.2, No.4, December 2011

30

The fp0, fp1, fp2 and fp3 and fq0, fq1, fq2 and fq3 given in the equations are pixel values after

filtering. The above filter equations has to be applied on each row of the edge between current

4x4 block and the left 4x4 block and then on each column of the edge between the current 4X4

block with the top 4x4 block.

3. SYSTEM ARCHITECTURE

In this section of the paper, we are giving the details of the developed system to find out the best

custom instructions to accelerate the deblocking filter process. The Error! Reference source not

found. shows the system. The NIOS-II is the soft embedded processor that is used in the system

which performs controlling of all the modules the system. The program to be executed by the

NIOS-II processor resides inside SDRAM. The NIOS-II processor fetches the instructions using

its instruction bus which is connected to the AVLON system bus. The SDRAM controller which

is connected to the system bus fetches the data from SDRAM and presents on the system bus. The

processor fetches the data using its data bus again connected to the system bus. The input images

to be processed also lie in the SDRAM. The SRAM is used as frame buffer. The processor

fetches the input video frames to be processed from SDRAM and applies deblocking filter using

the deblocking filter custom instructions and writes the results to the frame buffer maintained in

SRAM. From this frame buffer the final filtered pixels will be continuously read by the display

controller which gives them to the video DAC for display. The display controller also generates

the HSYNC and VSYNC signals to the Video DAC. The display process should not interrupted

therefore the final images to be displayed are kept in SRAM which has low latency. The switches

are used to RESET the signal.

Figure 2: NIOS- II based SOC to derive the custom instructions for deblocking filter

International Journal of VLSI design & Communication Systems (VLSICS) Vol.2, No.4, December 2011

31

4. DEBLOCKING FILTER CUSTOM INSTRUCTIONS

Custom instructions are custom logic blocks adjacent to the ALU in the processor data path and

within the processor boundary, extending the CPU instruction set to accelerate time-critical

software. By addition custom instructions to the processor we can reduce a complex sequence of

standard instructions to a single instruction implemented in hardware [11]. For example a

processor without multiplier in its ALU needs the multiplication routine to be written in assembly

using several add and shift instructions. For this processor a multiplier can be added as a custom

logic to speed up the process. The NIOS-II CPU configuration wizard provides a facility to add

up to 256 custom instructions to the processor. The custom instruction logic connects directly to

the NIOS II processor ALU logic as shown in Error! Reference source not found..

Figure 2: NIOS II Custom instruction logic

Figure 4: Block Diagram of deblocking filter custom instruction core

International Journal of VLSI design & Communication Systems (VLSICS) Vol.2, No.4, December 2011

32

To speed up the deblocking filtering process implemented originally in software on NIOS II

processor, custom hardware is designed and with a novel architecture and to activate this custom

hardware 5 custom instructions are added to the ISA of the processor. The block diagram of the

deblocking filter custom hardware is shown in Error! Reference source not found.. The

description of I/Os of the custom block are given in Table 1.

Table 1: I/O Details of the custom block

Pin Direction Details

start Input Enables execution of a custom instruction

n Input The number of the custom instruction to be executed

dataa Input Data A operand of the instruction

datab Input Data B operand of the instruction

result output Result of the instruction

The custom instruction hardware has four blocks of pixel storage in it and each block can store

one 4x4 block of pixels. These four blocks will be filled by the processor by sending 4 pixels at a

time as instruction operand. The processor invokes the HW (hard ware) once to filter one

row/column on the edge between two 4X4 blocks. The idea is whenever it calls the HW to do

filtering it sends 4 pixels of the next block and it receives 4 filtered pixels back from the HW.

Means to completed processing of 1 4x4 block it takes 4 instructions. The HW stores the right

4x4 block when its applying filtering on the edge between a two blocks located horizontally next

to each other so that the filtered data need not fetched again when the edge between the top and

that block has to be filtered. Similarly it stores the bottom 4x4 block in it so the filtered data need

not fetched again when the edge between this block on the next horizontally located block has to

be filtered. The custom instructions identified are given below.

FILL_BLK: This instruction fills one of the four 4X4 storage block.

SET_PARMS: This instruction sets the filtering parameters alpha and beta.

DBK_H: This instruction applies filtering on one row of the edge between two four 4X4

horizontally located blocks.

DBK_V: This instruction applies filtering on one column of the edge between two four 4X4

vertically located blocks.

NOP: This instruction is to introduce one wait cycle. Two wait cycles has to be inserted before

starting a new edge which uses the filtered results of the previous edge. This is because of the 2

cycle latency of the HW.

With these custom instructions, the HW can process one 4X4 block in 6 cycles. (four instructions

cycles + two wait cycles).

International Journal of VLSI design & Communication Systems (VLSICS) Vol.2, No.4, December 2011

33

5. RESULTS

In this section we are presenting the simulation results of the deblocking filtering process of one

edge between two 4x4 blocks. The simulation results showed in the

Figure 3 depicts that in 6 cycles the process is completed. The results are obtained using the

Modelsim tool. Our deblocking filter process will be carried at 4x4 block level on the complete

frame. For comparison we extend this results to one 16x16 block (called as Macro Block (MB)).

A 16X16 block contains 32 4X4 level luma edges, and assuming 4:2:0 image coding format, 16

4x4 level chroma edges. The total edges in the 16X16 Macro Block are 48. Our algorithm takes

48x6 = 288 cycles to process. This is “18 clock cycles” less than the architecture proposed in [1].

With this processing speed we can achieve a processing rate of 1.125 pixels/clk. Table 2 shows

the comparison of proposed work with reference paper [1]

Table 2: Comparison of proposed work with reference paper [1]

Sl. No

Reference paper(1)

proposed

Required clock cycles per Macro block

306

288

Figure 3: Simulation Results of filtering of 1 edge

The blocked image shown in Figure6 is taken as input after processing on NIOS-II processor

which is implemented on CYCLONE II FPGA and the output image is shown in Figure7 is

deblocked image.

International Journal of VLSI design & Communication Systems (VLSICS) Vol.2, No.4, December 2011

34

Figure 6: Blocked image as input

Figure 7: Deblocked image as output

 The proposed architecture is implemented on CYCLONE-II FPGA (EP2C20F484C7) and the

area numbers are given in Table 3.

Table 3: Area Results

Resource Type

Area Count

Total Logic Elements

4137

Logic Registers

3244

International Journal of VLSI design & Communication Systems (VLSICS) Vol.2, No.4, December 2011

35

6. CONCLUSIONS

This research paper presents a framework for identifying custom instructions to accelerate a

generic deblocking filter algorithm that is used for removing the blocking artifacts introduced by

video encoders. A novel architecture for the deblocking filter is proposed which takes 18 clock

cycles less then the architecture proposed in reference paper [1]. RTL code has been written to

the deblocking filter architecture in Verilog and simulated using Modelsim. The hardware

designed is connected to the NIOS-II processor custom instruction bus and the configured onto

CYCLONE-II FPGA.

REFERENCES

[1] Wen Jia, Leibo Liu, Shouyi Yin, Min Zhu, Zhihua Wang “A Fast Complete Deblocking Filter on a

Coarse- Grained Reconfigurable Processor Supporting H.264 High Profile Decoding” by NNSF of

China, 2010, pp-221-224

[2] K.S.Chaitanya, P.Muralidhar, C.B.Rama Rao “Implementation of Reconfigurable Adaptive Filtering

Algorithms” National Institute of Technology Warangal, India 2009 International Conference on

Signal Processing Systems.

[3] Jung-Ah Choi and Yo-Sung Ho “Deblocking Filter Algorithm with Low Complexity for H.264 Video

Coding”, Gwangju Institute of Science and Technology (GIST) ,2008 pp. 138–147.

[4] C. Arbelo1, A. Kanstein, S. Lopez, J.F. Lopez, M. Berekovic, R. Sarmiento1 and J.-Y. Mignolet

“Mapping Control-Intensive Video Kernels onto a Coarse-Grain Reconfigurable Architecture: the

H.264/AVC Deblocking Filter” Research Institute for Applied Microelectronics Spain. (IUMA).2007

EDAA

[5] Chung-Ming Chen Chung-Ho Chen “An efficient architecture deblocking filter in H.264/AVC video

coding” international conference on computer graphics and designing.2005.

[6] TU-T Recommendation H.264 “Advanced video coding for generic audiovisual services” was

approved on 1 March 2005 by ITU-T Study Group 16 (2005-2008)

[7] Iain E G Richardson “H.264 / MPEG-4 Part 10 White Paper Reconstruction Filter” 30/04/03

[8] Iain E. G. Richardson “H.264 and MPEG-4 Video Compression Video Coding for Next-generation

Multimedia” The Robert Gordon University, Aberdeen, UK

[9] Iain E. G. Richardson www.vcodex.com

[10] http://www.altera.com/devices/processor/nios2/benefits/performance/ni2-acceleration.html

[11] ALTERA NIOS–II Processor Custom instruction user guide

