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ABSTRACT 

Synthesis optimization plays a vital role in modern FPGAs in order to achieve high performance, in terms 

of resource utilization and reducing time consuming test process. Cell-based design techniques, such as 

standard-cells and FPGAs, together with versatile hardware synthesis are rudiments for a high 

productivity in ASIC design. As the capacity of FPGAs increases, synthesis tools and efficient synthesis 

methods for targeted device become more significant to efficiently exploit the resources and logic capacity. 

The synthesis tool provides the selection of different constraint to optimize the circuit. This paper presents 

the design and synthesis optimization constraints in FPGA for Finite state machine. The primary goal of 

this sequential logic design is to optimize the speed and area by choosing the proper options available in 

the synthesis tool. More over the work focuses the design of FSM with more processes operates at a faster 

rate and the number of slices utilized in an FPGA is also reduced when compare to single process. The 

module functionality are described using Verilog HDL and performance issues like slice utilized, 

simulation time, percentage of logic utilization, level of logic are analyzed at 90 nm process technology 

using SPARTAN6 XC6SLX150 XILINX ISE12.1 tool. 
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1. INTRODUCTION 

Modern FPGAs became viable ASIC replacement because of very expensive fabrication process 

and time consuming test process. FPGAs are already fabricated allowing quick time-to-market. 

The amount of reconfigurable resources in a FPGA is fixed and limited. Within the available 

resources the application has to be embedded. Different ISE (Integrated development 

Environment) tools are available like Xilinx, Altera, Quartus etc. which provides various design 

constraints setting for various optimizations like speed and area to fulfill the requirement of 

design as well as the device selected in FPGAs. Generally hardware description language like 

VHDL and Verilog are used to develop the circuit descriptions. The synthesis tools optimize 

HDL code for both logic utilization and performance of an intended design. In FPGA each slices, 

LUT and register utilization are very important in order to accommodate larger design unit. 

Inefficient coding may also lead to adverse effect of synthesis to result in slow devices and 

occupies larger slices, LUT and registers. 

 

In VLSI design flow, specifications are written first, specifications describe abstractly the 

functionality, interface and overall architecture of the digital circuit to be designed[2]. The circuit 

descriptions are written using HDL either VHDL or Verilog in terms of its behavior. The design 

at the behavioral level is to be elaborated in terms of known and acknowledge functional 
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blocks[3]. Once the design is completed its functionality is tested using circuit simulators.  After 

functionality test the RTL description are converted into gate-level netlist using logic synthesizer. 

A gate-level netlist is a description of the circuit in terms of gates and connections between them 

[4]. Synthesis is a process by which an abstract  form  of  desired  circuit  behaviour  (typically  

register transfer level (RTL)) is turned into a design implementation in terms  of  logic  gates[5].  

Logic synthesis tool ensure that the gate level netlist meets timing, area and power specifications. 

After several annotation if the expected output is derived then the final implementation is done 

through FPGA or ASIC. 

 

Designing a synchronous Finite state machine (FSM) is a common task for a digital logic circuit. 

Sequential circuit optimization has been the subject of intensive investigation for several decades 

[1][12]. FPGA synthesis tool provides a variety of design constraints which essentially helps the 

designer to meet the design goal such as area and speed optimization to obtain the best 

implementation logic. This work focuses the selection of constrains and issues related to each 

constraint is elucidated.  This paper details efficient Verilog coding styles to infer synthesizable 

state machines. HDL considerations such as advantages and disadvantages of one-always block 

FSMs Vs. two-always block FSMs are described. 

 

The organization of the paper is as follows: Section 2 presents the implementation of Finite state 

machines with single and multiple processes. Section 3 focuses the performance issues of FSM 

with single and multiple processes. Section 4 presents the discussion. Finally the conclusion is 

presented in section 5.  

 

2.  FSM WITH SINGLE AND MULTIPLE PROCESSES 
 

FPGA synthesis tool provides a variety of design constraints which essentially helps the designer 

to meet the design goal such as area and speed optimization to obtain the best implementation 

logic. This section describes the implementation of FSM with single and multiple processes and 

the important aspects of synthesis optimization like resource sharing for area, speed, latency and 

power. At the synthesis level, the high level description is converted into an optimized gate-level 

representation or RTL form. At this level of abstraction when global constraints of area or speed 

is set the synthesis tool will try to meet constraints, calculate cost of various implementation and 

try to generate best logic topology for given constraints, algorithm and target process. Normally 

synthesis tools use wire load models which statistically estimates the interconnect delay in the 

absence of physical layout data. For a wire delay with given fanout, the wire load model specifies 

the capacitance, resistance and area of the wire. Although the synthesis tool has complete control 

over the netlist, the resulting timing is greatly affected by the physical layout.    

 

The synthesis based gate-level optimizations will include constraints like Finite State Encoding 

(FSM) algorithm (like auto, one-hot, compact, sequential, gray, Johnson, speed1), hierarchy 

setting (which allows MAP’s physical synthesis options to optimize across hierarchical 

boundaries), logic duplication (avoids replication of logic), FSM style, register duplication and so 

on. By setting the required constraints the design can be optimized. As a general rule faster design 

requires parallelism at the expense of slice area, and minimize area design requires less logical 

depth. 

 

This topic presents the issues in optimization of synthesis tool in sequential logic which is 

elucidated by the design of Finite State Machine (FSM) with different encoding algorithm 

constraints like gray, one-hot, sequential, Johnson, speed1 and auto. Finite state machine is a 

restricted class of sequential circuits called synchronous circuits which assumes the existence of a 

common global clock. An FSM is a discrete dynamic system that translates the sequence of input 

vectors into sequence of output vectors. States in an FSM specification can be either symbolic or 
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binary-encoded. To optimize the circuit at sequential level, state minimization and state 

assignment procedure are executed. State minimization reduces the redundant states and state 

assignment encodes the symbolic states into binary codes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

The following example presents the design of FSM with one, two and three processes providing 

the same specification with different encoding algorithm constraints.  The state transition and 

output of the states are the same for all the different constructs using several processes. The HDL 

construct of this FSM with different process statement is shown in Fig 1. This is a FSM design for 

Moore machine with asynchronous “RESET”. The state machine consist of four states namely 

state1, state2, state3 and state4 having 5 transitions with single input “x1” and single output 

“stateout”. The state transition and state diagram is shown in Table 1 and Fig 2. In FSM with 

single process defines both the state transition and output of the state in single always statement. 

In FSM with two processes is designed in such a way that state transition in one always statement 

and the output of the state is defined in the second always statement. In FSM with three processes 

is designed in the manner that the first always statement initializes the state by enabling 

asynchronous reset signal, the second always statement is designed to provide state transition and 

the third always statement produces the state outputs. All the three FSM produces same state 

transition and same output. These FSM are synthesized by setting the global constraint for speed 

and area. The FSM are also synthesized by enabling different encoding schemes available in the 

Xilinx tool like auto, one-hot, gray, compact, sequential, speed1, user, Johnson and none options.      

 

FPGA synthesis tool supports different encoding options related to the state machine 

implementation. By setting the auto constraint option the synthesis tool will provide the best 

encoding algorithm for each FSM. This option is the default setting in the synthesis tool. In one-

FSM with one Process 
module fsm (clk, reset, x1, stateout);   

  input clk, reset, x1;   

  output stateout;   

  reg stateout;  

 reg [1:0] state;   

parameter state1 = 2'b00;  

parameter state2 = 2'b01;   

parameter state3 = 2'b10; 

 parameter state4 = 2'b11;  

   always@(posedge clk or posedge 

reset)   

  begin   
    if (reset)   

      begin   

        state = state1; stateout = 1'b1;   
      end   

    else   

      begin   

        case (state)   

          state1: begin   

                if (x1==1'b1) state = state2;   

                else          state = state3;   

                stateout = 1'b1;   

              end   

          state2: begin   

                state = state4; stateout = 1'b1;   

              end   
          state3: begin   

                state = state4; stateout = 1'b0;   

              end   
          state4: begin   

                state = state1; stateout = 1'b1;   

              end   

        endcase   

      end   

  end   

FSM with Two Processes 
module fsm1 (clk, reset, x1, out);   

  input clk, reset, x1;   

  output out;   

  reg out;   

reg [1:0] state;   

parameter state1 = 2'b00; 

 parameter state2 = 2'b01;   

parameter state3 = 2'b10; 

 parameter state4 = 2'b11;  

 

   always @(posedge clk or posedge 

reset)   
  begin   

    if (reset)   

      state = state1;   
    else   

      begin   

        case (state)   

          state1: if (x1==1'b1) state = 

state4;   

              else          state = state3;   

          state2: state = state3;   

          state3: state = state4;   

          state4: state = state1;   

        endcase   

      end   

  end   
  

  always @(state)   

  begin   
        case (state)   

          state1: out = 1'b1;   

          state2: out = 1'b1;   

          state3: out = 1'b0;   

          state4: out = 1'b1;    

        endcase   

FSM with Three Processes 
module fsm2 (clk, reset, x1, stateout);   

  input clk, reset, x1;   

  output stateout;   

  reg stateout;   

 reg [1:0] state;   

reg [1:0] next_state;   

parameter state1 = 2'b00; 

 parameter state2 = 2'b01;   

parameter state3 = 2'b10; 

 parameter state4 = 2'b11;  

   always @(posedge clk or posedge reset)   

  begin   
    if (reset)  state = state1;   

    else        state = next_state;   

  end  
  

  always @(state or  x1)   

  begin   

        case (state)   

          state1: if (x1==1'b1) next_state = 

state2;   

              else          next_state = state3;   

          state2: next_state = state4;    

          state3: next_state = state4;    

          state4: next_state = state1;    

        endcase   

  end  
   always @(state)   

  begin   

        case (state)   
          state1: stateout = 1'b1;   

          state2: stateout = 1'b1;   

          state3: stateout = 1'b0;   

          state4: stateout = 1'b1;    

        endcase   

  end   
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hot encoding option each state is associated with one code bit and also one flip-flop to each state. 

By triggering the clock pulse only one state variable is asserted. When one-hot is used, the next-

state equation for each flip-flop will contain one term for each link path leading into the 

corresponding state. On asynchronous reset only one flip-flop will be set to ‘1’ instead of 

resetting all flip-flops to ‘0’. For this FSM design the encoding states are “0001, 0010, 0100 and 

1000”. 

 

In compact encoding option the numbers of bits in the state registers are minimized using 

hypercube are also called code space immersion technique to minimize area. This hypercube 

technique uses code equivalence to fix the optimal state encoding (code) by assigning its true and 

complementary state assignment values like “00, 11, 01, 10” for four states. 

 

 

 

 

 

 

 

 

 

 

 

The gray code encode option allows only one bit difference in the adjacent codes to reduce the 

number of transition for low power purpose. Because of one bit transition unnecessary hazards 

and glitches can be minimized. Binary (sequential) encoding option encodes the states as 

consecutive binary numbers. More than one bit of the state register can change at a time; because 

more than one bit can be hot the value must be decoded to determine the state. The decoded value 

for this option will be “00, 01, 10 and 11”. The user option will cause the synthesis tool to use the 

encoding defined in the source file. The Johnson encoding option is similar to gray code 

providing one bit transition, shows benefits with state machines containing long paths with no 

branch. Speed1 encoding option is specified for speed optimization. The state encoding depends 

on each FSM, normally the number of bits assigned for state register will be greater that of the 

FSM states. The none option will disables automatic FSM extraction. 

The code generated for FSM with single and multiple processes is synthesized with various 

constraints for speed and area. The technology mapping of this FSM for single, two and three 

processes are shown in Fig 3. For single process the inputs X1 and reset are buffered. For clock 

generation the device utilizes the internal clock buffer called BUFGP. For this the state transition 

utilizes 3 LUTs and 3 internal registers. Two internal register have been designed with positive 

edge clock with its internal primitive named as FDC and the third one is designed with negative 

edge clock with its internal primitive named as FDP. For stateout output signal the device has 

utilized one output buffer OBUF. So the total number of input and output buffer utilized are 3 

buffer, 3 LUT and 3 registers with positive and negative edge clock for single process. Similarly 

FSM designed with two and three utilizes two input buffer for X1 and reset, one output buffer for 

state output. This FSM uses only 3 LUTs and 2 internal registers with positive edge clock. So the 

total numbers of input and output buffer utilized are 3buffers, 3 LUT and 2 registers with positive 

Table 1 State Table 

Present 

State 

Next State State 

output X1=0 X1=1 

State1 State3 State2 1 

State2 State2 State4 1 

State3 State3 State4 0 

State4 State4 State1 1 

 

Figure 2. State Transition 
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edge clock for two and three processes. Therefore for two and three process the utilization is less 

when compare to single process.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
a. Technology mapping of FSM with single Process

  

b. Technology mapping of FSM with two Process

 

c. Technology mapping of FSM with three Process 

 
Figure 3. Technology mapping of single and multiple processes 
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3. PERFORMANCE AND SYNTHESIS RESULT OF FSM WITH SINGLE AND  

MULTIPLE PROCESSES 
 

The synthesis report of finite state machine for single and multiple processes by setting different 

encoding scheme are listed in Table 2. This Table depicts the total number of slices occupied, the 

encoding style for different options like gray, on-hot, sequential etc., minimum period and 

maximum clock frequency (Input period / Input frequency),  minimum input arrival time before 

clock (Min input) and maximum output required time after clock (Max output). This synthesis 

result shows that the auto encoding scheme has chosen gray code as the best encoding algorithm 

for this FSM. For one-hot option for both single and multiple processes the number of slices 

utilized is more when compare to other options, but the input period, maximum clock frequency 

and clock load are higher when compare to other encoding algorithm.  

For compact and sequential options the slices utilization and clock load are seen to be the same 

but both these options uses different encoding algorithm and the input and output delays are 

different. For Johnson and gray the encoding method are the same and produces the same 

characteristics for both delay and slice utilization. For user and none option the slice utilization 

and delay are the same but the user option takes the encoding scheme as specified in the coding 

whereas the none option will not take any encoding algorithm. For speed1 option the slices 

utilized will be large with long input period and less clock frequency. This synthesis result 

presents the clock load for one-hot and speed1 are higher when comparing to other encoding 

algorithm. The maximum bit representations for encoding the states are occupied by one-hot and 

speed1 with a sequence of “0001, 0010, 0100, 1000” and “1000, 0011, 0010, 0101”.  

Fig 4 shows the synthesis variation of FSM in terms of register utilization, LUT utilization, input 

period, maximum clock frequency, minimum input arrival time and maximum output required 

time for single and multiple processes. From register utilization graph it can be observe that one-

hot and speed1 option utilizes 5 and 4 register slices for single and multiple processes whereas the 

remaining option occupies 3 and 2 register slices. So for minimum number of register utilization 

gray or compact or Johnson is suitable.  From LUT utilization graph it shows that the maximum 

LUT utilization occurs for one-hot option with 4 LUTs and minimum utilization occurs for 

speed1 with 2 LUTs. So for minimum number of LUT usage speed1 is preferable.  

The input period graph illustrates the longest input period occurs for user, compact and sequential 

option and the shortest occurs for one-hot. This parameter defines the speed optimization take 

place, if the input transition occurs for longer period. Therefore for high speed prerequisite 

speed1 and one-hot are appropriate. From the maximum clock frequency graph it can be seen that 

the highest frequency arise for one-hot and the lowest frequency arise for compact, sequential and 

none. So this parameter defines the significance of speed, illustrating that if the input period time 

is fast then the clock frequency will be maximum. The minimum input arrival time graph 

exemplify the arrival time is longer for one-hot and speed1, and shorter for gray, Johnson and 

compact.  Maximum output required time graph shows no significant changes but shows variation 

for single and multiple processes.  

From this analysis the significance of each encoding algorithm is very comprehensible. Finite 

state machines designed with one-hot algorithm are typically faster. In this encoding method 

speed is independent of the number of states, though this scheme utilizes more next-state 

equations; the algorithm depends only on the number of transitions into particular state. The 

disadvantage is that one-hot encoding typically requires many registers. For sequential encoding 

algorithm the major merit is that the number of states examined is independent of multiple input 

constraints. The limitation in this algorithm is that this encoding method will depend on all flip-

flops in the state representation, and thus a state-decode will be indispensable. 
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FSM 

Type 

Proce

ss 

Slices Occupied 
Encoding 

Style 
Input 

period/In

put 

Frequenc

y 

ns/MHz 

Delay (ns) 
No of 

Slice 

Registe

r 

No 

of 

Slice 

LUT 

No of 

Bonde

d I/Os 

No 

of 

BU

FG 

State 

Enc

odin

g 
Min 

input 

Max 

output 

Auto 
single 3 3 4 1 

00       |  00 

10       |  01 

01       |  11 

11       |  10 

1.608 

621.794 
2.34 3.819 

Two 2 3 4 1 
1.608 

621.794 
2.34 4.828 

Three 2 3 4 1 
1.608 

621.794 
2.34 4.828 

One-

hot 
single 5 4 4 1 00       |  0001 

10       |  0010 

01       |  0100 

11       |  1000 

 

1.574 

635.223 
2.40 3.819 

Two 4 4 4 1 
1.537 

650.682 
2.37 4.794 

Three 4 4 4 1 
1.537 

650.682 
2.37 4.794 

Compa

ct 
single 3 3 4 1 

00      |  00 

10      |  11 

01      |  01 

11      |  10 

2.083 

480.054 

2.34 

 
3.819 

Two 2 3 4 1 
1.574 

635.223 
2.34 4.724 

Three 2 3 4 1 
1.574 

635.223 
2.34 4.724 

Sequen

tial 
single 3 3 4 1 

00     |  00 

10     |  01 

01     |  10 

11     |  11 

2.083 

480.054 

2.38 

 
3.819 

Two 2 3 4 1 
1.574 

635.223 
2.38 4.724 

Three 2 3 4 1 
1.574 

635.223 
2.38 4.724 

Gray 
single 3 3 4 1 

00     |  00 

10     |  01 

01    |  11 

11    |  10 

1.608 

621.794 
2.34 3.819 

Two 2 3 4 1 
1.608 

621.794 
2.34 4.828 

Three 2 3 4 1 
1.608 

621.794 
2.34 4.828 

Johnso

n 
single 3 3 4 1 

00     |  00 

10    |  01 

01    |  11 

11    |  10 

1.608 

621.794 
2.34 3.819 

Two 2 3 4 1 
1.608 

621.794 
2.34 4.828 

Three 2 3 4 1 
1.608 

621.794 
2.34 4.828 

User 
single 3 3 4 1 

00     |  00 

10    |  10 

01    |  01 

11    |  11 

2.083 

480.054 
2.38 3.819 

Two 2 3 4 1 
1.574 

635.223 
2.38 4.724 

Three 2 3 4 1 
1.574 

635.223 
2.38 4.724 

Speed1 
single 5 2 4 1 

00     |  1000 

10    |  0011 

01    |  0010 

11    |  0101 

2.012 

497.092 
2.40 3.819 

Two 4 2 4 1 
1.574 

635.223 
2.37 4.653 

Three 4 2 4 1 
1.574 

635.223 
2.37 4.653 

None 
single 3 3 4 1 

No encoding 

2.083 

480.054 
2.38 3.819 

Two 2 3 4 1 
1.574 

635.223 
2.38 4.724 

Three 2 3 4 1 
1.574 

635.223 
2.382 4.724 
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Figure 4. Synthesis variation of FSM in terms of register utilization, LUT utilization, input period, 

maximum clock frequency, minimum input arrival time and maximum output required time for single and 

multiple processes 

 

The main significant of gray code is that codes assigned to two adjacent states have minimal 

possible Hamming distance equal to 1. Therefore glitches at the combinational FSM outputs are 

reduced. The number of state register flip-flops is also minimal. The disadvantage of this scheme 

is that both the next state logic as well as output logic depends on all values of all state register. 

Johnson encoding scheme allows codes in the adjacent states have the hamming distance of their 

codes equal to one, therefore reducing the combinational glitches at the output. The main 

drawback of this scheme is that the number of flip-flops in the state register is equal to N/2, where 

N is the number of states. Speed1 encoding is oriented for speed optimization. The number of bits 



International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.6, December 2012 

87 

for state register depends on each FSM, but in general case it is greater than the number of FSM 

states.   

To consolidate this analysis, for the design of finite state machine for constraint fixed for speed, 

then one-hot and speed1 encoding are appropriate though it utilizes more number of registers. 

This encoding provides minimum input period and maximum clock frequency. So the FSM 

synthesized with one-hot and speed1 converges faster when compare to other encoding 

algorithms. A finite state machine designed for the constraint fixed for area, then gray code, 

Johnson, compact and sequential are suitable. This encoding method provides minimum number 

of state registers and the adjacent states will have Hamming code distance equal to 1, thereby 

eliminating the combinational glitches at the output. Also this encoding scheme provides 

minimum register and LUT utilization with minimum delay. From this analysis it is also observed 

that the FSM designed with multiple process have utilized less register and LUT when compare to 

the FSM designed with single process. For multiple process the clock frequency as well as the 

input period time is larger when compare to single process. So to conclude these issues, design 

FSM with multiple processes to reduce register and LUT utilization. For speed optimizations 

prefer one-hot and speed1 option and for area optimization chose gray or Johnson or sequential 

encoding scheme.      

4. DISCUSSION 
 
With increasing complexity and demand for high performance FPGA circuit design, there is 

greater need for synthesis optimization for proper resource utilization and logic that are embedded 

in the targeted device.  The focus has been to minimize the active area, speed and resources in a 

FPGA target device. The synthesis optimization in FSM design with single and multiple 

processes were presented. From this analysis the significance of each encoding algorithm is very 

comprehensible. A FSM designed for high speed target then one-hot and speed1is more 

preferable. A FSM designed for the constraint fixed for area, then gray code, Johnson, compact 

and sequential are suitable. This encoding method requires minimum number of state registers 

and it eliminates the combinational glitches at the output. From this analysis it is also observed 

that the FSM designed with multiple process have utilized less register and LUT when compare to 

the FSM designed with single process. For multiple process the clock frequency as well as the 

input period time is larger when compare to single process. So to conclude these issues, design 

FSM with multiple processes to reduce register and LUT utilization. For speed optimizations 

prefer one-hot and speed1 option and for area optimization chose gray or Johnson or sequential 

encoding scheme.   

5. CONCLUSION 

This paper presents the synthesis optimization for various constraints to minimize the resource 

utilization and logic density in the design of FSM. To design a finite state machine for constraint 

fixed for speed, then one-hot and speed1 encoding are appropriate though it utilizes more number 

of registers. This encoding provides minimum input period and maximum clock frequency. This 

algorithm has longest minimum input arrival time and has moderate maximum output required 

time. So the FSM synthesized with one-hot and speed1 converges faster when compare to other 

encoding algorithms. A finite state machine designed for the constraint fixed for area, then gray 

code, Johnson, compact and sequential are suitable. This encoding method provides minimum 

number of state registers and the adjacent states will have Hamming code distance equal to 1, 

thereby eliminating the combinational glitches at the output. Also this encoding scheme provides 

minimum register and LUT utilization with minimum delay. From this analysis it is also observed 

that the FSM designed with multiple process have utilized less register and LUT when compare to 

the FSM designed with single process. For multiple process the clock frequency as well as the 

input period time is larger when compare to single process. So to conclude these issues, design 

FSM with multiple processes to reduce register and LUT utilization. For speed optimizations 
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prefer one-hot and speed1 option and for area optimization chose gray or Johnson or sequential 

encoding scheme. 
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