
International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.6, December 2012

DOI : 10.5121/vlsic.2012.3607 79

SYNTHESIS OPTIMIZATION FOR FINITE STATE

MACHINE DESIGN IN FPGAS

 R.UMA AND P. DHAVACHELVAN

Department of Computer Engineering, School of Engineering, Pondicherry University,

Pondicherry, India
uma.ramadass1@gmail.com

dhavachelvan@gmail.com

ABSTRACT

Synthesis optimization plays a vital role in modern FPGAs in order to achieve high performance, in terms

of resource utilization and reducing time consuming test process. Cell-based design techniques, such as

standard-cells and FPGAs, together with versatile hardware synthesis are rudiments for a high

productivity in ASIC design. As the capacity of FPGAs increases, synthesis tools and efficient synthesis

methods for targeted device become more significant to efficiently exploit the resources and logic capacity.

The synthesis tool provides the selection of different constraint to optimize the circuit. This paper presents

the design and synthesis optimization constraints in FPGA for Finite state machine. The primary goal of

this sequential logic design is to optimize the speed and area by choosing the proper options available in

the synthesis tool. More over the work focuses the design of FSM with more processes operates at a faster

rate and the number of slices utilized in an FPGA is also reduced when compare to single process. The

module functionality are described using Verilog HDL and performance issues like slice utilized,

simulation time, percentage of logic utilization, level of logic are analyzed at 90 nm process technology

using SPARTAN6 XC6SLX150 XILINX ISE12.1 tool.

KEYWORDS

FPGA, FSM optimization, Synthesis constraints, State encoding, logic optimization

1. INTRODUCTION

Modern FPGAs became viable ASIC replacement because of very expensive fabrication process

and time consuming test process. FPGAs are already fabricated allowing quick time-to-market.

The amount of reconfigurable resources in a FPGA is fixed and limited. Within the available

resources the application has to be embedded. Different ISE (Integrated development

Environment) tools are available like Xilinx, Altera, Quartus etc. which provides various design

constraints setting for various optimizations like speed and area to fulfill the requirement of

design as well as the device selected in FPGAs. Generally hardware description language like

VHDL and Verilog are used to develop the circuit descriptions. The synthesis tools optimize

HDL code for both logic utilization and performance of an intended design. In FPGA each slices,

LUT and register utilization are very important in order to accommodate larger design unit.

Inefficient coding may also lead to adverse effect of synthesis to result in slow devices and

occupies larger slices, LUT and registers.

In VLSI design flow, specifications are written first, specifications describe abstractly the

functionality, interface and overall architecture of the digital circuit to be designed[2]. The circuit

descriptions are written using HDL either VHDL or Verilog in terms of its behavior. The design

at the behavioral level is to be elaborated in terms of known and acknowledge functional

International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.6, December 2012

80

blocks[3]. Once the design is completed its functionality is tested using circuit simulators. After

functionality test the RTL description are converted into gate-level netlist using logic synthesizer.

A gate-level netlist is a description of the circuit in terms of gates and connections between them

[4]. Synthesis is a process by which an abstract form of desired circuit behaviour (typically

register transfer level (RTL)) is turned into a design implementation in terms of logic gates[5].

Logic synthesis tool ensure that the gate level netlist meets timing, area and power specifications.

After several annotation if the expected output is derived then the final implementation is done

through FPGA or ASIC.

Designing a synchronous Finite state machine (FSM) is a common task for a digital logic circuit.

Sequential circuit optimization has been the subject of intensive investigation for several decades

[1][12]. FPGA synthesis tool provides a variety of design constraints which essentially helps the

designer to meet the design goal such as area and speed optimization to obtain the best

implementation logic. This work focuses the selection of constrains and issues related to each

constraint is elucidated. This paper details efficient Verilog coding styles to infer synthesizable

state machines. HDL considerations such as advantages and disadvantages of one-always block

FSMs Vs. two-always block FSMs are described.

The organization of the paper is as follows: Section 2 presents the implementation of Finite state

machines with single and multiple processes. Section 3 focuses the performance issues of FSM

with single and multiple processes. Section 4 presents the discussion. Finally the conclusion is

presented in section 5.

2. FSM WITH SINGLE AND MULTIPLE PROCESSES

FPGA synthesis tool provides a variety of design constraints which essentially helps the designer

to meet the design goal such as area and speed optimization to obtain the best implementation

logic. This section describes the implementation of FSM with single and multiple processes and

the important aspects of synthesis optimization like resource sharing for area, speed, latency and

power. At the synthesis level, the high level description is converted into an optimized gate-level

representation or RTL form. At this level of abstraction when global constraints of area or speed

is set the synthesis tool will try to meet constraints, calculate cost of various implementation and

try to generate best logic topology for given constraints, algorithm and target process. Normally

synthesis tools use wire load models which statistically estimates the interconnect delay in the

absence of physical layout data. For a wire delay with given fanout, the wire load model specifies

the capacitance, resistance and area of the wire. Although the synthesis tool has complete control

over the netlist, the resulting timing is greatly affected by the physical layout.

The synthesis based gate-level optimizations will include constraints like Finite State Encoding

(FSM) algorithm (like auto, one-hot, compact, sequential, gray, Johnson, speed1), hierarchy

setting (which allows MAP’s physical synthesis options to optimize across hierarchical

boundaries), logic duplication (avoids replication of logic), FSM style, register duplication and so

on. By setting the required constraints the design can be optimized. As a general rule faster design

requires parallelism at the expense of slice area, and minimize area design requires less logical

depth.

This topic presents the issues in optimization of synthesis tool in sequential logic which is

elucidated by the design of Finite State Machine (FSM) with different encoding algorithm

constraints like gray, one-hot, sequential, Johnson, speed1 and auto. Finite state machine is a

restricted class of sequential circuits called synchronous circuits which assumes the existence of a

common global clock. An FSM is a discrete dynamic system that translates the sequence of input

vectors into sequence of output vectors. States in an FSM specification can be either symbolic or

International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.6, December 2012

81

binary-encoded. To optimize the circuit at sequential level, state minimization and state

assignment procedure are executed. State minimization reduces the redundant states and state

assignment encodes the symbolic states into binary codes.

The following example presents the design of FSM with one, two and three processes providing

the same specification with different encoding algorithm constraints. The state transition and

output of the states are the same for all the different constructs using several processes. The HDL

construct of this FSM with different process statement is shown in Fig 1. This is a FSM design for

Moore machine with asynchronous “RESET”. The state machine consist of four states namely

state1, state2, state3 and state4 having 5 transitions with single input “x1” and single output

“stateout”. The state transition and state diagram is shown in Table 1 and Fig 2. In FSM with

single process defines both the state transition and output of the state in single always statement.

In FSM with two processes is designed in such a way that state transition in one always statement

and the output of the state is defined in the second always statement. In FSM with three processes

is designed in the manner that the first always statement initializes the state by enabling

asynchronous reset signal, the second always statement is designed to provide state transition and

the third always statement produces the state outputs. All the three FSM produces same state

transition and same output. These FSM are synthesized by setting the global constraint for speed

and area. The FSM are also synthesized by enabling different encoding schemes available in the

Xilinx tool like auto, one-hot, gray, compact, sequential, speed1, user, Johnson and none options.

FPGA synthesis tool supports different encoding options related to the state machine

implementation. By setting the auto constraint option the synthesis tool will provide the best

encoding algorithm for each FSM. This option is the default setting in the synthesis tool. In one-

FSM with one Process
module fsm (clk, reset, x1, stateout);

 input clk, reset, x1;

 output stateout;

 reg stateout;

 reg [1:0] state;

parameter state1 = 2'b00;

parameter state2 = 2'b01;

parameter state3 = 2'b10;

 parameter state4 = 2'b11;

 always@(posedge clk or posedge

reset)

 begin
 if (reset)

 begin

 state = state1; stateout = 1'b1;
 end

 else

 begin

 case (state)

 state1: begin

 if (x1==1'b1) state = state2;

 else state = state3;

 stateout = 1'b1;

 end

 state2: begin

 state = state4; stateout = 1'b1;

 end
 state3: begin

 state = state4; stateout = 1'b0;

 end
 state4: begin

 state = state1; stateout = 1'b1;

 end

 endcase

 end

 end

FSM with Two Processes
module fsm1 (clk, reset, x1, out);

 input clk, reset, x1;

 output out;

 reg out;

reg [1:0] state;

parameter state1 = 2'b00;

 parameter state2 = 2'b01;

parameter state3 = 2'b10;

 parameter state4 = 2'b11;

 always @(posedge clk or posedge

reset)
 begin

 if (reset)

 state = state1;
 else

 begin

 case (state)

 state1: if (x1==1'b1) state =

state4;

 else state = state3;

 state2: state = state3;

 state3: state = state4;

 state4: state = state1;

 endcase

 end

 end

 always @(state)

 begin
 case (state)

 state1: out = 1'b1;

 state2: out = 1'b1;

 state3: out = 1'b0;

 state4: out = 1'b1;

 endcase

FSM with Three Processes
module fsm2 (clk, reset, x1, stateout);

 input clk, reset, x1;

 output stateout;

 reg stateout;

 reg [1:0] state;

reg [1:0] next_state;

parameter state1 = 2'b00;

 parameter state2 = 2'b01;

parameter state3 = 2'b10;

 parameter state4 = 2'b11;

 always @(posedge clk or posedge reset)

 begin
 if (reset) state = state1;

 else state = next_state;

 end

 always @(state or x1)

 begin

 case (state)

 state1: if (x1==1'b1) next_state =

state2;

 else next_state = state3;

 state2: next_state = state4;

 state3: next_state = state4;

 state4: next_state = state1;

 endcase

 end
 always @(state)

 begin

 case (state)
 state1: stateout = 1'b1;

 state2: stateout = 1'b1;

 state3: stateout = 1'b0;

 state4: stateout = 1'b1;

 endcase

 end

International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.6, December 2012

82

hot encoding option each state is associated with one code bit and also one flip-flop to each state.

By triggering the clock pulse only one state variable is asserted. When one-hot is used, the next-

state equation for each flip-flop will contain one term for each link path leading into the

corresponding state. On asynchronous reset only one flip-flop will be set to ‘1’ instead of

resetting all flip-flops to ‘0’. For this FSM design the encoding states are “0001, 0010, 0100 and

1000”.

In compact encoding option the numbers of bits in the state registers are minimized using

hypercube are also called code space immersion technique to minimize area. This hypercube

technique uses code equivalence to fix the optimal state encoding (code) by assigning its true and

complementary state assignment values like “00, 11, 01, 10” for four states.

The gray code encode option allows only one bit difference in the adjacent codes to reduce the

number of transition for low power purpose. Because of one bit transition unnecessary hazards

and glitches can be minimized. Binary (sequential) encoding option encodes the states as

consecutive binary numbers. More than one bit of the state register can change at a time; because

more than one bit can be hot the value must be decoded to determine the state. The decoded value

for this option will be “00, 01, 10 and 11”. The user option will cause the synthesis tool to use the

encoding defined in the source file. The Johnson encoding option is similar to gray code

providing one bit transition, shows benefits with state machines containing long paths with no

branch. Speed1 encoding option is specified for speed optimization. The state encoding depends

on each FSM, normally the number of bits assigned for state register will be greater that of the

FSM states. The none option will disables automatic FSM extraction.

The code generated for FSM with single and multiple processes is synthesized with various

constraints for speed and area. The technology mapping of this FSM for single, two and three

processes are shown in Fig 3. For single process the inputs X1 and reset are buffered. For clock

generation the device utilizes the internal clock buffer called BUFGP. For this the state transition

utilizes 3 LUTs and 3 internal registers. Two internal register have been designed with positive

edge clock with its internal primitive named as FDC and the third one is designed with negative

edge clock with its internal primitive named as FDP. For stateout output signal the device has

utilized one output buffer OBUF. So the total number of input and output buffer utilized are 3

buffer, 3 LUT and 3 registers with positive and negative edge clock for single process. Similarly

FSM designed with two and three utilizes two input buffer for X1 and reset, one output buffer for

state output. This FSM uses only 3 LUTs and 2 internal registers with positive edge clock. So the

total numbers of input and output buffer utilized are 3buffers, 3 LUT and 2 registers with positive

Table 1 State Table

Present

State

Next State State

output X1=0 X1=1

State1 State3 State2 1

State2 State2 State4 1

State3 State3 State4 0

State4 State4 State1 1

Figure 2. State Transition

International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.6, December 2012

83

edge clock for two and three processes. Therefore for two and three process the utilization is less

when compare to single process.

a. Technology mapping of FSM with single Process

b. Technology mapping of FSM with two Process

c. Technology mapping of FSM with three Process

Figure 3. Technology mapping of single and multiple processes

International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.6, December 2012

84

3. PERFORMANCE AND SYNTHESIS RESULT OF FSM WITH SINGLE AND

MULTIPLE PROCESSES

The synthesis report of finite state machine for single and multiple processes by setting different

encoding scheme are listed in Table 2. This Table depicts the total number of slices occupied, the

encoding style for different options like gray, on-hot, sequential etc., minimum period and

maximum clock frequency (Input period / Input frequency), minimum input arrival time before

clock (Min input) and maximum output required time after clock (Max output). This synthesis

result shows that the auto encoding scheme has chosen gray code as the best encoding algorithm

for this FSM. For one-hot option for both single and multiple processes the number of slices

utilized is more when compare to other options, but the input period, maximum clock frequency

and clock load are higher when compare to other encoding algorithm.

For compact and sequential options the slices utilization and clock load are seen to be the same

but both these options uses different encoding algorithm and the input and output delays are

different. For Johnson and gray the encoding method are the same and produces the same

characteristics for both delay and slice utilization. For user and none option the slice utilization

and delay are the same but the user option takes the encoding scheme as specified in the coding

whereas the none option will not take any encoding algorithm. For speed1 option the slices

utilized will be large with long input period and less clock frequency. This synthesis result

presents the clock load for one-hot and speed1 are higher when comparing to other encoding

algorithm. The maximum bit representations for encoding the states are occupied by one-hot and

speed1 with a sequence of “0001, 0010, 0100, 1000” and “1000, 0011, 0010, 0101”.

Fig 4 shows the synthesis variation of FSM in terms of register utilization, LUT utilization, input

period, maximum clock frequency, minimum input arrival time and maximum output required

time for single and multiple processes. From register utilization graph it can be observe that one-

hot and speed1 option utilizes 5 and 4 register slices for single and multiple processes whereas the

remaining option occupies 3 and 2 register slices. So for minimum number of register utilization

gray or compact or Johnson is suitable. From LUT utilization graph it shows that the maximum

LUT utilization occurs for one-hot option with 4 LUTs and minimum utilization occurs for

speed1 with 2 LUTs. So for minimum number of LUT usage speed1 is preferable.

The input period graph illustrates the longest input period occurs for user, compact and sequential

option and the shortest occurs for one-hot. This parameter defines the speed optimization take

place, if the input transition occurs for longer period. Therefore for high speed prerequisite

speed1 and one-hot are appropriate. From the maximum clock frequency graph it can be seen that

the highest frequency arise for one-hot and the lowest frequency arise for compact, sequential and

none. So this parameter defines the significance of speed, illustrating that if the input period time

is fast then the clock frequency will be maximum. The minimum input arrival time graph

exemplify the arrival time is longer for one-hot and speed1, and shorter for gray, Johnson and

compact. Maximum output required time graph shows no significant changes but shows variation

for single and multiple processes.

From this analysis the significance of each encoding algorithm is very comprehensible. Finite

state machines designed with one-hot algorithm are typically faster. In this encoding method

speed is independent of the number of states, though this scheme utilizes more next-state

equations; the algorithm depends only on the number of transitions into particular state. The

disadvantage is that one-hot encoding typically requires many registers. For sequential encoding

algorithm the major merit is that the number of states examined is independent of multiple input

constraints. The limitation in this algorithm is that this encoding method will depend on all flip-

flops in the state representation, and thus a state-decode will be indispensable.

International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.6, December 2012

85

FSM

Type

Proce

ss

Slices Occupied
Encoding

Style
Input

period/In

put

Frequenc

y

ns/MHz

Delay (ns)
No of

Slice

Registe

r

No

of

Slice

LUT

No of

Bonde

d I/Os

No

of

BU

FG

State

Enc

odin

g
Min

input

Max

output

Auto
single 3 3 4 1

00 | 00

10 | 01

01 | 11

11 | 10

1.608

621.794
2.34 3.819

Two 2 3 4 1
1.608

621.794
2.34 4.828

Three 2 3 4 1
1.608

621.794
2.34 4.828

One-

hot
single 5 4 4 1 00 | 0001

10 | 0010

01 | 0100

11 | 1000

1.574

635.223
2.40 3.819

Two 4 4 4 1
1.537

650.682
2.37 4.794

Three 4 4 4 1
1.537

650.682
2.37 4.794

Compa

ct
single 3 3 4 1

00 | 00

10 | 11

01 | 01

11 | 10

2.083

480.054

2.34

3.819

Two 2 3 4 1
1.574

635.223
2.34 4.724

Three 2 3 4 1
1.574

635.223
2.34 4.724

Sequen

tial
single 3 3 4 1

00 | 00

10 | 01

01 | 10

11 | 11

2.083

480.054

2.38

3.819

Two 2 3 4 1
1.574

635.223
2.38 4.724

Three 2 3 4 1
1.574

635.223
2.38 4.724

Gray
single 3 3 4 1

00 | 00

10 | 01

01 | 11

11 | 10

1.608

621.794
2.34 3.819

Two 2 3 4 1
1.608

621.794
2.34 4.828

Three 2 3 4 1
1.608

621.794
2.34 4.828

Johnso

n
single 3 3 4 1

00 | 00

10 | 01

01 | 11

11 | 10

1.608

621.794
2.34 3.819

Two 2 3 4 1
1.608

621.794
2.34 4.828

Three 2 3 4 1
1.608

621.794
2.34 4.828

User
single 3 3 4 1

00 | 00

10 | 10

01 | 01

11 | 11

2.083

480.054
2.38 3.819

Two 2 3 4 1
1.574

635.223
2.38 4.724

Three 2 3 4 1
1.574

635.223
2.38 4.724

Speed1
single 5 2 4 1

00 | 1000

10 | 0011

01 | 0010

11 | 0101

2.012

497.092
2.40 3.819

Two 4 2 4 1
1.574

635.223
2.37 4.653

Three 4 2 4 1
1.574

635.223
2.37 4.653

None
single 3 3 4 1

No encoding

2.083

480.054
2.38 3.819

Two 2 3 4 1
1.574

635.223
2.38 4.724

Three 2 3 4 1
1.574

635.223
2.382 4.724

International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.6, December 2012

86

Figure 4. Synthesis variation of FSM in terms of register utilization, LUT utilization, input period,

maximum clock frequency, minimum input arrival time and maximum output required time for single and

multiple processes

The main significant of gray code is that codes assigned to two adjacent states have minimal

possible Hamming distance equal to 1. Therefore glitches at the combinational FSM outputs are

reduced. The number of state register flip-flops is also minimal. The disadvantage of this scheme

is that both the next state logic as well as output logic depends on all values of all state register.

Johnson encoding scheme allows codes in the adjacent states have the hamming distance of their

codes equal to one, therefore reducing the combinational glitches at the output. The main

drawback of this scheme is that the number of flip-flops in the state register is equal to N/2, where

N is the number of states. Speed1 encoding is oriented for speed optimization. The number of bits

International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.6, December 2012

87

for state register depends on each FSM, but in general case it is greater than the number of FSM

states.

To consolidate this analysis, for the design of finite state machine for constraint fixed for speed,

then one-hot and speed1 encoding are appropriate though it utilizes more number of registers.

This encoding provides minimum input period and maximum clock frequency. So the FSM

synthesized with one-hot and speed1 converges faster when compare to other encoding

algorithms. A finite state machine designed for the constraint fixed for area, then gray code,

Johnson, compact and sequential are suitable. This encoding method provides minimum number

of state registers and the adjacent states will have Hamming code distance equal to 1, thereby

eliminating the combinational glitches at the output. Also this encoding scheme provides

minimum register and LUT utilization with minimum delay. From this analysis it is also observed

that the FSM designed with multiple process have utilized less register and LUT when compare to

the FSM designed with single process. For multiple process the clock frequency as well as the

input period time is larger when compare to single process. So to conclude these issues, design

FSM with multiple processes to reduce register and LUT utilization. For speed optimizations

prefer one-hot and speed1 option and for area optimization chose gray or Johnson or sequential

encoding scheme.

4. DISCUSSION

With increasing complexity and demand for high performance FPGA circuit design, there is

greater need for synthesis optimization for proper resource utilization and logic that are embedded

in the targeted device. The focus has been to minimize the active area, speed and resources in a

FPGA target device. The synthesis optimization in FSM design with single and multiple

processes were presented. From this analysis the significance of each encoding algorithm is very

comprehensible. A FSM designed for high speed target then one-hot and speed1is more

preferable. A FSM designed for the constraint fixed for area, then gray code, Johnson, compact

and sequential are suitable. This encoding method requires minimum number of state registers

and it eliminates the combinational glitches at the output. From this analysis it is also observed

that the FSM designed with multiple process have utilized less register and LUT when compare to

the FSM designed with single process. For multiple process the clock frequency as well as the

input period time is larger when compare to single process. So to conclude these issues, design

FSM with multiple processes to reduce register and LUT utilization. For speed optimizations

prefer one-hot and speed1 option and for area optimization chose gray or Johnson or sequential

encoding scheme.

5. CONCLUSION

This paper presents the synthesis optimization for various constraints to minimize the resource

utilization and logic density in the design of FSM. To design a finite state machine for constraint

fixed for speed, then one-hot and speed1 encoding are appropriate though it utilizes more number

of registers. This encoding provides minimum input period and maximum clock frequency. This

algorithm has longest minimum input arrival time and has moderate maximum output required

time. So the FSM synthesized with one-hot and speed1 converges faster when compare to other

encoding algorithms. A finite state machine designed for the constraint fixed for area, then gray

code, Johnson, compact and sequential are suitable. This encoding method provides minimum

number of state registers and the adjacent states will have Hamming code distance equal to 1,

thereby eliminating the combinational glitches at the output. Also this encoding scheme provides

minimum register and LUT utilization with minimum delay. From this analysis it is also observed

that the FSM designed with multiple process have utilized less register and LUT when compare to

the FSM designed with single process. For multiple process the clock frequency as well as the

input period time is larger when compare to single process. So to conclude these issues, design

FSM with multiple processes to reduce register and LUT utilization. For speed optimizations

International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.6, December 2012

88

prefer one-hot and speed1 option and for area optimization chose gray or Johnson or sequential

encoding scheme.

REFERENCES

[1] R.Uma, “Qualitative Analysis of Hardware Description Languages: VHDL and Verilog” (IJCSIS)

International Journal of Computer Science and Information Security, Vol. 9, No. 4, pp-127-135, April

2011.

[2] JingXia Wang, Sin Ming Loo, “Case Study of Finite Resource Optimization in FPGA Using Genetic

Algorithm”, IJCA, Vol. 17, No.2, June 2010

[3] Alberto Sangiovanni-Vincentelli, Abbas El Gamal And Jonathan Rose, “Synthesis Methods for

Field Programmable Gate Arrays” Proceedings of the IEEE, VOL. 81, NO. 7, JULY 1993

[4] Matthew French, Li Wang, Tyler Anderson, Michael Wirthlin “Post Synthesis Level Power Modeling

of FPGAs” Proceedings of the 13th Annual IEEE Symposium on Field-Programmable Custom

Computing Machines (FCCM’05) 2005 IEEE

[5] Maico Cassel, Fernanda Lima Kastensmidt “Evaluating One-Hot Encoding Finite State Machines for

SEU Reliability in SRAM-based FPGAs” Proceedings of the 12th IEEE International On-Line Testing

Symposium (IOLTS'06)

[6] abrizio Ferrandi, Pier Luca Lanzi, Gianluca Palermo, Christian Pilato, Donatella Sciuto, Antonino

Tumeo Politecnico di Milano “n Evolutionary Approach to Area-Time Optimization of FPGA designs”

2007 IEEE

[7] St anisław Deni ziak, Mar iu s z WiĞniews ki “A Symboli c RTL Sy nt hesis for LUT- based

FPGAs 2009 IEEE

[8] Jason Cong Bin Liu, Stephen Neuendorffer, Juanjo Noguera, Kees Vissers, and Zhiru Zhang “IEEE

Transactions On Computer-Aided Design Of Integrated Circuits And Systems, VOL. 30, NO. 4, April

2011

[9] Digital System Design Using VHDL, Charles H. Roth, Jr., PWS Publishing Company, 1998, pp 25-27

[10] Steve Golson “One-hot state machine design for FPGAs” March 30, 1993 -- 3rd PLD Design

Conference, Santa Clara CA

[11] P. Dhavachelvan, G.V. Uma and V.S.K.Venkatachalapathy (2006),“A New Approach in

 Development of Distributed Framework for Automated Software Testing Using Agents”,International

 Journal on Knowledge –Based Systems, Elsevier, Vol. 19, No. 4, pp. 235-247, August-2006.

[12] Jian Li , Ra jesh K. Gupta “HDL Code Restructuring Using Timed Decision Tables”

http://www.ics.uci.edu/iesag

International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.6, December 2012

89

Authors

R.Uma received her B.E. (EEE) degree from Bharathiyar University Coimbatore

in the year 1998, Post graduated in M.E (VLSI Design) from Anna

University Chennai in the year 2004. Currently she has been working as Assistant

Professor in Electronics and Communication Engineering, Rajiv Gandhi College

of Engineering and Technology, Puducherry. She authored books on VLSI

Design. She has published several papers on national and International journal

and conferences. She is the guest faculty for Pondicherry University for M.Tech

Electronics. She has received the best teacher award for the year 2006 and 2007.

Her research interests are Analog VLSI Design, Low power VLSI Design,

Testing of VLSI Circuits, Embedded systems and Image processing. She is a member of ISTE. Perusing her

Ph.D. from Pondicherry University in the Department of Computer Science.

Dr. P. Dhavachelvan is working as a Professor in the Department of Computer

Science, Pondicherry University, India. He obtained his B.E. in the field of

Electrical and Electronics Engineering from University of Madras, India. He

pursued his M.E. and Ph.D. in the field of Computer Science and Engineering from

Anna University, Chennai, India. He has about 15 years of experience as an

academician and his research areas include Software Engineering & Standards and

Web Service Computing. In his credit, he has more than 125 research papers

published in reputed International and National Journals and Conferences. He also

obtained Patents and proposed Standards in the domain of Software Engineering.

